The

AIRCRAFT

YEAR BOOK

For 1954

TERRESA SMITH
The
AIRCRAFT YEAR BOOK
1954
THE AIRCRAFT YEAR BOOK
1954

Official Publication
of
THE AIRCRAFT INDUSTRIES ASSOCIATION OF AMERICA, INC.

Thirty-sixth Annual Edition

Editors
FRED HAMLIN
LYNN BLACK
ELEANOR THAYER

Edited and Published by
Lincoln Press, Inc. • PUBLISHERS
1143 NATIONAL PRESS BUILDING • WASHINGTON 4, D. C.
STERLING 3-1944
ACKNOWLEDGMENTS

The 1954 Aircraft Year Book represents the combined editorial talent of the industry. Only through the generous collaboration of company public relations officials, writers in other branches of aviation and aircraft executives, has this edition been possible. To these people we should like to express our thanks. We should like, also, to express our special gratitude to the Aircraft Year Book Editorial Board of the Public Relations Advisory Committee of the Aircraft Industries Association, who gave much valuable time in suggesting the handling of the material. The Committee included Mr. Carlyle Jones, Director of Public Relations, Sperry Gyroscope Co.; Mr. Harold Mansfield, Director of Public Relations, Boeing Airplane Co.; and Mr. J. J. Synar, News Bureau, General Electric Co. Coordinating the work of the Committee were Mr. Avery McBee, Director of Public Relations of the Aircraft Industries Association, and Mr. Burton E. English, Public Relations, AIA, to whom we are also deeply grateful.

The Editors
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aviation Books Published in the United States in 1953</td>
<td>8</td>
</tr>
<tr>
<td>Summary Statistics</td>
<td>26</td>
</tr>
<tr>
<td>Aviation Events, 1954</td>
<td>63</td>
</tr>
<tr>
<td>The Industry</td>
<td>79</td>
</tr>
<tr>
<td>Department of Defense</td>
<td>185</td>
</tr>
<tr>
<td>Guided Missiles</td>
<td>195</td>
</tr>
<tr>
<td>The Government and Aviation</td>
<td>205</td>
</tr>
<tr>
<td>The Airlines</td>
<td>223</td>
</tr>
<tr>
<td>Utility Airplanes</td>
<td>243</td>
</tr>
<tr>
<td>Planes in Production</td>
<td>251</td>
</tr>
<tr>
<td>Engines in Production</td>
<td>318</td>
</tr>
<tr>
<td>1954 Day by Day Chronology</td>
<td>331</td>
</tr>
<tr>
<td>Biographical Briefs</td>
<td>336</td>
</tr>
<tr>
<td>A Chronology of U. S. Aviation</td>
<td>380</td>
</tr>
<tr>
<td>Official Records</td>
<td>396</td>
</tr>
<tr>
<td>Index</td>
<td>460</td>
</tr>
<tr>
<td>Index to Advertisers</td>
<td>472</td>
</tr>
</tbody>
</table>
During 1954, aviation in the United States reached new high levels of achievement and importance, both in the civil and military fields.

Significant progress was made in improving the quality of the Air Force, Army, Navy and Marine air arms and the United States Air Force's expansion program continued on schedule. New models were introduced in squadron service.

Aircraft production emphasis moved from the build-up phase of the national rearmament effort to a program in which improvements in quality of the product were accorded increased priority and attention. During the year employment in aircraft manufacture passed the 800,000 mark and as the year came to a close, was gradually declining, although the aircraft industry at year's end remained the nation's largest manufacturing employer.

So rapidly have technological developments in aviation been introduced in military aircraft since the end of World War II that production of seven different models of supersonic military fighters and one supersonic bomber have been ordered.

The nation's airlines, carrying more passengers and more cargo than ever before in their history, set a new record for revenue miles flown. And both scheduled and non-scheduled airlines set new standards of safety and reliability by operating with the lowest fatality rate in airline history.

The use of the utility plane as a valuable and profitable tool of business and agriculture continued to increase, with the fleet of non-airline multi-engine aircraft outnumbering that of the scheduled airline fleet by 2 1/2 times. Commercial helicopter operations continued to expand.

This 1954 edition of the Aircraft Year Book, official publication of the Aircraft Industries Association, records in detail the achievements and problems of every major element of American aviation during the past year. Because of this broad coverage of the American aviation scene, the Aircraft Industries Association believes that this new Year Book again will serve as a valuable reference work on American air power.

ADMIRAL DeWITT C. RAMSEY (USN, Ret.)

President, Aircraft Industries Association
FOR THE
AIRCRAFT INDUSTRY

The First Dimensionally Stable Tooling Plastic for

- STRETCH PRESS, HYDROFORM AND DROP HAMMER DIES
- MASTER CONTOUR BLOCKS
- CHECKING FIXTURES
- DRILL AND ROUTER FIXTURES AND MANY OTHER APPLICATIONS THROUGHOUT THE AIRCRAFT INDUSTRY

REN-ITE is a modified Epoxy thermosetting resin for use as a laminating plastic without application of heat or pressure for general tooling applications. Cured, non-toxic, non-corrosive, easy to patch, not brittle, bonds to any material. Packaged in premeasured cans, complete with resin and hardener for immediate convenient use. We invite you to try Ren-ite products in your tooling program. Write for further information and price schedules on complete Ren-ite line.

Free engineering service and no contracts required.

REN-ITE is a trademark of Ren-ite Plastics, Inc.

Ren-ite PLASTICS, INC.
POST OFFICE BOX NO. 1256, LANSING 4, MICHIGAN
BRANCH OFFICES IN CHICAGO, CLEVELAND, DETROIT,
LOS ANGELES, NEW YORK AND ST. LOUIS.
The AIRCRAFT YEAR BOOK

AVIATION BOOKS PUBLISHED IN THE UNITED STATES IN 1954

The following bibliography was compiled by Arthur G. Renstrom, Library of Congress

AIRPORTS AND AIRWAYS

AIRPORT OPERATORS COUNCIL. Airport Operation; the Papers Presented and a Selective Discussion Report Covering the Sixth Annual Meeting, Kansas City, Missouri, March 22-26, 1953. Washington, The Council. 143p. $5.00

CALENDER, KENNETH E. Airports and Aviation in Latin America. New York, American Society of Civil Engineers. 69p. (Separate No. 394 from its Proceedings, Vol. 13.) $5.00

FLYNN, WILLIAM. Men, Money and Mud. The Story of the San Francisco International Airport. San Francisco, Wm. Flyn Publications, Inc. 64p. $7.50

GARBELL RESEARCH FOUNDATION. The Timing of Airport Traffic Control as influenced by Weather and Aircraft Performance. San Francisco, Garbell Foundation. $21.00

HORONJEFF, ROBERT and HOWARD S. LAPIN. Planning for Urban Airports. Berkeley, Calif., Institute of Transportation and Traffic Engineering, University of California. 16p. (Research Report No. 19)

U. S. CIVIL AERONAUTICS ADMINISTRATION. Operations Marking and Lighting, Standards for Marking and Lighting Obstruc-

COMMERCIAL AVIATION

HENSEER, HENRY. Comet Highway, Foreword by Sir Miles Thomas, Hollywood-by-the-Sea, Fla., Transatlantic Arts. 56p. $2.50

PAN AMERICAN WORLD AIRLINES. New Horizons. New York, Simon & Schuster. 376p. $2.95

SHEA, ANDREW BERNARD. Panagra; Linking the Americas During 25 Years. New York, Newcomen Society in North America, 28p.

U. S. CIVIL AERONAUTICS BOARD. Economic Decisions of the Civil Aeronautics Board.

1Also includes 1953 books published too late for inclusion in last year's edition.
Whenever you specify Bendix ignition equipment, whether it be a complete ignition system or an electrical connector, you know that efficient performance is assured by a team of service experts unsurpassed in the industry.

Every Scintilla Division distributor has had the benefit of specialized training in service procedures, and also has at his command the services of a nation-wide field organization.

Thus the policy of seeing that every customer gets full performance built into each product is implemented by a competent and well-rounded service organization dedicated to keeping the name Bendix "The Most Trusted Name in Ignition."

AVIATION PRODUCTS

- Low and high tension ignition systems for piston, jet, turbo-jet engines and rocket motors
- Ignition analyzers
- Radio shielding harness and noise filters
- Switches
- Booster coils
- Electrical connectors

SCINTILLA DIVISION

OF

Bendix AVIATION CORPORATION

SIDNEY, NEW YORK

Export Sales: Bendix International Division, 305 East 42nd St., New York 17, N. Y.

Wis. * American Bldg., 4 S. Main St., Dayton 2, Ohio * 8401 Cedar Springs Rd., Dallas 19, Texas
The AIRCRAFT YEAR BOOK

1. Aircraft. \$6.50
2. Flight Testing. \$6.50
3. Aeronautics. \$6.50
4. General. \$6.50
5. Book Reviews. \$6.50
6. Index. \$6.50

DESIGN

PAI, SHIH-I. Fluid Dynamics of Jets. New York, Van Nostrand, 1954. \$5.00

SOCIETY OF AUTOMOTIVE ENGINEERS. Symposium, Aircraft Noise. New York, The Society, (SP-121) 1v. \$2.50

FICTION

BORDEN, MARY. Margin of Error. New York, Longmans Green and Co. 249p. \$3.50

CALLISON, TALMADGE F. Hit the Silk. New York, Comet Press Books, 91p. \$2.50

CASTLE, JEFFREY LLOYD. Satellite E. New York, Dodd, Mead. 223p. \$3.00

CLARKE, ARTHUR C. Prelude to Space. New York, Gnome Press, Inc. 191p. \$2.50; paper \$2.35

CLEMENT, HAL. Mission of Gravity. Garden City, N. Y., Doubleday & Company, Inc. 224p. \$2.95

EATON, EVELYN SYRIL ADAM. Flight: a Novel. Indianapolis, Bobbs-Merrill. 246p. \$3.00

GRIFFIN, JOHN HOWARD. The Devil Rides Outside. New York, Pocket Books. 57p. (Cardinal Giant CC14) \$0.80

HUBBARD, LAFAYETTE RON. Return to Tomorrow. New York, Ace Books, 157p. \$2.25

HYMAN, MAC. No Time for Sergeants. New York, Random House. 214p. \$2.95

JENNINGS, WILLIAM F. Operation Outer Space, by Murray Leinster, pseud. Reading, Pa., Fantasy Press. 208p. \$3.00

LIVINGSTON, HAROLD. The Coasts of the Earth. Boston, Houghton Mifflin. 299p. \$3.00; paper \$3.00

RUSSEL, ERIC FRANK. Deeper Space. Reading, Pa., Fantasy Press. 249p. \$3.00

SIOHMAK, CURT. Riders to the Stars: Novelization.
Hidden in the nose of the F102, Convair's ultra-sonic delta wing, land based jet fighter, are those highly sensitive electronic miracles of science that protect and guide it unerringly to its destination of national defense.

A critical part of these vital instruments of warfare is the reinforced plastic radome produced by Zenith Aircraft.

Because of Zenith skill and exclusive production techniques, these defenders of our country and of the peace of the world can function un-failingly, regardless of temperature, altitude, or climatic conditions.

"Futares Unlimited," a brochure picturing these Zenith activities, is available on request to...
FLYING SAUCERS

BETHURUM, TRUMAN. Aboard a Flying Saucer. Los Angeles, De Vors & Co. 192p. $3.00

KEYH0E, DONALD. Flying Saucers from Outer Space. New York, Perambulatory. $2.75

WILDE, HAROLD T. Flying Saucers on the Attack. New York, Citadel Press. 329p. $3.50

GREEN, WILLIAM and GERALD POLLINGER. The Observer's Book of Aircraft, with a Foreword by Peter G. Masefield. New York, Frederick Warne & Co. 297p. (The Observer's Pocket Series, 11) $1.25

MACKERSEY, IAN. Rescue Below Zero. New York, W. W. Norton. 214p. $3.50

MERRY, CHARLES. Air Travel in School and Community. Washington, American Council on Education in Cooperation with the Civil Aeronautics Administration. 100p. $1.50

STEVENs, JAMES H. and MAURICE F. ALL-WARD. How and Why of Aircraft and Their Pilots. Edited by F. N. Hiller. Boston, R. Beantley. 1953. 124p. $2.00

STILLSON, BLANCHE. Wings: Insects, Birds, Men. Indianapolis, Bobbs-Merrill. 299p. $3.50

WOOD, NORTON, ed. Flight. Dunclen, N. J., Hillman Periodicals, 1953. 80p. $0.85

HISTORY

BOWMAN, ROBERT HAL. Memoirs of a Pilot. New York, Vantage Press, 1953. 181p. $3.00

BROWN, AYCOCK. The Birth of Aviation, Kay Hawk, N. C. Winston-Salem, N. C. The Collins Company, 1953. 63p. $1.00

WHITTLE, FRANK. Jet; the Story of a Pioneer. New York, Philosophical Library. 320p. $6.00

INTERPLANETARY FLIGHT

CLARKE, ARTHUR CHARLES. The Exploration of Space. New York, Pocket Books. 221p. (Cardinal edition. 135) $3.35

CLEATOR, P. E. Into Space. New York, Thomas Y. Crowell. 1952. 203p. $3.50

LEONARD, JONATHAN N. Flight into Space: the Facts, Fancies and Philosophy. New York, New American Library, 195p. (Spectra Key Book) $0.35

LEYSON, BURR W. Man, Rockets and Space. Illustrated with Photographs and Diagrams. New York, E. P. Dutton and Company. 1939. 83.50

ROSS, FRANK X. Space Ships and Space Travel: the Scientifically Accurate Story of Man's Attempts and Plans to Travel into Interplanetary Space, New York, Lothrop, Lee & Shepard. 166p. $2.75

JUVENILE

Double Barreled

Two power-packed jet engines, two “decks” of 52 rockets, two men at controls and triggers, up to two thousand miles of range... and the comforting assurance of single-engine performance if necessary; that’s the Northrop Scorpion F-89. These U.S. Air Force interceptors now stand ready for double-duty defense at far-away bases; they can rise in seconds on first radar alert to intercept air invaders, and they can follow, harass and destroy them hundreds of miles before they reach target. The long-range Scorpion F-89 is one of many precision products built by Northrop for all branches of the U.S. Department of Defense.

NORTHROP
NORTHROP AIRCRAFT, INC. • HAWTHORNE, CALIFORNIA
Pioneer Builders of Night and All Weather Interceptors
BOY SCOUTS OF AMERICA. Air Explorer Manual. 2d ed. New York, Boy Scouts of America, 1950. $1.00

CLARKE, ARTHUR C. Going into Space. New York, Harper & Brothers. 117p. $2.00

COOMBS, CHARLES. Celestial Space, Inc. Illustrated by C. Oliver James, Philadelphia, The Westminster Press. 190p. $2.75

CORREY, LEE. Starship Through Space. Illustrated by Bill Llewellyn. New York, Henry Goldin & Company. 214p. $2.50

DONALDSON, LOIS and ARTHUR K. BILDER. Skyjacks for Fliers of Tomorrow. Illustrated by A. K. Bilder. Chicago, A. Whitman. $1.75

GOODWIN, HAROLD L. The Science Book of Space Travel. Illustrated by Jack Coggin. New York, Franklin Watts, Inc. 213p. $2.95

JORGENSEN, NELS L. Smoke Jumpers. Illustrated by Carl Kidwell. New York, Bourgey & Curll. 190p. $2.50

KNIGHT, CLAYTON. The Story of Flight, New York, Grosset & Dunlap. 150p. (Illustrated Textbook) $2.00

MACLAREN, EVELYN. Rocket Rider. Illustrated by Jan Ross. Chicago, A. Whitman. 32p. $1.75

MORRISON, WILLIAM. Mel Oliver and Space Rover on Mars. New York, Gnome Press. 191p. $2.50

NEAL, HARRY EDWARD. The Story of the Kitte. Illustrations by John Moment. New York, The Vanguard Press. 64p. $2.75

NEURATH, MARIE. Speeding into Space. New York, Lothrop, Lee & Shepard. 36p. (How and Why Series) $1.75; cloth $2.10

NORTON, ALICE MARY, ed. Space Pioneers. Stories by Eric Frank Russell (and others). New York, World Publishing Co. 294p. $2.75

POHL, FREDERICK and C. M. KORNBLUTH. Search the Sky. New York, Ballantine Books. 65p. $1.50

SCHRANK, JOSEPH. The Colies in the Belly of the Plane. New York, Franklin Watts, Inc. 35p. $2.50

STANLEY, JOHN BERCHAM. Squadron Alert! A Civil Air Patrol Adventure Story. New York, Dodd Mead. 236p. $2.50

THOMPSON, GORDON V. F. The Adventure of Space Travel. New York, Roy Publishers. 253p. $3.00

ZARELLI, JOHN BERCRMA MORENO, ALICE and J. RAY CANTWELL. Superjet; A Spy-Ring Thriller. New York, E. P. Dutton & Co., Inc. 126p. $2.50

LAW

CIVIL AIR REGULATIONS AND REFERENCE GUIDE FOR A & E MECHANICS. 12th ed. Los Angeles, Aero Publishers, 128p. $2.00

CIVIL AIR REGULATIONS AND REFERENCE GUIDE FOR PILOTS. Rev. ed. Los Angeles, Aero Publishers, 143p. $1.75

U. S. CIVIL AERONAUTICS ADMINISTRATION. Civil Aeronautics Manual, Washington, Rules Service Co. 1v. $2.50

U. S. CIVIL AERONAUTICS BOARD. Civil Air Regulations, Washington, Rules Service Co. 1v. $1.00

MAINTENANCE AND REPAIR

RICE, RALPH. Aero Mechanic's Questionnaire. 3rd rev. ed. Los Angeles, Aero Publishers, Inc. $5.00

SERIES 66W
VARIABLE DELIVERY
PRESSURE COMPENSATED
TYPE REGULATOR
Designed to operate at service altitudes without reservoir pressurization. These pumps meet or surpass the requirements of Specification MIL-P-7740A. They are self-priming and accommodate inlet pressures to 80 psig. Nominal deliveries of 0.25 to 10 gpm. Speeds to 10,000 rpm on smaller sizes. Continuous pressures to 3000 psi.

SERIES 66
FIXED
DISPLACEMENT
For use at higher service altitudes without reservoir pressurization. Inlet pressures to 80 psig. Nominal deliveries of 0.5, 1 and 2 gpm.

SERIES 67V
VARIABLE DELIVERY
INLET FLOW REGULATOR
The most direct known method of integral maximum pressure regulation. Capacities range from 0.85 to 3 gpm. Over two dozen different models.

SERIES 67W
VARIABLE DELIVERY
DUAL PRESSURE SERVO CONTROL
Selective operation in either of two pressure ranges. Hydraulic or electrical pilot control. Adaptable to 66W or 67W Series Pumps.

SERIES 67
FIXED
DISPLACEMENT
Over thirty models include nominal deliveries of from 0.25 to 3 gpm. Pumps of the 0.5, 1, 2 and 3 gpm sizes have AN approval under MIL-P-7850.

SERIES 67V
VARIABLE DELIVERY
PRESSURE COMPENSATED
TYPE REGULATOR
Fluid delivery instantly varied in response to system demands. Five sizes from 2 to 10 gpm, forty different models.

SERIES 67M
VARIABLE DELIVERY
SERVO CONTROL

SERIES 167
ELECTRIC MOTOR DRIVEN UNITS
For use in boost, utility or emergency circuits. AC or DC electric motors for both continuous and intermittent duty operation. Any combination of electric motor and STRATOPower Pump.

CAPACITIES: Rated at 1500 rpm.
MAXIMUM CONTINUOUS SPEEDS: 3750 rpm.
MAXIMUM INTERMITTENT SPEEDS: 4500 rpm.
OPERATING PRESSURES: Continuous duty to 3000 psi.

WATERTOWN DIVISION
THE NEW YORK AIR BRAKE COMPANY
STARBUCK AVENUE - WATERTOWN - N.Y.

MANUFACTURE

SPRIEGEL, WILLIAM R. and E. LANHAM. Job Evaluation in Aircraft Industries. Austin, University of Texas, College of Business Administration, 1953. 102p. (Texas University Bureau of Business Research. Personnel Studies, No. 6)

MEDICINE

HABER, HEINZ, ed. Proceedings of a Symposium on Frontiers of Man-Controlled Flight, Presented at Los Angeles, California, April 15, 1955, by the Institute of Transportation and Engineering and University Extension, University of California, in Collaboration with the Aero-Medical Association and the Institute of the Acoustical Sciences, Los Angeles. Los Angeles, University of California Press, 1953. 109p. $2.00

MILITARY AERONAUTICS

BRADLEY, FRANCIS X. and H. GLEN WOOD. Paratroop officer. Harrisburg, Pa., Military Service Publishing Co. 96p. $3.50

BRYAN, JOSEPH. Aircraft Carrier. New York, Ballantine Books. 295p. $3.00; paper $3.55

DEANE-DRUMMOND, ANTHONY. Return Ticket. Philadelphia and New York, J. P. Lippincott. 254p. $3.50

DORNBERGER, WALTER, V-2; translated by James Clough and Geoffrey Halliday; introduction by Willy Ley. New York, Viking, 297p. $5.00

FINLETTER, THOMAS K. Power and Policy. New York, Haceourt and Company. 408p. $5.00

JUBELIN, ANDRE. The Flying Sailor. Translated from the French by James Clough. New York, The British Book Centre. 372p. $3.50

KNOKE, HEINZ. I flew for the Führer; the Story of a German Fighter Pilot. Translated by John Ewen, with an introduction by E. P. Quesada. New York, Henry Holt. 213p. $3.00

MIDLAN, DON S. Flight of the Lucky Lady. Portland, Ore., Binfords & Mort. 240p. $3.50

MONTROSS, LYNN. Cavalry of the Sky; the Story of the 1st. S. Marine Combat Helicopters. New York, Harper & Brothers. 270p. $3.00

PAPE, RICHARD. Boldness be my Friend. Foreword by Lord Tedder. Introduction by Sir Archibald Maclaren. Illustrated by Photos Boston, Houghton Mifflin. 309p. $3.50

SHEPLEY, JAMES R. and CLAY BLAIR, JR. The Hydrogen Bomb; the Men, the menace, the mechanism. New York, David McKay Company. 244p. $3.00

SLESSOR, JOHN. Strategy for the West. New York, William Morrow & Co. 180p. $3.00

TAYLOR, THEODORE. The Magnificent Mit-scher. Foreword by Admiral Arthur W. Radford. New York, W. W. Norton & Co. 344p. $5.00

PUMPS
a. Fixed Displacement
b. Variable Displacement
 (1) Automatic Pressure Compensated
 (2) Cylinder Controlled
 (3) Electrically Depressurized
 (4) Flow Reversing
 (5) Servo Controlled

ACCUMULATORS
a. Spherical
b. Cylindrical

MOTORPUMPS, AUXILIARY
a. Electric Motor Driven Fixed Pumps
b. Electric Motor Driven Variable Pumps

PRESSURE CONTROLS
a. Relief Valves
b. Pressure Regulators
c. Sequence Valves
d. Pump Control Valves
e. Pressure Reducing Valves
f. Reducing Relief Valves
g. Brake Valves
h. Other Special Valves

MOTORS
a. Fixed Displacement
b. Constant Speed (Automatic)
c. Variable Displacement

DIRECTIONAL CONTROLS
a. Four Way Valves
b. Selector Valves
c. Servo Valves
d. Other Special Valves

OTHER
a. Hydraulic Drive Systems (for Armament, Electronics, Pneumatics and other)
 (1) Variable Proportional
 (2) Directly Proportional
 (3) Constant Speed
 (4) Specially Controlled
b. Winch Systems
 (1) Heavier Than Air
 (2) Lighter Than Air
 (3) Helicopters
c. Electro-Hydraulic Servo Systems
d. Special Hydraulic Devices

VICKERS Incorporated
DIVISION OF THE SPERRY CORPORATION
1424 OAKMAN BLVD. • DETROIT 32, MICH.

Application Engineering and Service Offices:
El Segundo, California, 2100 E. Imperial Highway
Arlington, Texas, P.O. Box 213
Detroit 32, Michigan, 1400 Oakman Blvd.
Additional Service Facilities at:
Miami Springs, Florida, 641 De Soto Drive

TELEPHONE: Townsend 8-5100 • TELEGRAMS: Vickers WUX Detroit
TELETYPE "TWX": DEPP • CABLE: Vickers Detroit

ENGINEERS AND BUILDERS OF OIL HYDRAULIC EQUIPMENT SINCE 1921
The AIRCRAFT YEAR BOOK

MODEL FLYING

PILOTTING

GRUMAN AIRCRAFT ENGINEERING CORPORATION. Water Flying. Bethpage, L.I., Gruman Aircraft Engineering Corporation, 1953. 59p.

MURCHIE, GUY. Song of the Sky. With Illustration by the Author. Cambridge, Mass., Riverside Press, 438p.

REITSCH, HANNA. Flying is My Life. Translated by Lawrence Wilson. New York, G. P. Putnam. $4.00

POWER PLANTS

BURGESS, ERIC. Rocket Fueled; with an Introduction to the Idea of Interplanetary Travel. 2d ed. rev. New York, The Macmillian Company. 235p. $4.50

COOMBS, CHARLES. Skyrocketing into the Unknown. Illustrated with Photographs. New York, William Morrow and Company. 256p. $4.00

SPARTAN SCHOOL OF AERONAUTICS. Aircraft Propellers, by the Technical Publications Staff. Tulsa, Tulsa Books Section, Mechanics Division, Spartan School of Aeronautics. 252p.

U. S. CIVIL AERONAUTICS ADMINISTRATION. Turbine Transport Aircraft. A Report by the CAA Turbine-Powered Transport Evaluation Team. Washington, Civil Aeronautics Administration. 194p.

YOAKLEY, DAVE. Jet Theory for Pilots and Mechanics. Rantoul, Ill. 1v.

REFERENCE WORKS

AFRonauticAl ENGINEERING CATALOG. Tenith 1954 Edition. Editor WELMAN A. SCHRADER. New York, Institute of the Aeronautical Sciences, Inc. 430p.

AFRonauticAl ENGINEERING INDEX. 1953. New York, Institute of the Aeronautical Sciences, Inc.

AMERICAN AIR MAIL SOCIETY. The American Air Mail Catalogue of Air Letter Sheets. Supplement. Albion, Pa., The Society. 41p.

GREEN, WILLIAM and GERALD POLLINGER. The Aircraft of the World. Garden City, N. Y., Hanover House. 160p.

JANE'S ALL THE WORLD'S AIRCRAFT, 1954-1955. Edited by Leonard Bridgman, New York, Mcgraw-Hill Book Company, 1v. $23.00
If it's on the SIMMONDS CHECK LIST

AIRCRAFT EXPLOSION & FIRE SUPPRESSION SYSTEMS
AIRCRAFT MECHANICAL FITTINGS
Access Latches
Cowling Latches
Fasteners & Clips
Quick Disconnects
FUEL METERING & FUEL CONTROL EQUIPMENT
Fuel Flow Distributors
Fuel Injection Equipment
Turbine Engine Controls
FUEL MEASURING SYSTEMS
Pacitron Electronic Fuel Quantity Gages
Flow Meters
HYDRAULIC FUSES
LANDING GEAR POSITION INDICATORS
PUSH-PULL CONTROLS
TURBINE ENGINE TEMPERATURE CONTROLS

In the list of Simmonds precision products is the answer to many problems of the aeronautical designer or operator. The millions of miles of dependable service, the growing roster of Simmonds-equipped commercial and military aircraft speak for Simmonds leadership in design and production.

There are Simmonds offices near all of the country's major aeronautical centers. Write or phone for prompt information.

Simmonds Aerocessories, Inc.
Main Office: Tarrytown, New York

Sole Canadian Licensee: Simmonds Aerocessories, Ltd., Montreal
Branch Offices: Dayton, Ohio • Glendale, Cal. • Dallas, Tex. • Seattle, Wash. • Wichita, Kan.
This is Bendix

The airplane illustrated is a composite since, obviously, no single plane carries all of the Bendix equipment on these pages. However, many Bendix products fly with every U.S. fighting plane and are used extensively on commercial, executive and private planes as well.

Airborne "Weather" Radar
Radio Noise Filters
Switches
Flow Equalizers
Vacuum Operated Instruments
Filters for Aircraft Heaters (Auxiliary, Engine, Cabin)
Pneumatic System Filters
Dynamotors
Blower Motors
Band-Change Motors
Booster Dynamotors
Actuator Motors
Special Inverters
Aircraft Interphone Systems
Radar
Radio Transmitters
Radio Receivers

Radio Communication Systems
Electronic Navigational Equipment
Automatic Radio Compass
VHF Omni-Directional Range Equipment
Automatic Pilot and Flight Path Control Equipment
Autosyn* and Magnesyn* Remote Indicating Systems For Fuel Flow • Fuel Pressure • Hydraulic Pressure • Liquid Level • Manifold Pressure • Oil Pressure • Position • Temperature • Torque Pressure • Water Pressure
Fuel Flow Totalizing Systems

Distance Measuring Equipment
Manifold Pressure Gauges
Electric Tachometer Systems
Warning Units
Accelerometers
Airspeed Indicators
Attitude Horizon Indicators
Driftmeters
Dual Radio and Magnetic Compass Indicators
Gyro Flux Gate* Compasses
Gyro Horizon Indicators
Magnetic Compasses
Rate of Climb Indicators
Turn and Bank Indicators
ODR Components
Sextants
Control Panels
in Aviation

B

Bendix® Starter Drives
Magnetos
Ignition Harnesses
Booster Coils
Igniter Plugs
Ignition Analyzer
Low and High Tension Ignition Systems for Reciprocating Engines
Radio Shielding Harnesses
Hydraulic—Line Type Filters
Reservoir—Line Type Filters
Vent—Line Type Filters
Fuel System Filters
De-Icing System Filters

C

Alternators
Fault Protection Systems
Generators
Inverters
Line Relays
Overvoltage Protectors
Reverse Current Cutouts
Voltage Booster Dynamos
Voltage Regulators
Power Failure Indicators
Engine Starting Equipment, including Booster Coils • Induction Vibrators • Relay Switches • Starters

D

Automatic Engine Power Controls
Automatic Engine Boost Controls
Propeller Governor Controls
Supercharger Regulator Controls
Injection and Float Type Carburetors
Direct injection fuel systems, including Distributing Pumps • Regulator Units • Injector Nozzles • Fuel Supply Pumps
Speed-Density Fuel Metering Systems for Jet and Reciprocating Engines
Water Injection Systems

E

Ignition Systems for Jet and Turbine Engines
Igniter Plugs for Jet and Turbine Engines
Jet Engine Starters and Generators
Speed-Density Fuel Metering Systems
Duplex Nozzles
Fuel Metering Systems for Starting Conditions
Fuel Flow Dividers
Fuel Supply Pumps

Position Light Flashers
Pressure Control Valves
Electric Timing Devices
Hydraulic Equipment, including Pumps • Valves

ADDITIONAL AVIATION PRODUCTS

Air Pressurization and Ice Elimination Equipment, including Electronics and Mechanical De-Icer System Timers • Oil Separators • Pumps • Valves • Pressurization and Control Units

Beacons
Telemetering Equipment
Missile Guidance Systems
Micro-Wave Equipment
V. H. F. Ground Direction Finders
G. C. A. Ground Controlled Approach Radar
Long Range Search and Surveillance Radar
G. C. A. Ground Controlled Approach System
Actuators—linear and rotary

Position Light Flashers
Pressure Control Valves
Electric Timing Devices
Hydraulic Equipment, including Pumps • Valves

Differential Pressure Switches
Oxygen Regulators
Gear Boxes
Flexible Drive Shafts
Special Purpose Electron Tubes, including Amplifier Tubes • Counter Tubes • Gas Filled Control Tubes • Klystron Tubes • Rectifier Tubes • Spark Gaps • Temperature Tubes • Voltage Regulator Tubes

BENDIX IN THE WEATHER FIELD

In addition to the products listed above, Bendix makes many meteorological instruments which are the source of much of the weather data governing flight schedules for all types of planes.

*REGISTERED TRADEMARK OF THE BENDIX AVIATION CORPORATION
The AIRCRAFT YEAR BOOK

ROTAR Y AIRCRAFT

New Turbine-Powered Cargo Carrier

The initial flight of the YC-130 Medium Cargo Transport marks another great forward stride in transport aviation.

This giant carrier, built by Lockheed for the U.S. Air Force, is the first U.S.A.F. cargo plane designed from the very beginning for Turbo-Prop engines.

Powered by four of the new Allison T56 Turbo-Prop engines, this great new cargo airplane can haul heavy pay loads long distances at speeds required by our new modern combat jet Air Force. It is ideally suited to carry many types of heavy military equipment, or in close support of troops. It also can be fitted as a combat troop carrier or an ambulance plane. The YC-130 can operate from shorter runways with greater rate of climb than either reciprocating or Turbo-Jet engine aircraft.

All this, plus its economical use of lower cost fuel, label the Turbo-Prop engine as the "work horse" power for future transports. And Allison, with its unmatched experience in high-powered Turbo-Prop design and manufacture, today offers both T56 and T40 engines to serve a broad range of modern flight requirements.

Allison T56 Turbo-Prop Engines Power New Lockheed YC-130 Transport
meet a “flyer” with over

250,000,000

hours behind him!

“He’s” a new Lycoming air-cooled engine. He’s backed by Lycoming’s experience in creating and producing 50,000 aircraft power plants... each with a flight-proved life expectancy of at least 5,000 hours.

You learn a lot about flying in 25 years... and 50,000 engines!

Our first Lycoming aircraft engines gained us invaluable experience flying for one of America’s first scheduled air lines. Their successors have flown military missions in aircraft from liaison planes to trainers, to helicopters. As “civilians” they now fly small single-engine utility planes, and leading twin-engine “flying offices” for businessmen.

Do you need this kind of dependable air-cooled power... or any of the diversified services listed above our signature? Lycoming’s wealth of creative engineering ability... its 2½ million square feet of floor space... and 6,000-plus machine tools stand ready to serve you. Whatever your problem... look to Lycoming!

For Research • For Precision Production

Look to Lycoming

Aircraft Engines
Industrial and Tank Engines
Engine Overhaul
Generating Units

Turbine Engineering and Research
Engineering Design and Development
Hardened and Ground Precision Parts
Gears and Machine Parts

Complete Assemblies
Heat-Treating and Plating
Steel Fabrication
Castings
Boilers

*Wright-Cyclone engine, built by Lycoming under license from Curtiss-Wright Corporation, Wright Aeronautical Division.
The AIRCRAFT YEAR BOOK

SUMMARY STATISTICS

The following statistics are as nearly up-to-date as was practicable at the time the Year Book went to press. Wherever possible, last-minute, 1954 figures were included in the main text of the book, and may be found under appropriate chapter headings.

The Editors

AVERAGE WEEKLY HOURS IN THE AIRCRAFT, ENGINE, PROPELLER, AND PARTS INDUSTRY

(Source: Aircraft Industries Association)

<table>
<thead>
<tr>
<th>Year and Month</th>
<th>Aircraft and Parts</th>
<th>Aircraft Engines and Parts</th>
<th>Aircraft Propellers and Parts</th>
<th>Other Aircraft Parts and Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1952</td>
<td>43.0</td>
<td>42.6</td>
<td>43.9</td>
<td>45.0</td>
</tr>
<tr>
<td>1953</td>
<td>41.9</td>
<td>41.3</td>
<td>43.0</td>
<td>41.9</td>
</tr>
<tr>
<td>1954</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>January</td>
<td>40.6</td>
<td>40.1</td>
<td>41.3</td>
<td>38.0</td>
</tr>
<tr>
<td>February</td>
<td>41.2</td>
<td>41.3</td>
<td>41.0</td>
<td>40.6</td>
</tr>
<tr>
<td>March</td>
<td>41.0</td>
<td>41.1</td>
<td>40.5</td>
<td>40.6</td>
</tr>
<tr>
<td>April</td>
<td>40.5</td>
<td>40.4</td>
<td>40.5</td>
<td>39.6</td>
</tr>
<tr>
<td>May</td>
<td>40.7</td>
<td>40.7</td>
<td>42.0</td>
<td>38.4</td>
</tr>
<tr>
<td>June</td>
<td>40.8</td>
<td>40.8</td>
<td>40.5</td>
<td>38.4</td>
</tr>
<tr>
<td>July</td>
<td>40.7</td>
<td>40.8</td>
<td>41.0</td>
<td>38.4</td>
</tr>
<tr>
<td>August</td>
<td>40.8a</td>
<td>40.9a</td>
<td>41.0a</td>
<td>39.3</td>
</tr>
<tr>
<td>September</td>
<td>40.9</td>
<td>41.0</td>
<td>40.4</td>
<td>39.0</td>
</tr>
</tbody>
</table>

AVERAGE WEEKLY EARNINGS

<table>
<thead>
<tr>
<th>Year and Month</th>
<th>Average Weekly Earnings</th>
</tr>
</thead>
<tbody>
<tr>
<td>1952</td>
<td>81.70</td>
</tr>
<tr>
<td>1953</td>
<td>83.80</td>
</tr>
<tr>
<td>1954</td>
<td></td>
</tr>
<tr>
<td>January</td>
<td>83.23</td>
</tr>
<tr>
<td>February</td>
<td>85.28</td>
</tr>
<tr>
<td>March</td>
<td>84.46</td>
</tr>
<tr>
<td>April</td>
<td>83.43</td>
</tr>
<tr>
<td>May</td>
<td>83.84</td>
</tr>
<tr>
<td>June</td>
<td>84.86</td>
</tr>
<tr>
<td>July</td>
<td>84.66</td>
</tr>
<tr>
<td>August</td>
<td>85.27a</td>
</tr>
<tr>
<td>September</td>
<td>85.89</td>
</tr>
</tbody>
</table>

AVERAGE HOURLY EARNINGS

<table>
<thead>
<tr>
<th>Year and Month</th>
<th>Average Hourly Earnings</th>
</tr>
</thead>
<tbody>
<tr>
<td>1952</td>
<td>1.90</td>
</tr>
<tr>
<td>1953</td>
<td>2.00</td>
</tr>
<tr>
<td>1954</td>
<td></td>
</tr>
<tr>
<td>January</td>
<td>2.05</td>
</tr>
<tr>
<td>February</td>
<td>2.07</td>
</tr>
<tr>
<td>March</td>
<td>2.06</td>
</tr>
<tr>
<td>April</td>
<td>2.06</td>
</tr>
<tr>
<td>May</td>
<td>2.06</td>
</tr>
<tr>
<td>June</td>
<td>2.08</td>
</tr>
<tr>
<td>July</td>
<td>2.08</td>
</tr>
<tr>
<td>August</td>
<td>2.09</td>
</tr>
<tr>
<td>September</td>
<td>2.10</td>
</tr>
</tbody>
</table>

* Revised
POWER... FOR TRANSONIC GUNNERY TRAINING!

Fairchild's J44 Turbojet, designed for powering remotely controlled drones and missiles, is in production for the U.S. Navy to provide much-needed gunnery training with transonic targets for the major military services.

The J44 is a low-cost, easy to maintain engine capable of repeated flights and long-service-life. Its rugged construction withstands repeated launchings from ground cradles, shipboard catapults or from mother planes in the air.

Creative thinking and advanced design techniques incorporated in the J44 and other turbojets, as well as new type propulsion systems for underwater ordnance, keep the Fairchild Engine Division in the forefront of powerplant development.

Efficient production design of the J44 Turbojet requires only standard tooling—means economical production.

In actual service the J44 has demonstrated performance far in excess of original engineered service life.

Fairchild Engine specialists have years of experience in powerplant design and manufacturing.

The simplicity of the J44 construction means easy field maintenance using only standard equipment.

*Including AL-FIN, the Fairchild patented process for the molecular bonding of aluminum and magnesium to steel, cast iron, nickel or titanium.

Other Divisions:
Aircraft Division, Hagerstown, Md.
American Helicopter Division, Manhattan Beach, Calif.
Guided Missiles Division, Wyandanch, N. Y.
Kinetics Division, New York, N. Y.
Speed Control Division, St. Augustine, Fla.
Stratos Division, Bay Shore, N. Y.
The AIRCRAFT YEAR BOOK

TOTAL EMPLOYMENT IN AIRCRAFT AND PARTS INDUSTRY

(In thousands)

Source: Aircraft Industries Association

<table>
<thead>
<tr>
<th>Years and Months</th>
<th>Total</th>
<th>Aircraft</th>
<th>Aircraft Engines & Parts</th>
<th>Aircraft Propellers & Parts</th>
<th>Other Aircraft Parts & Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1952</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>January</td>
<td>566.4</td>
<td>377.5</td>
<td>116.1</td>
<td>12.7</td>
<td>60.1</td>
</tr>
<tr>
<td>February</td>
<td>581.0</td>
<td>386.6</td>
<td>120.4</td>
<td>12.9</td>
<td>61.1</td>
</tr>
<tr>
<td>March</td>
<td>586.1</td>
<td>390.2</td>
<td>120.7</td>
<td>13.2</td>
<td>62.0</td>
</tr>
<tr>
<td>April</td>
<td>591.9</td>
<td>395.1</td>
<td>120.9</td>
<td>13.4</td>
<td>62.5</td>
</tr>
<tr>
<td>May</td>
<td>590.2</td>
<td>399.9</td>
<td>121.6</td>
<td>13.5</td>
<td>66.1</td>
</tr>
<tr>
<td>June</td>
<td>611.0</td>
<td>406.1</td>
<td>124.9</td>
<td>13.9</td>
<td>68.1</td>
</tr>
<tr>
<td>July</td>
<td>625.0</td>
<td>416.1</td>
<td>127.0</td>
<td>13.8</td>
<td>71.4</td>
</tr>
<tr>
<td>August</td>
<td>638.1</td>
<td>425.7</td>
<td>128.4</td>
<td>14.2</td>
<td>69.8</td>
</tr>
<tr>
<td>September</td>
<td>620.0</td>
<td>410.3</td>
<td>131.8</td>
<td>14.4</td>
<td>72.5</td>
</tr>
<tr>
<td>October</td>
<td>684.3</td>
<td>430.2</td>
<td>147.5</td>
<td>14.8</td>
<td>91.8</td>
</tr>
<tr>
<td>November</td>
<td>694.5</td>
<td>434.0</td>
<td>150.2</td>
<td>15.2</td>
<td>95.1</td>
</tr>
<tr>
<td>December</td>
<td>711.4</td>
<td>444.5</td>
<td>153.9</td>
<td>15.7</td>
<td>97.3</td>
</tr>
<tr>
<td>1953</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>January</td>
<td>721.4</td>
<td>447.8</td>
<td>158.1</td>
<td>16.3</td>
<td>99.2</td>
</tr>
<tr>
<td>February</td>
<td>729.2</td>
<td>448.1</td>
<td>163.7</td>
<td>16.6</td>
<td>100.8</td>
</tr>
<tr>
<td>March</td>
<td>735.0</td>
<td>449.2</td>
<td>165.6</td>
<td>16.5</td>
<td>103.7</td>
</tr>
<tr>
<td>April</td>
<td>727.3</td>
<td>446.9</td>
<td>159.2</td>
<td>16.5</td>
<td>104.7</td>
</tr>
<tr>
<td>May</td>
<td>728.4</td>
<td>445.6</td>
<td>161.3</td>
<td>16.4</td>
<td>105.1</td>
</tr>
<tr>
<td>June</td>
<td>729.9</td>
<td>444.6</td>
<td>162.3</td>
<td>16.4</td>
<td>106.6</td>
</tr>
<tr>
<td>July</td>
<td>740.9</td>
<td>447.6</td>
<td>167.9</td>
<td>16.3</td>
<td>109.1</td>
</tr>
<tr>
<td>August</td>
<td>749.7</td>
<td>453.1</td>
<td>168.2</td>
<td>16.3</td>
<td>112.1</td>
</tr>
<tr>
<td>September</td>
<td>738.2</td>
<td>457.7</td>
<td>170.4</td>
<td>16.7</td>
<td>113.4</td>
</tr>
<tr>
<td>October</td>
<td>735.6</td>
<td>455.9</td>
<td>171.3</td>
<td>16.5</td>
<td>111.9</td>
</tr>
<tr>
<td>November</td>
<td>734.9</td>
<td>434.7</td>
<td>169.1</td>
<td>16.5</td>
<td>114.6</td>
</tr>
<tr>
<td>December</td>
<td>733.9</td>
<td>449.6</td>
<td>168.9</td>
<td>16.6</td>
<td>118.8</td>
</tr>
<tr>
<td>1954</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>January</td>
<td>830.1</td>
<td>502.7</td>
<td>179.5</td>
<td>18.1</td>
<td>129.8</td>
</tr>
<tr>
<td>February</td>
<td>823.7</td>
<td>496.9</td>
<td>178.8</td>
<td>17.8</td>
<td>130.2</td>
</tr>
<tr>
<td>March</td>
<td>823.1</td>
<td>497.9</td>
<td>178.2</td>
<td>17.5</td>
<td>129.5</td>
</tr>
<tr>
<td>April</td>
<td>816.6</td>
<td>498.9</td>
<td>174.5</td>
<td>13.3</td>
<td>129.4</td>
</tr>
<tr>
<td>May</td>
<td>806.9</td>
<td>496.2</td>
<td>169.5</td>
<td>13.1</td>
<td>128.1</td>
</tr>
<tr>
<td>June</td>
<td>804.0</td>
<td>493.8</td>
<td>166.3</td>
<td>17.5</td>
<td>126.4</td>
</tr>
<tr>
<td>July</td>
<td>803.8</td>
<td>498.8</td>
<td>162.8</td>
<td>17.4</td>
<td>124.8</td>
</tr>
<tr>
<td>August</td>
<td>793.9</td>
<td>497.8</td>
<td>154.2</td>
<td>17.3</td>
<td>122.6</td>
</tr>
<tr>
<td>September</td>
<td>797.4</td>
<td>495.4</td>
<td>162.2</td>
<td>17.2</td>
<td>123.6</td>
</tr>
</tbody>
</table>

1As of pay period ending nearest the 15th of the month.
2Revised.
Rheem's integrated Government Products Division facilities are completely equipped to handle every phase of research, engineering and production. Present projects include the production of air frames, missile and jet-engine components, airborne ordnance, electronics and ordnance materiel.

You can rely on Rheem for highest quality products. Prime contractors to the United States Government and sub-contractors to other industry leaders, Rheem has an enviable record of low cost per unit production and on-time completion schedules.

RHEEM Manufacturing Company... Government Products Division
Downey, Calif. • San Pablo, Calif. • Washington, D.C. • Philadelphia, Pa. • Burlington, N.J.
<table>
<thead>
<tr>
<th>Calendar Year</th>
<th>Total</th>
<th>Commercial</th>
<th>Municipal</th>
<th>CAA Intermediate</th>
<th>All others</th>
</tr>
</thead>
<tbody>
<tr>
<td>1927</td>
<td>1,036</td>
<td>263</td>
<td>240</td>
<td>134</td>
<td>399()</td>
</tr>
<tr>
<td>1928</td>
<td>1,364</td>
<td>365</td>
<td>368</td>
<td>210</td>
<td>421()</td>
</tr>
<tr>
<td>1929</td>
<td>1,550</td>
<td>495</td>
<td>453</td>
<td>285</td>
<td>317()</td>
</tr>
<tr>
<td>1930</td>
<td>1,782</td>
<td>564</td>
<td>550</td>
<td>354</td>
<td>314()</td>
</tr>
<tr>
<td>1931</td>
<td>2,093</td>
<td>829</td>
<td>780</td>
<td>404</td>
<td>80</td>
</tr>
<tr>
<td>1932</td>
<td>2,117</td>
<td>869</td>
<td>777</td>
<td>352</td>
<td>119</td>
</tr>
<tr>
<td>1933</td>
<td>2,188</td>
<td>938</td>
<td>827</td>
<td>265</td>
<td>158</td>
</tr>
<tr>
<td>1934</td>
<td>2,297</td>
<td>962</td>
<td>980</td>
<td>259</td>
<td>186</td>
</tr>
<tr>
<td>1935</td>
<td>2,368</td>
<td>822</td>
<td>1,041</td>
<td>291</td>
<td>214</td>
</tr>
<tr>
<td>1936</td>
<td>2,342</td>
<td>774</td>
<td>1,037</td>
<td>296</td>
<td>235</td>
</tr>
<tr>
<td>1937</td>
<td>2,299</td>
<td>727</td>
<td>1,033</td>
<td>283</td>
<td>236</td>
</tr>
<tr>
<td>1938</td>
<td>2,374</td>
<td>760</td>
<td>1,092</td>
<td>267</td>
<td>255</td>
</tr>
<tr>
<td>1939</td>
<td>2,260</td>
<td>801</td>
<td>963</td>
<td>266</td>
<td>250</td>
</tr>
<tr>
<td>1940</td>
<td>2,331</td>
<td>860</td>
<td>1,031</td>
<td>289</td>
<td>151</td>
</tr>
<tr>
<td>1941</td>
<td>2,484</td>
<td>930</td>
<td>1,086</td>
<td>283</td>
<td>185</td>
</tr>
<tr>
<td>1942</td>
<td>2,809</td>
<td>1,069</td>
<td>1,129</td>
<td>273</td>
<td>338</td>
</tr>
<tr>
<td>1943</td>
<td>2,769</td>
<td>801</td>
<td>914</td>
<td>240</td>
<td>314</td>
</tr>
<tr>
<td>1944</td>
<td>3,427</td>
<td>1,027</td>
<td>1,067</td>
<td>229</td>
<td>1,104</td>
</tr>
<tr>
<td>1945</td>
<td>4,026</td>
<td>1,599</td>
<td>1,220</td>
<td>216</td>
<td>1,081</td>
</tr>
<tr>
<td>1946</td>
<td>4,490</td>
<td>1,930</td>
<td>1,424</td>
<td>201</td>
<td>935</td>
</tr>
<tr>
<td>1947</td>
<td>5,759</td>
<td>2,849</td>
<td>1,818</td>
<td>178</td>
<td>914</td>
</tr>
<tr>
<td>1948</td>
<td>6,414</td>
<td>2,989</td>
<td>2,050</td>
<td>161</td>
<td>1,214</td>
</tr>
<tr>
<td>1949</td>
<td>6,484</td>
<td>2,585</td>
<td>2,200</td>
<td>139</td>
<td>1,560</td>
</tr>
<tr>
<td>1950</td>
<td>6,403</td>
<td>2,329</td>
<td>2,272</td>
<td>76</td>
<td>1,726</td>
</tr>
<tr>
<td>1951</td>
<td>6,237</td>
<td>2,042</td>
<td>2,316</td>
<td>57</td>
<td>1,822</td>
</tr>
<tr>
<td>1952</td>
<td>6,042</td>
<td>N.A.</td>
<td>N.A.</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>1953</td>
<td>6,766</td>
<td>N.A.</td>
<td>N.A.</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
</tbody>
</table>

N.A. Not Available.

Include auxiliary marked fields, later classified as to ownership, commercial or municipal.

ALLOCATIONS AND APPROPRIATIONS FOR AERONAUTICS, U. S. ARMY

<table>
<thead>
<tr>
<th>Year</th>
<th>Appropriation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1899</td>
<td>$25,000</td>
</tr>
<tr>
<td>1900</td>
<td>25,000</td>
</tr>
<tr>
<td>1908</td>
<td>Baldwin dirigible, revoked and later applied toward payment for Wright plane. 25,000</td>
</tr>
<tr>
<td>1909</td>
<td>25,000</td>
</tr>
<tr>
<td>1910</td>
<td>Wright plane. 9,000</td>
</tr>
<tr>
<td>1912</td>
<td>Signal Service of Army. 125,000</td>
</tr>
<tr>
<td>1913</td>
<td>160,000</td>
</tr>
<tr>
<td>1914</td>
<td>125,000</td>
</tr>
<tr>
<td>1915</td>
<td>50,000</td>
</tr>
<tr>
<td>Total</td>
<td>$505,000</td>
</tr>
</tbody>
</table>

AVERAGE SPEED

(Miles Per Hour)

Domestic Scheduled Air Carriers

(Source: CAA Statistical Handbook)

<table>
<thead>
<tr>
<th>Year</th>
<th>Average Speed (miles per hour)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1945</td>
<td>165.4</td>
</tr>
<tr>
<td>1946</td>
<td>160.2</td>
</tr>
<tr>
<td>1947</td>
<td>160.2</td>
</tr>
<tr>
<td>1948</td>
<td>171.9</td>
</tr>
<tr>
<td>1949</td>
<td>179</td>
</tr>
<tr>
<td>1950</td>
<td>181.2</td>
</tr>
<tr>
<td>1951</td>
<td>184.6</td>
</tr>
<tr>
<td>1952</td>
<td>190.8</td>
</tr>
</tbody>
</table>

The AIRCRAFT YEAR BOOK

AIRPORTS AND LANDING FIELDS

1926-1952

(Source: Civil Aeronautics Administration)
THERE IS NO SUBSTITUTE FOR EXPERIENCE

The dependability of Liquidometer Capacitor Type Fuel Gaging Systems is one result of more than a quarter century of fuel gaging experience. Over this period hundreds of thousands of Liquidometer gaging systems have been manufactured for all types of aircraft. The result is a vast store of fuel gaging "know-how."

The combination of past experience plus progressive engineering methods provides Liquidometer with a sound basis for the solution of the most complex problems associated with the measurement and control of aircraft fuels.

Again, there is no substitute for experience.

THE LIQUIDOMETER CORP.
LONG ISLAND CITY 1, NEW YORK
U.S. Aircraft Production

(1913-1953)

(Source: Air c r aft Industries Association)

<table>
<thead>
<tr>
<th>Year</th>
<th>Total</th>
<th>Military Aircraft</th>
<th>Civil Aircraft</th>
</tr>
</thead>
<tbody>
<tr>
<td>1914</td>
<td>49</td>
<td>15</td>
<td>34</td>
</tr>
<tr>
<td>1915</td>
<td>178</td>
<td>26</td>
<td>152</td>
</tr>
<tr>
<td>1916</td>
<td>411</td>
<td>142</td>
<td>269</td>
</tr>
<tr>
<td>1917</td>
<td>2,142</td>
<td>2,013</td>
<td>135</td>
</tr>
<tr>
<td>1918</td>
<td>14,020</td>
<td>13,991</td>
<td>29</td>
</tr>
<tr>
<td>1919</td>
<td>780</td>
<td>682</td>
<td>98</td>
</tr>
<tr>
<td>1920</td>
<td>328</td>
<td>256</td>
<td>72</td>
</tr>
<tr>
<td>1921</td>
<td>437</td>
<td>339</td>
<td>48</td>
</tr>
<tr>
<td>1922</td>
<td>263</td>
<td>226</td>
<td>37</td>
</tr>
<tr>
<td>1923</td>
<td>745</td>
<td>689</td>
<td>56</td>
</tr>
<tr>
<td>1924</td>
<td>377</td>
<td>317</td>
<td>60</td>
</tr>
<tr>
<td>1925</td>
<td>789</td>
<td>447</td>
<td>342</td>
</tr>
<tr>
<td>1926</td>
<td>1,136</td>
<td>532</td>
<td>654</td>
</tr>
<tr>
<td>1927</td>
<td>1,995</td>
<td>621</td>
<td>1,374</td>
</tr>
<tr>
<td>1928</td>
<td>4,346</td>
<td>1,219</td>
<td>3,127</td>
</tr>
<tr>
<td>1929</td>
<td>6,193</td>
<td>677</td>
<td>5,516</td>
</tr>
<tr>
<td>1930</td>
<td>3,437</td>
<td>747</td>
<td>2,690</td>
</tr>
<tr>
<td>1931</td>
<td>2,800</td>
<td>812</td>
<td>1,988</td>
</tr>
<tr>
<td>1932</td>
<td>1,396</td>
<td>593</td>
<td>803</td>
</tr>
<tr>
<td>1933</td>
<td>1,324</td>
<td>466</td>
<td>858</td>
</tr>
<tr>
<td>1934</td>
<td>1,615</td>
<td>437</td>
<td>1,178</td>
</tr>
<tr>
<td>1935</td>
<td>1,710</td>
<td>459</td>
<td>1,251</td>
</tr>
<tr>
<td>1936</td>
<td>3,010</td>
<td>1,141</td>
<td>1,869</td>
</tr>
<tr>
<td>1937</td>
<td>3,773</td>
<td>949</td>
<td>2,824</td>
</tr>
<tr>
<td>1938</td>
<td>3,623</td>
<td>1,800</td>
<td>1,823</td>
</tr>
<tr>
<td>1939</td>
<td>5,856</td>
<td>2,195</td>
<td>3,661</td>
</tr>
<tr>
<td>1940</td>
<td>12,804</td>
<td>6,019</td>
<td>6,785</td>
</tr>
<tr>
<td>1941</td>
<td>26,277</td>
<td>19,433</td>
<td>6,844</td>
</tr>
<tr>
<td>1942</td>
<td>47,836</td>
<td>47,836</td>
<td>d</td>
</tr>
<tr>
<td>1943</td>
<td>85,898</td>
<td>85,898</td>
<td>d</td>
</tr>
<tr>
<td>1944</td>
<td>96,318</td>
<td>96,318</td>
<td>d</td>
</tr>
<tr>
<td>1945</td>
<td>49,761</td>
<td>47,714</td>
<td>2,047</td>
</tr>
<tr>
<td>1946</td>
<td>36,670</td>
<td>1,669</td>
<td>35,001</td>
</tr>
<tr>
<td>1947</td>
<td>17,717</td>
<td>2,100</td>
<td>15,617</td>
</tr>
<tr>
<td>1948</td>
<td>9,586</td>
<td>2,284</td>
<td>7,302</td>
</tr>
<tr>
<td>1949</td>
<td>6,089</td>
<td>2,544</td>
<td>3,545</td>
</tr>
<tr>
<td>1950</td>
<td>6,520</td>
<td>3,000</td>
<td>3,520</td>
</tr>
<tr>
<td>1951</td>
<td>7,277</td>
<td>4,800</td>
<td>2,477</td>
</tr>
<tr>
<td>1952</td>
<td>12,600</td>
<td>9,000</td>
<td>3,600</td>
</tr>
<tr>
<td>1953</td>
<td>16,700</td>
<td>12,000</td>
<td>4,700</td>
</tr>
<tr>
<td>1954</td>
<td>13,900</td>
<td>10,500</td>
<td>3,400</td>
</tr>
</tbody>
</table>

*a*Includes military aircraft for Lend-Lease shipments.

*b*Represents domestic civil production only.

*c*Includes United States-financed aircraft manufactured in Canada.

*d*No production except military.

*e*Estimate.
For more than a decade Republic has designed and built a succession of Thunder-craft fighters and fighter bombers for the U.S.A.F. which have proven without peer. ➔ The mighty THUNDERBOLT of World War II established a proud record in combat as the sturdiest, deadliest "work horse" of its time... the THUNDERJET which earned its fame as a fighter bomber during the Korean War is maintaining its own fine position of leadership with our Air Force and our allies in NATO. ➔ The new THUNDERSTREAK, now in service, and the THUNDERFLASH, its photo-reconnaissance counterpart, with an entirely new range of speeds and effectiveness emphasize that each product of Republic's know-how maintains superiority of performance in its field.
THESE CONNECTORS ARE ACTUAL SIZE

Series SM-20 Sub-Miniature Rectangular Connectors
Series 20 Miniature Rectangular Connectors
Series H-20 Hermetic Seal Miniature Rectangular Connectors
Series C-20 Miniature Hexagonal Connectors (Vibration Proof)
Series EZ-16 Easy Release Power Connectors (Spring Loaded contacts)
Series 16 Rectangular Power Connectors
Series 14 Rectangular Power Connectors
Series PC Printed Circuit Connectors
Miniature Precision Stand-offs

SPECIAL DESIGNS—submit your connector problems to our engineering department.

precision connectors by Continental

Continental Connectors

ELECTRONIC SALES DIVISION DeJur-AMSco CORPORATION

Write Dept. AYC, DeJur-Amseco Corporation
45-01 Northern Blvd., Long Island City 1, N. Y.

WEST COAST: 405 North Maple Drive, Beverly Hills, Calif.
Actual performance records prove that these DeJUR components withstand adverse conditions of vibration, heat and moisture. Each is engineered and manufactured to meet rigid government requirements. In addition to its wide variety of stock instruments, DeJUR offers top-flight laboratory, engineering and manufacturing facilities for production of these precision units adapted to your specifications. Inquiries are invited.

Write for more detailed information on any of the products shown on this page to Dept. AYPM

DeJUR-AMSBCO CORPORATION
45-01 NORTHERN BOULEVARD, LONG ISLAND CITY 1, N. Y.
MANUFACTURERS OF SCIENTIFIC PRECISION EQUIPMENT FOR OVER 30 YEARS
The Aircraft Year Book

United States Aircraft Exports

Number and Value

(Source: Aircraft Industries Association)

<table>
<thead>
<tr>
<th>Year</th>
<th>Aircraft exported(^1)</th>
<th>Value</th>
<th>Value of all aeronautical exports(^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number</td>
<td>Value</td>
<td></td>
</tr>
<tr>
<td>1913</td>
<td>29</td>
<td>$81,750</td>
<td>$107,552</td>
</tr>
<tr>
<td>1914</td>
<td>34</td>
<td>188,924</td>
<td>226,149</td>
</tr>
<tr>
<td>1915</td>
<td>132</td>
<td>938,819</td>
<td>1,541,446</td>
</tr>
<tr>
<td>1916</td>
<td>269</td>
<td>2,158,395</td>
<td>7,002,005</td>
</tr>
<tr>
<td>1917</td>
<td>135</td>
<td>1,001,542</td>
<td>4,135,445</td>
</tr>
<tr>
<td>1918</td>
<td>20</td>
<td>206,120</td>
<td>9,084,097</td>
</tr>
<tr>
<td>1919</td>
<td>85</td>
<td>777,906</td>
<td>13,166,907</td>
</tr>
<tr>
<td>1920</td>
<td>65</td>
<td>598,274</td>
<td>1,152,649</td>
</tr>
<tr>
<td>1921</td>
<td>48</td>
<td>314,940</td>
<td>472,548</td>
</tr>
<tr>
<td>1922</td>
<td>37</td>
<td>156,630</td>
<td>494,930</td>
</tr>
<tr>
<td>1923</td>
<td>48</td>
<td>359,651</td>
<td>433,558</td>
</tr>
<tr>
<td>1924</td>
<td>59</td>
<td>412,738</td>
<td>798,273</td>
</tr>
<tr>
<td>1925</td>
<td>80</td>
<td>511,282</td>
<td>785,689</td>
</tr>
<tr>
<td>1926</td>
<td>50</td>
<td>303,149</td>
<td>1,027,210</td>
</tr>
<tr>
<td>1927</td>
<td>63</td>
<td>848,568</td>
<td>1,903,560</td>
</tr>
<tr>
<td>1928</td>
<td>162</td>
<td>1,759,653</td>
<td>3,664,723</td>
</tr>
<tr>
<td>1929</td>
<td>348</td>
<td>5,484,600</td>
<td>9,125,345</td>
</tr>
<tr>
<td>1930</td>
<td>321</td>
<td>4,819,669</td>
<td>8,018,110</td>
</tr>
<tr>
<td>1931</td>
<td>140</td>
<td>1,812,309</td>
<td>4,867,667</td>
</tr>
<tr>
<td>1932</td>
<td>290</td>
<td>4,358,967</td>
<td>7,946,533</td>
</tr>
<tr>
<td>1933</td>
<td>406</td>
<td>5,391,493</td>
<td>9,180,328</td>
</tr>
<tr>
<td>1934</td>
<td>490</td>
<td>8,195,484</td>
<td>17,662,938</td>
</tr>
<tr>
<td>1935</td>
<td>333</td>
<td>6,598,515</td>
<td>14,290,923</td>
</tr>
<tr>
<td>1936</td>
<td>527</td>
<td>11,601,893</td>
<td>23,143,203</td>
</tr>
<tr>
<td>1937</td>
<td>628</td>
<td>21,076,170</td>
<td>39,404,469</td>
</tr>
<tr>
<td>1938</td>
<td>875</td>
<td>37,977,324</td>
<td>68,227,689</td>
</tr>
<tr>
<td>1939</td>
<td>1,220</td>
<td>67,112,736</td>
<td>117,807,212</td>
</tr>
<tr>
<td>1940</td>
<td>3,522</td>
<td>196,260,556</td>
<td>311,871,473</td>
</tr>
<tr>
<td>1941</td>
<td>6,011</td>
<td>422,763,907</td>
<td>626,929,352</td>
</tr>
<tr>
<td>1942</td>
<td>10,448</td>
<td>879,994,628</td>
<td>1,357,345,366</td>
</tr>
<tr>
<td>1943</td>
<td>13,865</td>
<td>1,215,814,135</td>
<td>2,142,614,149</td>
</tr>
<tr>
<td>1944</td>
<td>16,544</td>
<td>1,589,800,893</td>
<td>2,825,927,362</td>
</tr>
<tr>
<td>1945</td>
<td>7,590</td>
<td>663,128,543</td>
<td>1,148,831,587</td>
</tr>
<tr>
<td>1946</td>
<td>2,362</td>
<td>65,237,749</td>
<td>115,320,235</td>
</tr>
<tr>
<td>1947</td>
<td>3,123</td>
<td>74,473,921</td>
<td>122,180,472</td>
</tr>
<tr>
<td>1948</td>
<td>2,259</td>
<td>66,354,000</td>
<td>153,629,006</td>
</tr>
<tr>
<td>1949</td>
<td>1,264</td>
<td>37,388,553</td>
<td>292,984,025</td>
</tr>
<tr>
<td>1950</td>
<td>759 ^2</td>
<td>44,292,222</td>
<td>242,362,699</td>
</tr>
<tr>
<td>1951</td>
<td>894 ^2</td>
<td>18,606,528</td>
<td>301,424,786</td>
</tr>
<tr>
<td>1952</td>
<td>1,180</td>
<td>27,500,121</td>
<td>603,181,876</td>
</tr>
<tr>
<td>1953</td>
<td>1,378</td>
<td>91,137,326</td>
<td>880,634,000</td>
</tr>
</tbody>
</table>

\(^1\)1913-18, fiscal years; 1919-53, calendar years. Data for the second half of 1918 is included with calendar year 1919.

\(^2\)Exclusive of gliders and barrage balloons.

\(^3\)Total value of aircraft, engines, parts, etc. 1913-21 include values of aircraft and aircraft parts. Prior to 1922, engine values were not reported separately, but were probably included with either "other" internal combustion engines or with "parts" of aircraft. Values for parachutes and their parts have been included only since 1932.

\(^4\)For security reasons the 1949 figures do not include exports after April on military and cargo aircraft and engines of 400 hp and over. Right hand column includes military.

\(^5\)For security reasons the 1950 figures do not include military, cargo and used transport aircraft, engines of 400 hp and over, propellers, instruments nor any other parts or accessories. Right hand column includes military.
the advantages of

CONICAL KEYSTONE LOCK
blind rivets

- Positive mechanical lock (no friction)
- Unusually high shear strength.
- Requires less clearance on blind side.
- Bulbed blind side gives broader bearing area.
- Positive pin-sleeve lock (no pin drop-out).
- Excellent sheet pull-together.
- Available in brazier or countersunk headstyles.
- High quality 24SRT aluminum pins used.
- Absolute sealing by expansion of shank.
- 565 sleeve for both aluminum and magnesium assembly.
- Shaving or filing will not destroy lock.
- No pin trimming required.
- Positive inspection from drive side.
- No special drilling equipment required.

Vast production facilities—Good availability—Good delivery.

Manufactured under U.S. Patents, other Patents Pending.

HUCK Manufacturing Company
2480 Bellevue Ave. - Detroit 7, Mich. - Phone Walnut 1-6207
Westinghouse entered the aviation industry in 1917 with the first wind-driven aircraft generator. Today, its scope is the widest of any manufacturer in the industry.

Jet Propulsion . . . Six Westinghouse turbojets have been proved in service, including the J40 which powered the Douglas F4D to a world's speed record.

Automatic Pilots and Radar
Air Arm develops and produces automatic pilots, airborne fire control systems and guided missile components.

Aircraft Electrical Systems . . .
Westinghouse has pioneered many new concepts in alternators, voltage regulators and motors . . . powering airborne equipment and operating vital controls.

Wind Tunnels to Plastics . . .
Westinghouse is also an important producer of motors and drives for wind tunnels, magnetic amplifiers, airport lighting, Micarta® and communications equipment.

Westinghouse in Aviation's Future . . . All told, over 87 different products developed and manufactured by 23 divisions are working to help you bring tomorrow's aircraft . . . One Step Closer. J-54031-B

YOU CAN BE SURE . . . IF IT'S
Westinghouse
NEW FLIGHT HORIZONS

BY DOUGLAS

From DC-3 to DC-7, Douglas airliners have flown farther, faster, with bigger payloads at lower cost. Its huge global transports and speedy, hard-hitting jet fighters and bombers have made Douglas the pacemaker in military aviation as well.

Unmatched experience in all the sciences relating to flight, plus advanced engineering, have enabled Douglas to lead the way across each new barrier to air progress. Latest Douglas commercial development: the Seven Seas (DC-7C), a new 5000 mile range airliner which promises to revolutionize air travel between continents.

Twice as many people fly

DOUGLAS as all other

airplanes combined
The AIRCRAFT YEAR BOOK

U. S. CIVIL AIRCRAFT

(Source: Civil Aeronautics Administration)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>89,313</td>
<td>91,102</td>
<td>Montana</td>
<td>1,165</td>
<td>1,179</td>
</tr>
<tr>
<td>Alabama</td>
<td>752</td>
<td>747</td>
<td>Nebraska</td>
<td>1,799</td>
<td>1,763</td>
</tr>
<tr>
<td>Arizona</td>
<td>1,164</td>
<td>1,262</td>
<td>Nevada</td>
<td>439</td>
<td>417</td>
</tr>
<tr>
<td>Arkansas</td>
<td>1,080</td>
<td>1,093</td>
<td>New Hampshire</td>
<td>221</td>
<td>215</td>
</tr>
<tr>
<td>California</td>
<td>10,067</td>
<td>10,369</td>
<td>New Jersey</td>
<td>1,826</td>
<td>1,931</td>
</tr>
<tr>
<td>Colorado</td>
<td>1,263</td>
<td>1,256</td>
<td>New Mexico</td>
<td>754</td>
<td>772</td>
</tr>
<tr>
<td>Connecticut</td>
<td>603</td>
<td>629</td>
<td>New York</td>
<td>4,397</td>
<td>4,497</td>
</tr>
<tr>
<td>Delaware</td>
<td>275</td>
<td>210</td>
<td>North Carolina</td>
<td>1,547</td>
<td>1,600</td>
</tr>
<tr>
<td>District of Columbia</td>
<td>554</td>
<td>567</td>
<td>North Dakota</td>
<td>1,183</td>
<td>1,148</td>
</tr>
<tr>
<td>Florida</td>
<td>2,612</td>
<td>2,686</td>
<td>Ohio</td>
<td>4,157</td>
<td>4,309</td>
</tr>
<tr>
<td>Georgia</td>
<td>1,169</td>
<td>1,242</td>
<td>Oklahoma</td>
<td>2,026</td>
<td>1,996</td>
</tr>
<tr>
<td>Idaho</td>
<td>906</td>
<td>870</td>
<td>Oregon</td>
<td>1,747</td>
<td>1,760</td>
</tr>
<tr>
<td>Illinois</td>
<td>4,923</td>
<td>5,030</td>
<td>Pennsylvania</td>
<td>3,925</td>
<td>3,910</td>
</tr>
<tr>
<td>Indiana</td>
<td>2,679</td>
<td>2,757</td>
<td>Rhode Island</td>
<td>187</td>
<td>197</td>
</tr>
<tr>
<td>Iowa</td>
<td>2,126</td>
<td>2,064</td>
<td>South Carolina</td>
<td>598</td>
<td>592</td>
</tr>
<tr>
<td>Kansas</td>
<td>2,477</td>
<td>2,533</td>
<td>South Dakota</td>
<td>1,112</td>
<td>1,130</td>
</tr>
<tr>
<td>Kentucky</td>
<td>655</td>
<td>704</td>
<td>Tennessee</td>
<td>919</td>
<td>923</td>
</tr>
<tr>
<td>Louisiana</td>
<td>1,159</td>
<td>1,284</td>
<td>Texas</td>
<td>6,581</td>
<td>6,740</td>
</tr>
<tr>
<td>Maine</td>
<td>550</td>
<td>527</td>
<td>Utah</td>
<td>456</td>
<td>481</td>
</tr>
<tr>
<td>Maryland</td>
<td>837</td>
<td>864</td>
<td>Vermont</td>
<td>163</td>
<td>158</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>1,425</td>
<td>1,431</td>
<td>Virginia</td>
<td>1,267</td>
<td>1,237</td>
</tr>
<tr>
<td>Michigan</td>
<td>3,876</td>
<td>3,899</td>
<td>Washington</td>
<td>2,219</td>
<td>2,260</td>
</tr>
<tr>
<td>Minnesota</td>
<td>2,092</td>
<td>2,164</td>
<td>West Virginia</td>
<td>609</td>
<td>602</td>
</tr>
<tr>
<td>Mississippi</td>
<td>802</td>
<td>868</td>
<td>Wisconsin</td>
<td>1,995</td>
<td>1,967</td>
</tr>
<tr>
<td>Missouri</td>
<td>1,924</td>
<td>2,050</td>
<td>Wyoming</td>
<td>509</td>
<td>506</td>
</tr>
</tbody>
</table>

4Includes gliders.

CIVIL AIRCRAFT PRODUCTION

Number of Units

(Source: Bureau of the Census, Facts for Industry, Series M42 A)

<table>
<thead>
<tr>
<th>Month</th>
<th>1950</th>
<th>1951</th>
<th>1952</th>
<th>1953</th>
<th>1954</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>167</td>
<td>255</td>
<td>224</td>
<td>365</td>
<td>278</td>
</tr>
<tr>
<td>February</td>
<td>225</td>
<td>239</td>
<td>227</td>
<td>382</td>
<td>240</td>
</tr>
<tr>
<td>March</td>
<td>326</td>
<td>272</td>
<td>248</td>
<td>358</td>
<td>312</td>
</tr>
<tr>
<td>April</td>
<td>329</td>
<td>247</td>
<td>291</td>
<td>402</td>
<td>359</td>
</tr>
<tr>
<td>May</td>
<td>377</td>
<td>248</td>
<td>330</td>
<td>417</td>
<td>369</td>
</tr>
<tr>
<td>June</td>
<td>369</td>
<td>216</td>
<td>335</td>
<td>339</td>
<td>316</td>
</tr>
<tr>
<td>July</td>
<td>321</td>
<td>207</td>
<td>353</td>
<td>402</td>
<td>293</td>
</tr>
<tr>
<td>August</td>
<td>354</td>
<td>171</td>
<td>349</td>
<td>350</td>
<td>204</td>
</tr>
<tr>
<td>September</td>
<td>301</td>
<td>184</td>
<td>337</td>
<td>359</td>
<td>265</td>
</tr>
<tr>
<td>October</td>
<td>204</td>
<td>124</td>
<td>293</td>
<td>235</td>
<td></td>
</tr>
<tr>
<td>November</td>
<td>242</td>
<td>162</td>
<td>268</td>
<td>275</td>
<td></td>
</tr>
<tr>
<td>December</td>
<td>305</td>
<td>152</td>
<td>284</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>3,520</td>
<td>2,477</td>
<td>3,509</td>
<td>4,134</td>
<td></td>
</tr>
</tbody>
</table>
Saginaw Ball Bearing Screws and Splines operate at 90-98% efficiency

Saginaw Ball Bearing Splines give virtually frictionless linear motion while handling extreme rotational torque loads. Ideal for aircraft landing gears and other similar applications.

Saginaw Ball Bearing Screws are built in lengths from two inches to 39 feet for converting rotary to linear or linear to rotary motion.

Saginaw Ball Bearing Screws with multiple circuits offer less weight, more safety and longer life in handling a given load. Write for new data book today.
NUMBER OF ENGINES PRODUCED

1917-1953

<table>
<thead>
<tr>
<th>Year</th>
<th>Total</th>
<th>Military</th>
<th>Civil</th>
</tr>
</thead>
<tbody>
<tr>
<td>1917-1919</td>
<td>N.A.</td>
<td>44,453</td>
<td>N.A.</td>
</tr>
<tr>
<td>1921</td>
<td>N.A.</td>
<td>5,776</td>
<td>N.A.</td>
</tr>
<tr>
<td>1922</td>
<td>1,896</td>
<td>1,085</td>
<td>813</td>
</tr>
<tr>
<td>1923</td>
<td>1,960</td>
<td>866</td>
<td>1,120</td>
</tr>
<tr>
<td>1924</td>
<td>2,736</td>
<td>688</td>
<td>2,048</td>
</tr>
<tr>
<td>1925</td>
<td>2,965</td>
<td>991</td>
<td>1,974</td>
</tr>
<tr>
<td>1926</td>
<td>4,237</td>
<td>1,804</td>
<td>2,433</td>
</tr>
<tr>
<td>1927</td>
<td>6,084</td>
<td>1,989</td>
<td>4,095</td>
</tr>
<tr>
<td>1928</td>
<td>N.A.</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>1929</td>
<td>11,172</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>1940</td>
<td>N.A.</td>
<td>22,667</td>
<td>N.A.</td>
</tr>
<tr>
<td>1941</td>
<td>N.A.</td>
<td>58,181</td>
<td>N.A.</td>
</tr>
<tr>
<td>1942</td>
<td>N.A.</td>
<td>138,089</td>
<td>N.A.</td>
</tr>
<tr>
<td>1943</td>
<td>N.A.</td>
<td>227,116</td>
<td>N.A.</td>
</tr>
<tr>
<td>1944</td>
<td>N.A.</td>
<td>256,911</td>
<td>N.A.</td>
</tr>
<tr>
<td>1945</td>
<td>N.A.</td>
<td>109,650</td>
<td>N.A.</td>
</tr>
<tr>
<td>1946</td>
<td>43,407</td>
<td>2,585b</td>
<td>40,822</td>
</tr>
<tr>
<td>1947</td>
<td>21,178</td>
<td>4,808</td>
<td>16,370</td>
</tr>
<tr>
<td>1948</td>
<td>N.A.</td>
<td>N.A.</td>
<td>9,039</td>
</tr>
<tr>
<td>1949</td>
<td>N.A.</td>
<td>N.A.</td>
<td>3,982</td>
</tr>
<tr>
<td>1950</td>
<td>N.A.</td>
<td>N.A.</td>
<td>4,314</td>
</tr>
<tr>
<td>1951</td>
<td>N.A.</td>
<td>N.A.</td>
<td>4,250</td>
</tr>
<tr>
<td>1952</td>
<td>31,382c</td>
<td>29,000c</td>
<td>5,382</td>
</tr>
<tr>
<td>1953</td>
<td>N.A.</td>
<td>N.A.</td>
<td>6,647</td>
</tr>
</tbody>
</table>

*Excludes aircraft engines produced for other than aircraft use.

**Excludes experimental engines, engines classified by the armed forces as secret or confidential, engines for non-man-carrying, pilotless aircraft, jet assist mechanisms.

1948-1952—Bureau of Census Facts for Industry Series M42A.

SHIPMENTS OF CIVIL AIRCRAFT ENGINES

1953

(Source: CAA Statistical Handbook)

<table>
<thead>
<tr>
<th>Month</th>
<th>Number of Engines</th>
<th>Horsepower (in thousands)</th>
<th>Total Value (Thousands of Dollars)</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>583</td>
<td>268</td>
<td>3,657</td>
</tr>
<tr>
<td>February</td>
<td>476</td>
<td>189</td>
<td>2,387</td>
</tr>
<tr>
<td>March</td>
<td>667</td>
<td>305</td>
<td>4,107</td>
</tr>
<tr>
<td>April</td>
<td>671</td>
<td>378</td>
<td>5,471</td>
</tr>
<tr>
<td>May</td>
<td>500</td>
<td>391</td>
<td>6,537</td>
</tr>
<tr>
<td>June</td>
<td>523</td>
<td>400</td>
<td>6,636</td>
</tr>
<tr>
<td>July</td>
<td>576</td>
<td>401</td>
<td>6,583</td>
</tr>
<tr>
<td>August</td>
<td>607c</td>
<td>378</td>
<td>6,109</td>
</tr>
<tr>
<td>September</td>
<td>465</td>
<td>418</td>
<td>7,221</td>
</tr>
<tr>
<td>October</td>
<td>493</td>
<td>463</td>
<td>8,083</td>
</tr>
<tr>
<td>November</td>
<td>559</td>
<td>413</td>
<td>7,171</td>
</tr>
<tr>
<td>December</td>
<td>527</td>
<td>395</td>
<td>6,892</td>
</tr>
</tbody>
</table>
From World War I when we first developed streamlined steel tubing for struts and empennage frames, we've never stopped gaining good solid experience... experience that now enables us to efficiently produce complete cockpit enclosures, and other assemblies for jet aircraft.

Kawneer's recently built 110,000-square-foot plant, manned by a well qualified management team and abundant skilled manpower, is 100 percent privately financed, proof that we are in the aircraft business to stay. All our new machines and equipment were planned and purchased to give Aircraft Producers and U. S. Government Procurement Agencies a dependable money-saving source.

We invite your inspection at any time. But if you cannot visit us, we'll be glad to send our illustrated brochure or have one of our qualified representatives call on you.
YOUR DIRECT PIPELINES TO PILOTS

Skyways

Specialized Magazine of Flight Operations

For performance-minded, decision-making executives, engineers and supervisory personnel in these fields:

- Air Carriers
- Business-Owned Aircraft
- Military Flight Operations
- Agricultural Aviation
- Engine, Airframe and Accessories Manufacturers
- Special Flight Services
- Radio and Electronics
- Ground Support Operations
- Airports and Airways

SKYWAYS is the only aviation publication edited specifically issue after issue for personnel, in the air and on the ground, whose daily responsibility is safe, dependable flight operations. It reaches more than 30,000 men in this important segment of the industry.

To its advertisers, SKYWAYS offers comprehensive coverage of the Flight Operations market at lowest cost per customer and prospective. Write or call for details on how SKYWAYS can increase the effectiveness of your advertising message.

HENRY PUBLISHING COMPANY
444 Madison Avenue
New York 22, N. Y.
Tel PLaza 3-0155
The only publication presenting accurate, detailed, up-to-date information about airports maintaining facilities and services useful to pilots of business, private and other utility aircraft in the U.S. and Canada.

For the pilot planning a trip or the pilot enroute to his destination, SKYWAYS' Airport Service Directory tells him exactly where and when he can find hangar storage . . . grade and brand of fuel . . . hours of line service and A&E . . . types of engine, radio, instrument and aircraft maintenance . . . food catering . . . ground transportation . . . weather service . . . radio facilities . . . many other useful items.

To advertisers, SKYWAYS' Airport Service Directory provides a direct, unduplicated pipe line to thousands of pilots who need and buy their products or services day after day.

For full details, write or call

SKYWAYS' Airport Service Directory
444 Madison Avenue
New York 22, N. Y.

Plaza 3-0155
Civil Airplane Output

By Power and Types

(Source: Bureau of the Census, Facts for Industry Series M42A)

1937-1953

<table>
<thead>
<tr>
<th></th>
<th>1937</th>
<th>1938</th>
<th>1939</th>
<th>1940</th>
<th>1941</th>
<th>1942</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>2,289</td>
<td>1,823</td>
<td>3,715</td>
<td>6,785</td>
<td>6,844</td>
<td>2,047</td>
</tr>
</tbody>
</table>

By number of engines

<table>
<thead>
<tr>
<th></th>
<th>Single-engine</th>
<th>Multi-engine</th>
<th>Unclassified</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2,171</td>
<td>118</td>
<td>0</td>
</tr>
</tbody>
</table>

By horsepower

<table>
<thead>
<tr>
<th>Hp Range</th>
<th>1937</th>
<th>1938</th>
<th>1939</th>
<th>1940</th>
<th>1941</th>
<th>1942</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 and under</td>
<td>1,393</td>
<td>1,350</td>
<td>1,686</td>
<td>490</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>51-70</td>
<td>44</td>
<td>23</td>
<td>1,349</td>
<td>4,529</td>
<td>4,303</td>
<td>1,828</td>
</tr>
<tr>
<td>71-100</td>
<td>183</td>
<td>61</td>
<td>311</td>
<td>935</td>
<td>1,806</td>
<td>105</td>
</tr>
<tr>
<td>101-165</td>
<td>193</td>
<td>149</td>
<td>120</td>
<td>211</td>
<td>206</td>
<td>13</td>
</tr>
<tr>
<td>166-225</td>
<td>47</td>
<td>16</td>
<td>9</td>
<td>318</td>
<td>309</td>
<td>0</td>
</tr>
<tr>
<td>226-300</td>
<td>199</td>
<td>122</td>
<td>86</td>
<td>57</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>301-600</td>
<td>142</td>
<td>54</td>
<td>76</td>
<td>72</td>
<td>31</td>
<td>28</td>
</tr>
<tr>
<td>601-800</td>
<td>68</td>
<td>46</td>
<td>78</td>
<td>137</td>
<td>118</td>
<td>63</td>
</tr>
<tr>
<td>Unclassified</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>56</td>
<td>50</td>
<td>0</td>
</tr>
</tbody>
</table>

By types

<table>
<thead>
<tr>
<th>Type</th>
<th>1947</th>
<th>1948</th>
<th>1949</th>
<th>1950</th>
<th>1951</th>
<th>1952</th>
<th>1953</th>
</tr>
</thead>
<tbody>
<tr>
<td>Landplanes:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-2-place</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-5-place</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-20-place</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21-place and over</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seaplanes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphibians</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unclassified</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Civil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Personal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transport</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

By Place

<table>
<thead>
<tr>
<th>Place</th>
<th>1947</th>
<th>1948</th>
<th>1949</th>
<th>1950</th>
<th>1951</th>
<th>1952</th>
<th>1953</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-place</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 to 5-place</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Over 5-place</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

By Horsepower:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1-74</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100-120</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400-500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4,000 and over</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

11946 excluded.
2Exports excluded 1938-1941; no civil production during 1942-44; exports included 1945-50.
3Total rated horsepower of all engines.
Bendix Products Division of the Bendix Aviation Corporation has specialized for more than thirty years in two highly technical phases of aviation—fuel metering and landing gear.

That's why Bendix Products' accumulative knowledge of research, engineering and manufacturing offers to airframe builders and engine manufacturers the best solution to better products, quicker deliveries and lower costs in fuel metering, landing gear, wheels, brakes and components.

Bendix Products Division
SOUTH BEND
INDIANA

Export Sales: Bendix International Division
205 East 42nd Street, New York 17, N. Y.
The AIRCRAFT YEAR BOOK

Airline Statistics

AIRLINE REVENUE PASSENGER MILES
U. S. Domestic Air Carriers By Months
(Source: Air Transport Association)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>331,714</td>
<td>380,757</td>
<td>401,214</td>
<td>429,935</td>
<td>481,428</td>
<td>742,598</td>
<td>877,482</td>
<td>1,070,830</td>
</tr>
<tr>
<td>February</td>
<td>331,965</td>
<td>372,276</td>
<td>356,859</td>
<td>432,226</td>
<td>479,650</td>
<td>683,196</td>
<td>823,887</td>
<td>1,030,838</td>
</tr>
<tr>
<td>March</td>
<td>406,403</td>
<td>493,864</td>
<td>440,106</td>
<td>533,548</td>
<td>568,162</td>
<td>861,466</td>
<td>953,855</td>
<td>1,188,332</td>
</tr>
<tr>
<td>April</td>
<td>467,703</td>
<td>526,188</td>
<td>483,233</td>
<td>577,852</td>
<td>636,440</td>
<td>860,750</td>
<td>1,026,739</td>
<td>1,243,564</td>
</tr>
<tr>
<td>May</td>
<td>512,625</td>
<td>563,771</td>
<td>539,431</td>
<td>608,302</td>
<td>684,940</td>
<td>888,380</td>
<td>1,006,840</td>
<td>1,257,142</td>
</tr>
<tr>
<td>June</td>
<td>562,722</td>
<td>546,685</td>
<td>588,677</td>
<td>676,842</td>
<td>784,870</td>
<td>956,610</td>
<td>1,153,923</td>
<td>1,353,953</td>
</tr>
<tr>
<td>July</td>
<td>569,875</td>
<td>543,541</td>
<td>561,075</td>
<td>640,718</td>
<td>746,463</td>
<td>949,311</td>
<td>1,121,926</td>
<td>1,351,668</td>
</tr>
<tr>
<td>August</td>
<td>624,481</td>
<td>611,838</td>
<td>569,583</td>
<td>627,127</td>
<td>775,238</td>
<td>995,394</td>
<td>1,187,487</td>
<td>1,381,237</td>
</tr>
<tr>
<td>September</td>
<td>611,961</td>
<td>609,756</td>
<td>549,539</td>
<td>634,088</td>
<td>741,777</td>
<td>967,436</td>
<td>1,160,558</td>
<td>1,303,595</td>
</tr>
<tr>
<td>October</td>
<td>557,223</td>
<td>578,889</td>
<td>534,758</td>
<td>608,837</td>
<td>757,271</td>
<td>952,359</td>
<td>1,159,536</td>
<td>1,266,785</td>
</tr>
<tr>
<td>November</td>
<td>468,734</td>
<td>435,083</td>
<td>452,441</td>
<td>504,939</td>
<td>639,026</td>
<td>840,837</td>
<td>1,002,905</td>
<td>1,099,775</td>
</tr>
<tr>
<td>December</td>
<td>507,643</td>
<td>441,231</td>
<td>486,355</td>
<td>478,164</td>
<td>705,953</td>
<td>862,682</td>
<td>1,050,820</td>
<td>1,202,208</td>
</tr>
<tr>
<td>Total</td>
<td>5,947,049</td>
<td>6,103,879</td>
<td>5,963,271</td>
<td>6,752,578</td>
<td>8,002,468</td>
<td>10,563,019</td>
<td>12,328,318</td>
<td>14,760,283</td>
</tr>
</tbody>
</table>

AIR CARRIER OPERATING EXPENSES

(Source: Air Transport Association)

<table>
<thead>
<tr>
<th>Aircraft Exp.</th>
<th>% of Total</th>
<th>Ground and Indirect Exp.</th>
<th>% of Total</th>
<th>Total Operating Expense</th>
</tr>
</thead>
<tbody>
<tr>
<td>1943</td>
<td>34,613,411</td>
<td>36.22</td>
<td>60,949,609</td>
<td>63.78</td>
</tr>
<tr>
<td>1944</td>
<td>45,150,125</td>
<td>36.26</td>
<td>79,371,976</td>
<td>63.74</td>
</tr>
<tr>
<td>1945</td>
<td>69,222,625</td>
<td>38.32</td>
<td>111,403,704</td>
<td>61.68</td>
</tr>
<tr>
<td>1946</td>
<td>129,645,346</td>
<td>40.24</td>
<td>192,573,836</td>
<td>59.76</td>
</tr>
<tr>
<td>1947</td>
<td>169,164,673</td>
<td>43.80</td>
<td>217,034,447</td>
<td>56.20</td>
</tr>
<tr>
<td>1948</td>
<td>199,990,706</td>
<td>46.33</td>
<td>231,643,571</td>
<td>53.67</td>
</tr>
<tr>
<td>1949</td>
<td>223,193,168</td>
<td>48.34</td>
<td>238,539,727</td>
<td>51.66</td>
</tr>
<tr>
<td>1950</td>
<td>228,503,346</td>
<td>48.18</td>
<td>245,797,635</td>
<td>51.82</td>
</tr>
<tr>
<td>1951</td>
<td>287,157,305</td>
<td>48.37</td>
<td>306,559,357</td>
<td>51.63</td>
</tr>
<tr>
<td>1952</td>
<td>360,082,000</td>
<td>49.96</td>
<td>361,500,000</td>
<td>50.04</td>
</tr>
<tr>
<td>1953</td>
<td>436,906,000</td>
<td>51.50</td>
<td>411,467,000</td>
<td>48.50</td>
</tr>
</tbody>
</table>

BREAKDOWN OF DIRECT AIRCRAFT OPERATING EXPENSES

<table>
<thead>
<tr>
<th>Flying Operations</th>
<th>% of Total</th>
<th>Direct Maintenance</th>
<th>% of Total</th>
<th>Depreciation</th>
<th>% of Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1943</td>
<td>20,739,121</td>
<td>21.70</td>
<td>9,132,260</td>
<td>9.56</td>
<td>4,742,030</td>
</tr>
<tr>
<td>1944</td>
<td>28,238,316</td>
<td>22.68</td>
<td>11,892,963</td>
<td>9.55</td>
<td>5,018,846</td>
</tr>
<tr>
<td>1945</td>
<td>43,421,033</td>
<td>24.04</td>
<td>16,392,654</td>
<td>9.07</td>
<td>9,408,938</td>
</tr>
<tr>
<td>1946</td>
<td>70,805,391</td>
<td>21.98</td>
<td>33,279,916</td>
<td>10.33</td>
<td>25,567,039</td>
</tr>
<tr>
<td>1947</td>
<td>88,839,885</td>
<td>23.00</td>
<td>42,962,710</td>
<td>11.11</td>
<td>37,422,078</td>
</tr>
<tr>
<td>1948</td>
<td>109,636,528</td>
<td>25.40</td>
<td>49,034,659</td>
<td>11.36</td>
<td>41,319,519</td>
</tr>
<tr>
<td>1949</td>
<td>127,397,922</td>
<td>27.59</td>
<td>54,028,364</td>
<td>11.70</td>
<td>41,766,882</td>
</tr>
<tr>
<td>1950</td>
<td>131,086,952</td>
<td>27.64</td>
<td>55,768,177</td>
<td>11.76</td>
<td>41,648,217</td>
</tr>
<tr>
<td>1951</td>
<td>172,677,416</td>
<td>29.08</td>
<td>71,364,212</td>
<td>12.03</td>
<td>43,115,677</td>
</tr>
<tr>
<td>1952</td>
<td>206,104,000</td>
<td>28.85</td>
<td>92,483,000</td>
<td>12.80</td>
<td>59,975,000</td>
</tr>
<tr>
<td>1953</td>
<td>252,843,000</td>
<td>29.80</td>
<td>101,920,000</td>
<td>12.02</td>
<td>82,143,000</td>
</tr>
</tbody>
</table>

Includes Trunks, Local Service and Territorial
ROHR

PRODUCES MORE
READY-TO-INSTALL
AIRCRAFT POWER
PACKAGES THAN
ANY ONE ELSE
IN THE WORLD

Chula Vista & Riverside, California
The AIRCRAFT YEAR BOOK

COMPARATIVE TRANSPORT SAFETY RECORD
Passenger Fatalities per 100,000,000 Passenger Miles
(Source: Air Transport Association)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Domestic Scheduled Air Lines</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fatalities</td>
<td>76</td>
<td>75</td>
<td>99</td>
<td>83</td>
<td>93</td>
<td>96</td>
<td>142</td>
<td>46</td>
<td>86</td>
</tr>
<tr>
<td>Rate</td>
<td>2.23</td>
<td>1.24</td>
<td>3.21</td>
<td>1.30</td>
<td>1.30</td>
<td>1.10</td>
<td>1.30</td>
<td>.4</td>
<td>.60</td>
</tr>
<tr>
<td>Buses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fatalities</td>
<td>120</td>
<td>140</td>
<td>140</td>
<td>120</td>
<td>120</td>
<td>100</td>
<td>130</td>
<td>100</td>
<td>NA</td>
</tr>
<tr>
<td>Rate</td>
<td>.17</td>
<td>.19</td>
<td>.21</td>
<td>.18</td>
<td>.20</td>
<td>.17</td>
<td>.22</td>
<td>.16</td>
<td>NA</td>
</tr>
<tr>
<td>Intercity Railroads</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fatalities</td>
<td>142</td>
<td>116</td>
<td>74</td>
<td>52</td>
<td>32</td>
<td>184</td>
<td>126</td>
<td>14</td>
<td>31</td>
</tr>
<tr>
<td>Rate</td>
<td>.16</td>
<td>.18</td>
<td>.16</td>
<td>.09</td>
<td>.58</td>
<td>.41</td>
<td>.04</td>
<td>.10</td>
<td></td>
</tr>
<tr>
<td>Pass. Autos & Taxicabs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fatalities</td>
<td>12,900</td>
<td>15,400</td>
<td>15,300</td>
<td>15,200</td>
<td>15,300</td>
<td>17,600</td>
<td>21,600</td>
<td>22,600</td>
<td>NA</td>
</tr>
<tr>
<td>Rate</td>
<td>2.9</td>
<td>2.5</td>
<td>2.3</td>
<td>2.1</td>
<td>2.1</td>
<td>2.2</td>
<td>2.4</td>
<td>2.8</td>
<td>NA</td>
</tr>
</tbody>
</table>

N. A. Not available.

ASSETS AND LIABILITIES
Domestic Trunk Airlines 1948-1953
(Source: Air Transport Association)

<table>
<thead>
<tr>
<th></th>
<th>1948</th>
<th>1949</th>
<th>1950</th>
<th>1951</th>
<th>1952</th>
<th>1953</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Assets</td>
<td>$171,859,726</td>
<td>$175,472,186</td>
<td>$204,018,828</td>
<td>$286,240,499</td>
<td>$344,115,976</td>
<td>$339,527,000</td>
</tr>
<tr>
<td>Flight Equipment—Net</td>
<td>188,351,172</td>
<td>188,619,849</td>
<td>201,630,303</td>
<td>226,223,625</td>
<td>309,355,329</td>
<td>345,455,000</td>
</tr>
<tr>
<td>Other Op. Property</td>
<td>59,963,595</td>
<td>61,476,977</td>
<td>58,149,892</td>
<td>61,152,504</td>
<td>75,793,917</td>
<td>98,909,000</td>
</tr>
<tr>
<td>Non-Operating Property</td>
<td>5,779,353</td>
<td>2,704,375</td>
<td>1,117,230</td>
<td>758,591</td>
<td>714,939</td>
<td>258,000</td>
</tr>
<tr>
<td>*Other Assets</td>
<td>58,286,768</td>
<td>58,663,273</td>
<td>77,624,812</td>
<td>794,160</td>
<td>398,678</td>
<td>41,704,000</td>
</tr>
<tr>
<td>Total Assets</td>
<td>484,240,614</td>
<td>486,941,660</td>
<td>542,541,065</td>
<td>648,550,195</td>
<td>775,764,980</td>
<td>819,853,000</td>
</tr>
<tr>
<td>Current Liabilities</td>
<td>99,836,921</td>
<td>98,428,787</td>
<td>130,111,887</td>
<td>218,363,023</td>
<td>231,737,632</td>
<td>259,899,000</td>
</tr>
<tr>
<td>Long Term Debt</td>
<td>167,403,669</td>
<td>148,917,443</td>
<td>135,842,945</td>
<td>134,006,470</td>
<td>168,246,905</td>
<td>154,701,000</td>
</tr>
<tr>
<td>Capital Stock</td>
<td>121,312,622</td>
<td>123,710,057</td>
<td>123,467,063</td>
<td>120,286,647</td>
<td>145,132,929</td>
<td>139,615,000</td>
</tr>
<tr>
<td>Capital Surplus</td>
<td>53,428,648</td>
<td>56,289,876</td>
<td>57,499,411</td>
<td>63,698,098</td>
<td>81,882,841</td>
<td>88,455,000</td>
</tr>
<tr>
<td>Earned Surplus</td>
<td>12,952,554</td>
<td>35,285,887</td>
<td>64,365,672</td>
<td>96,249,920</td>
<td>130,653,833</td>
<td>121,455,000</td>
</tr>
<tr>
<td>Operating Reserves</td>
<td>2,387,158</td>
<td>3,635,427</td>
<td>3,970,701</td>
<td>3,682,245</td>
<td>4,169,446</td>
<td>4,252,000</td>
</tr>
<tr>
<td>**Other Liabilities</td>
<td>26,919,042</td>
<td>21,574,183</td>
<td>27,283,386</td>
<td>12,263,792</td>
<td>13,921,394</td>
<td>51,495,000</td>
</tr>
<tr>
<td>Net Worth & Liabilities</td>
<td>$434,240,614</td>
<td>$486,941,660</td>
<td>$542,541,065</td>
<td>$648,550,195</td>
<td>$775,764,980</td>
<td>$819,853,000</td>
</tr>
</tbody>
</table>

*Investments and Special Funds and Deferred Charges.
**Deferred Credits, Capital Account, General and Appropriated Earned Surplus.

50
G-E ENGINEERING backs all of these products for aircraft

Quality aviation components made by General Electric insure top speed, maneuverability, and firepower. The list below is indicative of the complete line of reliable aircraft equipment which G.E. produces.

Aerial camera drives
Afterburner fuel pumps
Airborne ordnance
Aircraft energizers
Air-turbine drives
Amplidyne
Amplistats
Autopilots and flight-stabilizing equipment
Ballasts
Capacitors
Circuit breakers
Control
Electric starters for jet engines
Electronic and communication systems
Engine control systems
Gas-turbine starters
Generator control systems
Generators
Heaters
Hydraulic constant-speed drives
Instruments
Jet-engine ignition system
Motors
Propeller control devices
Rectifiers
Relays
Selsyns
Servo systems
Switches
Transformer-rectifiers
Transformers
Turbohydraulic pumps
Turbojet engines
Turbochargers

For further information, call your G-E aviation specialist or write Section 640-364D, General Electric Company, Schenectady 5, N. Y.

Progress Is Our Most Important Product

GENERAL ELECTRIC
The AIRCRAFT YEAR BOOK

PASSENGER MILES, MAIL, EXPRESS AND FREIGHT TON-MILES

U. S. Domestic and American Flag Carriers

(Source: Air Transport Association)

<table>
<thead>
<tr>
<th>Year</th>
<th>Total Passenger Miles (000)</th>
<th>Domestic Passenger Load Factor</th>
<th>Air Mail Ton Miles</th>
<th>Express Ton Miles</th>
<th>Freight Ton Miles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1941</td>
<td>1,384,733</td>
<td>59.13</td>
<td>13,118,014</td>
<td>15,636,811</td>
<td></td>
</tr>
<tr>
<td>1942</td>
<td>1,417,526</td>
<td>72.21</td>
<td>21,166,024</td>
<td>5,258,551</td>
<td></td>
</tr>
<tr>
<td>1943</td>
<td>1,634,135</td>
<td>88.00</td>
<td>36,068,309</td>
<td>11,901,793</td>
<td></td>
</tr>
<tr>
<td>1944</td>
<td>2,264,495</td>
<td>89.38</td>
<td>51,145,402</td>
<td>17,762,932</td>
<td></td>
</tr>
<tr>
<td>1945</td>
<td>3,362,456</td>
<td>88.12</td>
<td>65,100,133</td>
<td>22,196,852</td>
<td>1,350,048</td>
</tr>
<tr>
<td>1946</td>
<td>5,947,956</td>
<td>78.71</td>
<td>32,922,122</td>
<td>23,788,392</td>
<td>14,822,325</td>
</tr>
<tr>
<td>1947</td>
<td>6,105,879</td>
<td>65.12</td>
<td>33,089,696</td>
<td>28,766,659</td>
<td>35,911,554</td>
</tr>
<tr>
<td>1948</td>
<td>5,981,063</td>
<td>57.59</td>
<td>37,925,396</td>
<td>30,092,833</td>
<td>71,233,727</td>
</tr>
<tr>
<td>1949</td>
<td>6,744,425</td>
<td>57.78</td>
<td>41,418,156</td>
<td>27,773,669</td>
<td>92,057,219</td>
</tr>
<tr>
<td>1950</td>
<td>8,002,792</td>
<td>61.25</td>
<td>47,008,947</td>
<td>37,279,635</td>
<td>114,072,045</td>
</tr>
<tr>
<td>1951</td>
<td>10,566,139</td>
<td>67.87</td>
<td>63,848,333</td>
<td>41,268,219</td>
<td>102,336,646</td>
</tr>
<tr>
<td>1952</td>
<td>12,528,318</td>
<td>65.60</td>
<td>69,261,570</td>
<td>41,324,396</td>
<td>119,501,666</td>
</tr>
<tr>
<td>1953</td>
<td>14,760,283</td>
<td>63.43</td>
<td>72,783,329</td>
<td>43,470,629</td>
<td>134,459,989</td>
</tr>
</tbody>
</table>

INTERNATIONAL:

<table>
<thead>
<tr>
<th>Year</th>
<th>Total Passenger Miles (000)</th>
<th>Domestic Passenger Load Factor</th>
<th>Air Mail Ton Miles</th>
<th>Express Ton Miles</th>
<th>Freight Ton Miles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1949</td>
<td>2,053,989</td>
<td>56.67</td>
<td>19,365,769</td>
<td>49,443,623</td>
<td>6,714,414</td>
</tr>
<tr>
<td>1950</td>
<td>2,206,423</td>
<td>59.66</td>
<td>21,188,090</td>
<td>44,501,521</td>
<td>16,049,809</td>
</tr>
<tr>
<td>1951</td>
<td>2,599,915</td>
<td>59.98</td>
<td>21,970,111</td>
<td>44,512,759</td>
<td>68,566,689</td>
</tr>
<tr>
<td>1952</td>
<td>3,019,860</td>
<td>62.28</td>
<td>27,713,051</td>
<td></td>
<td>72,627,275</td>
</tr>
<tr>
<td>1953</td>
<td>3,381,124</td>
<td>61.90</td>
<td>30,838,373</td>
<td></td>
<td>74,643,683</td>
</tr>
</tbody>
</table>

1 Includes Trunks, Local Service and Territorial Carriers.

U. S. AIR CARRIER OPERATING REVENUES

Domestic and International

(Source: Air Transport Association)

<table>
<thead>
<tr>
<th>Year</th>
<th>Passenger Revenues % of Total</th>
<th>Mail Revenues % of Total</th>
<th>Express & Freight % of Total</th>
<th>Other Revenues % of Total</th>
<th>Total Revenues % of Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1943</td>
<td>87,481,456 71.06%</td>
<td>24,212,580 19.67%</td>
<td>8,381,539 6.81%</td>
<td>3,029,390 2.46%</td>
<td>123,104,965 100.00%</td>
</tr>
<tr>
<td>1944</td>
<td>116,440,690 72.36%</td>
<td>33,317,399 20.70%</td>
<td>8,396,288 5.16%</td>
<td>2,663,848 1.78%</td>
<td>160,928,225 100.00%</td>
</tr>
<tr>
<td>1945</td>
<td>166,519,923 77.59%</td>
<td>33,557,040 15.63%</td>
<td>10,835,140 5.05%</td>
<td>3,694,562 1.73%</td>
<td>214,606,665 100.00%</td>
</tr>
<tr>
<td>1946</td>
<td>275,593,712 86.88%</td>
<td>21,953,759 6.92%</td>
<td>15,620,295 4.29%</td>
<td>6,037,245 1.91%</td>
<td>291,256,011 100.00%</td>
</tr>
<tr>
<td>1947</td>
<td>308,375,954 84.58%</td>
<td>29,444,746 8.07%</td>
<td>19,377,949 5.31%</td>
<td>7,440,928 2.40%</td>
<td>364,339,577 100.00%</td>
</tr>
<tr>
<td>1948</td>
<td>343,289,730 79.05%</td>
<td>59,309,343 13.66%</td>
<td>24,372,395 5.61%</td>
<td>7,323,916 1.68%</td>
<td>434,295,384 100.00%</td>
</tr>
<tr>
<td>1949</td>
<td>385,509,049 78.69%</td>
<td>68,569,538 18.39%</td>
<td>26,928,631 5.50%</td>
<td>8,923,223 1.82%</td>
<td>489,930,441 100.00%</td>
</tr>
<tr>
<td>1950</td>
<td>443,852,000 79.66%</td>
<td>63,772,233 11.45%</td>
<td>35,109,399 6.30%</td>
<td>14,428,708 2.59%</td>
<td>557,162,340 100.00%</td>
</tr>
<tr>
<td>1951</td>
<td>591,186,365 84.17%</td>
<td>57,421,687 8.18%</td>
<td>36,914,107 5.26%</td>
<td>16,842,347 2.39%</td>
<td>702,345,506 100.00%</td>
</tr>
<tr>
<td>1952</td>
<td>695,456,000 85.16%</td>
<td>57,854,060 7.09%</td>
<td>42,828,000 5.24%</td>
<td>20,501,000 2.51%</td>
<td>516,639,000 100.00%</td>
</tr>
<tr>
<td>1953</td>
<td>808,359,000 85.59%</td>
<td>61,937,066 6.62%</td>
<td>47,373,000 5.11%</td>
<td>21,294,000 2.28%</td>
<td>934,877,000 100.00%</td>
</tr>
</tbody>
</table>

Domestic Lines include Trunks, Territorial and Local Service.
America's first jet transport

This is America's first jet transport, pictured on the historic occasion of its first flight. When it lifted off the runway outside Boeing's Renton, Washington, plant, in July, 1954, it marked a milestone in the field of aerial transportation in this country.

The airplane you see is a prototype model, built to carry forward flight test work and to demonstrate the advantages of its advanced design. Faster than any previous transport by more than 100 m.p.h., it can span the continent in five hours, the Atlantic in seven. In a tanker version, the new Boeing will be able to accompany jet bombers and fighters on their missions and refuel them in flight at their most efficient speeds and altitudes. And as a military transport, it will provide a supply line geared to the speed requirements of all-jet military operations.

The new jet—to be known as the Stratotanker in its military configuration, and as the Stratoliner in its commercial version—is continuing intensive flight tests at Seattle. These tests enable Boeing to prove out all details of the design, systems and installations. The experience gained in building and test-flying the prototype makes possible delivery of a better production model, at a much earlier date than would be possible without such experience. The Air Force has ordered the tanker version of the airplane into production.

America's first jet transport is backed by Boeing's unequalled experience in the field of large, multi-jet aircraft. It is backed, too, by Boeing's 38-year history of designing and building advanced aircraft of remarkable performance and dependability.
The AIRCRAFT YEAR BOOK

PLANES IN USE

Domestic Airlines

(Source: Air Transport Association)

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>1944</th>
<th>1945</th>
<th>1946</th>
<th>1947</th>
<th>1948</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beechcraft</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>247-D</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SA-307B</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>377</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Convair 240</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Douglas</th>
<th>2</th>
<th>1949</th>
<th>1950</th>
<th>1951</th>
<th>1952</th>
<th>1953</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC-2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC-3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DST</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC-4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC-6</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lockheed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electra</td>
<td>2</td>
<td>1949</td>
<td>1950</td>
<td>1951</td>
<td>1952</td>
<td>1953</td>
</tr>
<tr>
<td>Lodestar</td>
<td>2</td>
<td>1949</td>
<td>1950</td>
<td>1951</td>
<td>1952</td>
<td>1953</td>
</tr>
<tr>
<td>Constellation</td>
<td>4</td>
<td>1949</td>
<td>1950</td>
<td>1951</td>
<td>1952</td>
<td>1953</td>
</tr>
<tr>
<td>Sikorsky S-38</td>
<td>2</td>
<td>1949</td>
<td>1950</td>
<td>1951</td>
<td>1952</td>
<td>1953</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stinson</th>
<th>2</th>
<th>1949</th>
<th>1950</th>
<th>1951</th>
<th>1952</th>
<th>1953</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Motor</td>
<td>1</td>
<td>1949</td>
<td>1950</td>
<td>1951</td>
<td>1952</td>
<td>1953</td>
</tr>
<tr>
<td>Tri-Motor</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waco</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Martin 202</td>
<td>2</td>
<td>1949</td>
<td>1950</td>
<td>1951</td>
<td>1952</td>
<td>1953</td>
</tr>
<tr>
<td>404</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Curtiss C-46</td>
<td>2</td>
<td>1949</td>
<td>1950</td>
<td>1951</td>
<td>1952</td>
<td>1953</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Beechcraft</th>
<th>2</th>
<th>1949</th>
<th>1950</th>
<th>1951</th>
<th>1952</th>
<th>1953</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boeing</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>247-D</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SA-307B</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>377</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Convair 240</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Douglas</th>
<th>2</th>
<th>1949</th>
<th>1950</th>
<th>1951</th>
<th>1952</th>
<th>1953</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC-2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC-3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DST</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC-4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC-6</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lockheed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electra</td>
<td>2</td>
<td>1949</td>
<td>1950</td>
<td>1951</td>
<td>1952</td>
<td>1953</td>
</tr>
<tr>
<td>Lodestar</td>
<td>2</td>
<td>1949</td>
<td>1950</td>
<td>1951</td>
<td>1952</td>
<td>1953</td>
</tr>
<tr>
<td>Constellation</td>
<td>4</td>
<td>1949</td>
<td>1950</td>
<td>1951</td>
<td>1952</td>
<td>1953</td>
</tr>
<tr>
<td>Sikorsky S-38</td>
<td>2</td>
<td>1949</td>
<td>1950</td>
<td>1951</td>
<td>1952</td>
<td>1953</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stinson</th>
<th>2</th>
<th>1949</th>
<th>1950</th>
<th>1951</th>
<th>1952</th>
<th>1953</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Motor</td>
<td>1</td>
<td>1949</td>
<td>1950</td>
<td>1951</td>
<td>1952</td>
<td>1953</td>
</tr>
<tr>
<td>Tri-Motor</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waco</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Martin 202</td>
<td>2</td>
<td>1949</td>
<td>1950</td>
<td>1951</td>
<td>1952</td>
<td>1953</td>
</tr>
<tr>
<td>404</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Curtiss C-46</td>
<td>2</td>
<td>1949</td>
<td>1950</td>
<td>1951</td>
<td>1952</td>
<td>1953</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Beechcraft</th>
<th>2</th>
<th>1949</th>
<th>1950</th>
<th>1951</th>
<th>1952</th>
<th>1953</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boeing</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>247-D</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SA-307B</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>377</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Convair 240</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Douglas</th>
<th>2</th>
<th>1949</th>
<th>1950</th>
<th>1951</th>
<th>1952</th>
<th>1953</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC-2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC-3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DST</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC-4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC-6</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lockheed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electra</td>
<td>2</td>
<td>1949</td>
<td>1950</td>
<td>1951</td>
<td>1952</td>
<td>1953</td>
</tr>
<tr>
<td>Lodestar</td>
<td>2</td>
<td>1949</td>
<td>1950</td>
<td>1951</td>
<td>1952</td>
<td>1953</td>
</tr>
<tr>
<td>Constellation</td>
<td>4</td>
<td>1949</td>
<td>1950</td>
<td>1951</td>
<td>1952</td>
<td>1953</td>
</tr>
<tr>
<td>Sikorsky S-38</td>
<td>2</td>
<td>1949</td>
<td>1950</td>
<td>1951</td>
<td>1952</td>
<td>1953</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stinson</th>
<th>2</th>
<th>1949</th>
<th>1950</th>
<th>1951</th>
<th>1952</th>
<th>1953</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Motor</td>
<td>1</td>
<td>1949</td>
<td>1950</td>
<td>1951</td>
<td>1952</td>
<td>1953</td>
</tr>
<tr>
<td>Tri-Motor</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waco</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Martin 202</td>
<td>2</td>
<td>1949</td>
<td>1950</td>
<td>1951</td>
<td>1952</td>
<td>1953</td>
</tr>
<tr>
<td>404</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Curtiss C-46</td>
<td>2</td>
<td>1949</td>
<td>1950</td>
<td>1951</td>
<td>1952</td>
<td>1953</td>
</tr>
</tbody>
</table>

54
A PORTFOLIO OF AVIATION ADVERTISING IN 1954
Naval Aviators...THE PUNCH OF THE AIR ARM

You can have no career more rewarding
or challenging than modern aviation. Ask the man
who wears "Navy Wings of Gold."
He's one of the few men today whose career is as unlimited
and dynamic as the jet planes he flies.
The weapons systems devised by the Navy and the
aircraft industry are always ready to aid in the defense
of our nation. And any aggressor knows that these weapons
are triggered by a very special kind of men—our
naval aviators...born, like aviation itself, in America.

You may qualify to wear
"Navy Wings of Gold"
Apply today at:
Any Naval Air Station
or Navy Recruiting Station
Land-based or water-based,
Convair aircraft and missiles
are engineered for the maximum,
the Nth degree of air power...
Engineering to the Nth Power

CONVAIL
A DIVISION OF
GENERAL DYNAMICS CORPORATION

CONVAIL'S XF2Y SEA-DART

A PORTFOLIO OF AVIATION ADVERTISING 1954
Airmen...
the key to Air Power

GUIDED MISSILES AND ROBOTS ARE THEIR WEAPONS . . . NOT THEIR SUCCESSORS

The U.S. Air Force is keeping its promise to American youth. Military aviation today is a front row seat for the greatest frontier of adventure ever known. Skies more black than blue . . . globe-roaming range . . . speeds that leave both sound and time behind!

The airmen and officers who volunteer and stay with the Air Force develop the skills and moral fiber that make them — as much as their equipment — the key to air superiority.

For these men of the Air Force, and those yet to come, Convair is developing and producing the trainers, transports, fighters, bombers, and missiles.

There's a career for you — in Air Force Blue. You may qualify. Apply today.

Write to:
Aviation Cadet, Headquarters United States Air Force
Washington 25, D.C.
An air attack on America at any time is a grave possibility. And the target in the filter center "action indicator ring" could be your city ... dependent on Air Force interceptors like Convair's delta wing F-102's to destroy a (1) high (H), multi-engine (M), enemy bomber reported approaching on an unerring track (9).

Lend a hand for your own defense. Serve with the Ground Observer Corps at local observation posts or filter centers.
In a class by themselves... IN CONVAIR T-29 "FLYING CLASSROOMS"

USAF Air Observer cadets are getting a big lift from Convair's famous T-29 "Flying Classrooms." These multi-place military aircrew trainers are helping to teach the ABC's of air power where it counts the most... aloft!

Latest version of the T-29 is the "D"—a combination navigation-bombardment school to train students in all phases of radar, optical bombing, and navigation with the same type of equipment installed in combat aircraft.

The T-29 series, like all Convair aircraft, is the result of engineering that aims at the maximum of air power.

CONVAIR
A DIVISION OF GENERAL DYNAMICS CORPORATION

MORE THAN 500 TWIN-ENGINE PLANES BASED ON THE CONVAIR DESIGN ARE ALREADY IN MILITARY AND COMMERCIAL SERVICE!

CONVAIR-LINER, world's most popular passenger plane.
Choice of 30 airlines.

T-59D, pressurized "Flying Classroom.
Navigation-bombardier specialist trainer.

C-131A, Convair.
"Flying Sampanion" now in service as air evacuation transport.

C-131D, still another version of the Convair used as an electronic equipment test bed.

ENGINEERING TO THE NTH POWER

A PORTFOLIO OF AVIATION ADVERTISING 1954
Convair builds the world's most advanced aircraft through...

Engineering to the Nth power

NAVY'S XFY-1 TAKES OFF AND LANDS ON A DIME

Here's a new kind of aircraft for America's aviation arsenal...the Convair XFY-1, a vertical takeoff, delta wing Navy fighter. Powered by a turbojet engine, it is one of the world's fastest propeller driven planes. The XFY-1 is as responsive as a hummingbird over a rose bud. It rises nose-up like a guided missile...flies like a fighter at speeds beyond 500 mph...hovers motionless...darts forward, and sideways...backs down on its tail to a feather-light landing.

This remarkable aeronautical achievement is another result of Convair's engineering for the maximum degree of performance...the Nth degree of air power...

Engineering to the Nth power

CONVAIR
A DIVISION OF GENERAL DYNAMICS CORPORATION
No passenger planes out-perform those built in the U.S.A. Measured by accepted standards—dependability, speed, comfort, safety, economy of operation and maintenance—American-made air transports are the backbone of world aviation. Almost every major airline in the world flies one or more types of U.S. passenger planes.

In military aviation, too, America's airliners are serving best. Versions of every modern type are a part of the Military Air Transport Service, ready for any national emergency. When even better passenger planes are built, it will be done in America—where aviation was born. This advertisement is published in the interest of America's aircraft industry and its customer airlines by ConvaIR, A DIVISION OF GENERAL DYNAMICS CORPORATION.
Convair... first choice all over the world!

Thirty airlines have chosen CONVAIR fleets for your air travel comfort and speed. Ask your favorite airline or travel agent to make your next flight a Convair... world's most popular passenger plane!

More airlines have chosen Convair than any other modern passenger plane, and as a transport-trainer for the U.S. Air Force, the Convair is setting new records for versatility and performance... another evidence of Convair's ENGINEERING TO THE Nth POWER.

CONVAIR

A DIVISION OF GENERAL DYNAMICS CORPORATION

A PORTFOLIO OF AVIATION ADVERTISING 1954
AVIATION EVENTS 1954

A pictorial review of some of the outstanding events in aviation during 1954.
NEW PLANES

VERTICAL FLIGHT

Convair's XFY-1 and Lockheed's XFV-1 proved that vertical flight could be built into conventional airframe designs.
Advanced flight concepts were featured in planes that made news during the year.

BOEING 707

The Boeing 707, America’s first jet transport, was built as a $15-million dollar private venture and is being used as a demonstrator for military tanker-transport and commercial airline service.
CONVAIR YF-102
1954 saw production of the delta wing YF-102, the Air Force’s first all weather supersonic interceptor.

NORTH AMERICAN F-86F
First trans-sonic trainer, the North American F-86F, unveiled in 1954, is a two-seat trainer version of the famed Sabre Jet and is designed for advanced pilot training in high speed flight.
MISSILES

Highlighting an outstanding year in flight, missiles went on active duty as part of the nation's defenses.

MARTIN MATADOR

Early in 1954, following statement by Secretary of State Dulles on "massive retaliatory power to deter aggression," B-61 Martin Matadors, first pilotless bomber used by the United States, were sent to Germany to boost NATO defenses.
DOUGLAS NIKE

Here at home, the Department of Defense announced the Douglas Nike has been deployed as a first line of defense in case of air attack.
SPERRY SPARROW
For defense at sea the Sperry Sparrow, Navy's air-to-air production guided missile, travels as supersonic speeds but is light and compact enough to be carried in multiple units by fighter type jet aircraft.

CONVAIR TERRIER
For surface-to-air missile projection the Navy in '54 had a production model in the Convair Terrier, a supersonic missile developed by Applied Physics Laboratory of Johns Hopkins University.
SENSITIVE GYROSCOPE

In mass production during 1954 was the HIG gyroscope—described as the most sensitive airborne instrument ever built—developed by Minneapolis-Honeywell for Air Force use in automatic flight control systems and supersonic and pilotless aircraft.

MAGNETIC AMPLIFIER

Early in the year the Westinghouse Corporation produced an aircraft alternator voltage regulator extending the sensitivity of magnetic amplifiers. The regulator has no moving parts, no electronic tubes, glow tubes, or hot wire devices.
During 1954 developments in electronics served as pacesetters for even more outstanding achievements in every phase of flight.

MEGAWATT KLYSTRON
In mid-1954 AR&DC and the Sperry Gyroscope Company announced the Megawatt Klystron, a giant electron tube which breaks the electron barrier and paves the way for super radars reaching far beyond present limits.
AIRBORNE RADAR

In addition, radar was successfully used in transports as shown by the co-pilot aboard a DC-3 checking out the Bendix RD-1 airborne radar system.

AIRBORNE NAVIGATION SYSTEM

Further, an airborne dead reckoning navigation system used as a ground position indicator was produced by the Ford Instrument Company. This computer set is a complete navigation system which continuously determines and indicates present position, in latitude and longitude, from input data obtained from instruments solely within the aircraft.
1954 was a higher and faster year, with new records set in nearly every phase of flight.

ALTITUDE RECORD FOR PILOTED PLANE
Major Arthur (Kit) Murray piloted the Bell X1-A to 83,235 feet to set a new world’s altitude record for a piloted plane.
HIGH ALTITUDE
PARACHUTE JUMPS
Record high for altitude jumps were made by Captain Edward G. Sperry and 1st Lt. Henry, who parachuted to safety from a height of 45,200 feet.

ROCKET ALTITUDE
Off to a new world's record in May, the Navy's Viking II climbed from its launching stand at White Sands New Mexico at 4,300 mph to a height of 158 miles.
HELIÇOPTER SPEED AND ALTITUDE

The Sikorsky XH-39 set a helicopter speed record of 156.005 mph over a 3 kilometer course. World’s altitude record for helicopters of 24,500 feet (unofficial) was established on October 17.
NATIONAL AIR SHOW

Republic F-84F Thunderstreaks set a new speed record for the Bendix Trophy classic this year, achieving an average speed for the 1900 mile course of 616.208 mph. Pictured above is F-84 Thunderjet predecessor of the F-84 Thunderstreak.

POLAR FLIGHT

Late in the year a Douglas DC6-B, with Pratt and Whitney engines made the first scheduled commercial flight across the pole.
AWARDS

In recognition of contributions to aviation many awards were given. Among the outstanding:

COLLIER TROPHY

The Collier Trophy for “outstanding achievement in aviation” for 1954 was awarded to James H. (Dutch) Kindelberger for the North American land based F-100 and to Edward Heinemann for the Douglas F-4D by President Eisenhower at the White House on December 17.

AVIATION MAN OF THE YEAR

To traveling Secretary of State John Foster Dulles went the Air Force Association’s Man of the Year award.

WRIGHT BROTHERS MEMORIAL TROPHY

“For public service of enduring value to aviation in the United States”—the Wright Memorial Trophy was presented to Dr. Theodore von Karman.
THE FRANK G. BREWER TROPHY
To Doctor John H. Furbay "for contributing most to the development of air youth in the field of education and training."

OCTAVE CHANUTE TROPHY
Award of the Octave Chanute Trophy went to George E. Cooper, NACA research pilot of the Ames Aeronautical Laboratory.

FLIGHT SAFETY FOUNDATION AWARD
Lt. Col. John Stapp, Director of Holloman Air Development Center, received the Flight Safety Foundation Award for his work with rocket sleds. Late in the year, he set a world land speed record of 632 mph.

DANIEL GUGGENHEIM AWARD
The Daniel Guggenheim gold medal was awarded to Honorable Clarence Howe, Canadian Minister of Trade and Commerce and Defense.

HARMON TROPHY
The 1954 Harmon International Trophy was jointly awarded to Jacqueline Cockran and Major Charles E. (Chuck) Yeager for their "most outstanding contributions to the science of flying."
CHAPTER ONE

The Industry

AIRLINES IN 1954 SURPASSED both Pullman and steamship traffic for the first time in history, the long-awaited military recognition of aviation as the first line of defense became a reality, and jet planes, particularly in the military, became production-line realities. Supplementing these aviation achievements was marked progress in the production and use of utility planes, especially by businessmen, a tremendous expansion in rocketry and guided missile development and manufacture, and marked growth in production and use of helicopters. Combined, these made the year one of the most significant in terms of solid progress in the history of the industry.

By year-end, aviation was unrivaled as the nation’s largest manufacturing employer, and rivalled only in its growth by the spectacular expansion of electronics in aviation.

Almost without exception, individual companies either expanded their activities or branched out into the numerous new fields of development and production offered by the jet age. Although security currently masks much of this progress, indications are that the year, when the complete story can be told, was one of the outstanding, if not the most productive, in both jet engine and flight progress. Certainly, scores of planes in production turned in record performances, and other scores, still in the experimental stage, showed signs of making future aviation history of great significance.

An alphabetical account of individual company achievements during the year appears on the following pages.
AIRCRAFT MANUFACTURERS

Aero Design and Engineering Co.

As one of the younger companies of the aircraft manufacturing industry, Aero Design and Engineering Company firmly established itself in 1954 with the announcement in June of the Aero Commander. The Aero Commander 560 superseded the first production model, the Aero Commander 520; 150 of the 520 models came off the assembly line before the start of production of the 560.

Production was established at about six and a half planes per month and year-end totals showed over 200 Commanders produced since the beginning of the manufacturing operations in 1951. The Commander first attracted attention in the aviation world when it made its 1,160-mile single engine flight from Oklahoma City to Washington, D.C. The entire flight including take-off and landing was made under full load conditions with the left propeller completely removed.

The dollar sales volume was expected to exceed 5-million dollars in 1954. The company employs approximately 450 people. Plans are being developed for a new manufacturing facility which will have a floor space of approximately 40,000 square feet. After the completion of this facility, a slight rise is anticipated in the employment figure.

Also announced by the company was the establishment of a Research and Development Center which was to be located at Norman, Oklahoma, near the Aeronautical Engineering Department of the University of Oklahoma. This Center has been established to look into the future of the market, to continue the development of present design and investigate the possibility of other projects.

Aero Commanders are now operating in Brazil, Ecuador, Canada, Mexico, Japan, Philippines, Korea and Europe. All Commanders in operation in Europe and the Far East were flown across the North Atlantic to their destination.

Avco Manufacturing Corp.

Avco enlarged its role as an aviation manufacturer of engines and precision parts and products during 1954, through increased activity by its Lycoming Division and Crosley and Bendix Home Appliances Division. Aircraft production encompassed both civilian and military products and final assemblies as well as components.

Lycoming announced that it was working on two classified contracts on gas turbine engines for the United States Air Force under the direction of Dr. Anselm Franz, vice president of turbine engineering. (See Lycoming under Engine section.)

Avco's Crosley and Bendix Home Appliance Division expanded its defense work at plants in Cincinnati, Ohio; Richmond, Indiana and Nashville, Tennessee. Chief among the material for the Air Force produced at these plants are electronic-mechanical fire control devices and wing components for fighters, bombers and transport planes.
THE INDUSTRY

Beech Aircraft Corp.

Four Beechcraft models achieved new popularity and greater sales during 1954 as Beech Aircraft Corporation engaged in the production of aircraft for both the military and a growing commercial market.

This year was the second year for the production of the Beechcraft T-34 Mentor for the United States Air Force. On June 17, the Navy announced the selection of the T-34 military trainer as the new primary trainer for Naval Aviation.

February, 1954, saw the first deliveries in quantity of the T-34 to a foreign country when twelve of the new planes were flown 6,000 miles south to Chile from Beech Field in Wichita. Their pilots were Chileans who had been checked out in the planes in Wichita, and the flight was believed to be the largest mass flight of planes to be made from the United States to South America since World War II. Thirteen more T-34's were flown to Chile in March.

The Republic of Colombia followed Chile's purchase of the Beechcraft T-34 with an initial order in October, 1953, and a contract for ten more in April.

An agreement with Fuji Heavy Industries, Tokyo, to build the Mentor in a plant in Japan was announced in November, 1953, and the Japanese planes, designed by Beechcraft, began to roll off the assembly lines there in 1954. In April, 1954, another agreement was announced, this time with the government of Canada.

Other Beechcraft planes also were chosen by foreign governments during 1954. The Chilean Navy chose versions of the Beechcraft Model 18 twin-engine trainer-transport as the first planes to be purchased for the new air arm of the Chilean Navy. The planes were delivered to Chilean Naval officers in ceremonies at Beech Field in September, 1954. Model 18's also went into service in many other countries throughout the year.

The company also continued rebuilding Beechcraft Model 18's for the Air Force throughout 1954, making new C-45H trainer-transports from older C-45, AT-7, and AT-11 models which had been built during World War II.

One other military plane emerged from Beechcraft production lines during the year, this one for the United States Army. The Ground Forces received delivery of a sizable quantity of L-23 twin-engine liaison and utility planes during the year, which promptly went into service in many areas throughout the world.

Other military projects included flaps and ailerons for the Republic F-84F Thunderstreak for General Motors in Kansas City, Kansas, and components for the F-101 Voodoo jet fighter for McDonnell Aircraft in St. Louis.

During the year, the company also made fuel tanks under contract from the United States Air Force, and contracted for extensive production of two different jet-engine starters, the C-26 and the MD-3 generators, both designed by Beech.

During 1954, a special emphasis was put on production of commercial
aircraft. The year began auspiciously with a million-dollar “Plane-O-Rama” at the Beechcraft plant, at which three new commercial models were introduced. Beechcraft distributors from throughout the country saw a display of a million dollars’ worth of airplanes, all arrayed under spotlights in the new Beechcraft Plant III in Wichita.

In 1954, for the first time, the Beechcraft Bonanza could be purchased with either the standard E-185-11 Continental engine or the more powerful E-225-8 engine.

The new Model B50 Twin-Bonanza was introduced as a six-place twin-engine high-performance commercial airplane in full production after five years of extensive testing during which time the company had devoted almost total effort to military responsibilities.

The “Plane-O-Rama” also introduced the new Super-18·Beechcraft, a re-designed and re-engineered plane based on the Model 18 twin-engine executive transport. The new plane made its first flight in December, 1953, was introduced in January, 1954, and first deliveries were made in August, 1954.

The Super 18 includes a 550-pound increase in gross weight and is better than the Model 18 in every phase of performance. The cruising speed has been increased to 215 miles per hour, top speed is 234 miles per hour, the range has been increased to a maximum of 1455 miles, and many new design and comfort features have been included.

Sales of all three commercial models boomed throughout the year. Production of the Bonanza was increased early in the year from one a day to one-and-a-half a day and the production of the Twin-Bonanza was established at the rapid rate of 13 per month, which enabled the company to produce and deliver more than 100 of these models by the middle of October.

The company announced in September its entry into the field of guided missiles. Dr. James F. Reagan, formerly chief engineer for Radioplane, Inc., San Diego, was brought to Beechcraft as the head of a new guided missile division in the engineering department.

Bell Aircraft Corp.

Continued diversification, both within the defense structure and in the commercial field, keynoted Bell Aircraft Corporation activity during 1954. In line with this diversification policy, Bell purchased two new companies, engaged in unrelated commercial activity, bringing to five its wholly-owned subsidiaries.

Early in 1954, the company obtained the common stock of the American Wheelabrator and Equipment Corporation, of Mishawaka, Ind., manufacturer of abrasive blasting equipment, fume and dust control equipment and abrasives.

Tied in closely with Bell activity in the military and commercial servomechanisms field was the firm’s purchase of the Hydraulic Research and Manufacturing Company, of Burbank, Calif., achieved through an exchange of stock.
Bell X-1A and X-1B supersonic twins

Hydraulic Research manufactures small, lightweight, high-pressure hydraulic valves principally for aircraft application in landing gear systems, control circuits and brakes. Sales for the last three years have exceeded $1-million annually.

Other Bell subsidiaries are The W. J. Schoenberger Co., of Cleveland, O., the Bell Aircraft Supply Corporation, Glendale, Calif., and the Erie Insurance Company, Des Moines, Iowa.

Bell Aircraft military and commercial aircraft continued to make aviation news throughout 1954.

One of these was the Bell X-1A, which established a new altitude record over Edwards Air Force Base, California. Already the world’s fastest airplane (1,650 miles an hour on December 12, 1953), the rocket-powered research airplane, according to the aviation press, topped 90,000 feet with Major Arthur “Kit” Murray at the controls. This figure was not confirmed by the U. S. Air Force, but it was acknowledged that the airplane exceeded the previous record of 83,235 feet.

Although the X-1A is the fifth in the X-1 series Bell has produced for the Air Force, it is essentially the same airplane which first smashed through the sonic barrier in 1946.

Main difference is that the X-1A is nearly five feet longer, and has increased propellant tank capacity and carries a turbine pump to force-feed the propellants, an alcohol-water mixture and liquid oxygen.

Full-powered flight for the X-1A is approximately four minutes with all four rocket chambers in use. Each develops 1,500 pounds thrust and the engine consumes about one ton of propellants under full power.

Major Charles E. Yeager, who gained fame with the X-1 as the world’s first supersonic pilot, earned recognition during the year for the X-1A speed record of 1,650 miles an hour. Yeager was awarded the Distinguished
Service Medal and was chosen as the aviator-recipient of the Harmon International Award. The latter was presented by President Eisenhower on November 17 at the White House.

Delivery of the X-1B, sistership of the X-1A, to Edwards Air Force Base in October gave the Air Force a set of supersonic twins for its continuing high-speed, high-altitude research program.

Although details were lacking, it was disclosed that the airplane had been flight tested at the base. Identical except for instrumentation, the X-1B will permit acceleration of the increasingly important study of the aerodynamic effects of supersonic flights at high altitude.

Bell Aircraft also continued its research, development and production in the rotary-wing field.

Largest of its military helicopter products, the HSL-1, tandem-rotored Navy sub-killer, underwent exhaustive evaluation tests at the Navy's Patuxent River, Md., flight test center.

First of these aircraft to be delivered was flown 1,465 miles cross-country to the Maryland base from Bell Aircraft's Fort Worth helicopter plant without incident. This flight was described as the longest twin-rotor helicopter delivery flight on record.

The HSL incorporates a Bell-developed helicopter autopilot, first of its kind, which permits it to hover motionless for long periods during enemy submarine search, relieving the pilot of the fatiguing flight chore.

During 1954, the Navy disclosed that the HSL is equipped with the latest dipping sonar for submarine detection and is armed with lightweight homing weapons for destruction of the undersea craft.

In its present configuration, the HSL carries four crewmen, a pilot, co-pilot and two sonar operators. It has a flight endurance of nearly four hours.

Two new commercial versions of the established Bell Model 47 helicopter, military counterparts of which are used by all the services, were announced by the company during the year.

One of these, the Model 47H, is a deluxe version of the famous Model 47G, now in use throughout the world. The latest model can accommodate two passengers and a pilot in an automobile-type seat five feet wide. Interior appointments include leather upholstery throughout and a leather-covered instrument console to the left of the pilot.

Second of the deluxe commercial models announced by the company was the 47J, which earlier had been designated the 47G-1. This helicopter carries four persons, including the pilot, and has a similarly richly-appointed interior. One of its principal features is quick utility change. Passenger seats can be removed to allow for the installation of two litters for transporting wounded or injured, as well as a medical attendant. A trap door in the floor can be raised in the standard passenger configuration to permit use of an electrically-powered hoist for rescue of persons in otherwise inaccessible places. It is equipped with a 260 horsepower Lycoming 0-435 engine.

Production of both models was scheduled for early 1955.
Combining the helicopter and conventional airplane utility, a convertiplane also was approaching flight status at year-end. Designated earlier in the year as the XV-3, the Bell development incorporates tiltable rotors at each wing tip.

Bell Aircraft continued to strengthen its position in the field of guided missiles throughout the year and the U. S. Air Force disclosed for the first time that the company had developed and was building the XB-63 Rascal missile. (See Guided Missiles Chapter.)

In the sub-contracting field, the company was awarded a contract to produce jet-engine nacelles for the Boeing B-52. It was expected that the firm's nine Niagara Frontier Division facilities eventually would be involved in servicing this contract, although additional employment was not anticipated.

Bell will build both the inboard and outboard nacelles, each of which will contain two jet engines. Output will be delivered to Boeing's Seattle, Washington plant.

At year's end, Bell Aircraft had more than 40 major contracts and was servicing nearly 20 customers, some of them among the largest aircraft manufacturers in the country.

During the year floor space in the firm's Niagara Frontier Division climbed to 2,219,083 square feet and the Texas Division in and near Fort Worth, Texas, had increased to 679,422 square feet. Bell also had other operations at Holloman Air Development Center, N. M.; Edwards Air Force Base, California; Washington, D. C.; and Dayton, Ohio.

Total employment reached a postwar high of 17,725, with 14,075 in the Niagara Frontier Division, which has its headquarters at the Niagara Falls, N. Y., airport.

Helicopter development and production at Bell's Texas Division moved into a new phase during 1954 with emphasis on commercial business. Sales of the Model 47G, three-place utility machine, were 20 percent higher than the previous year.

In addition, the division unveiled two new commercial models, the 47H and the 47J. The H is a streamlined, deluxe version of the 47G and is designed for the executive and passenger market. The Model 47J is a four-place utility machine which features a new powerplant, the Lycoming 0-435-VI (250 hp). Like the 47H, the J has a custom interior for its passenger configuration. Noise level in both of the new models is greatly reduced.

Highlighting the military effort of the division during 1954 was the acceptance by the U. S. Navy of its first production HSL-1 and the subsequent delivery of additional production machines. The HSL-1 is a tandem-rotor craft designed specifically for anti-submarine work and is equipped with the latest type dipping sonar for submarine detection.

A Bell-designed automatic pilot for use in conjunction with HSL submarine detection equipment was announced during 1954. This device provides for fully automatic hovering of the HSL in relation to a submerged sonar ball.
Construction of Bell’s XV-3 convertiplane prototype was nearing completion at year-end. Wind tunnel tests of the XV-3 scale model indicated that conversion of the tilting rotors will be possible in any flight attitude.

In the field of research and development, the division revealed preliminary design data on a flying wing helicopter. This design is basically a thick wing in which pilot and passenger seating, engines and fuel supply are completely contained. Side-by-side rotors are located at either tip of the wing.

The division maintained an employment level of approximately 3,800 throughout the year; occupied 320,762 square feet of space in the Fort Worth area; recorded a backlog in excess of $200-million and sales exceeding $17-million to September 1; and expended nearly $180,000 for construction of additional office and heliport space, test facilities and plant improvements.

Bellanca Aircraft Corp.

Bellanca Aircraft Corporation was engaged largely in sub-contract work during 1954. Major components were manufactured for the C-119, C-123, P5M, HUP25, and other aircraft. A large number of radar components were also manufactured. The company developed and produced the XM-24 Sonic Speed Aerial Tow Target, which was undergoing evaluation by Army Ordnance at year-end. Extensive research was conducted on reinforced plastics, drones, and guided missiles.

Boeing Airplane Co.

Rollout and flight of four history-making airplanes—the 707 jet tanker-transport, the production model of the B-52 series, the 500th C-97 Stratofreighter, and the 1,000th Wichita-built B-47 Stratojet—were the major events for Boeing Airplane Company during 1954.

On May 14, the 707, America’s first jet transport, came out the door of the Boeing plant at Renton, Wash., and on July 15, “Tex” Johnston, Boeing chief of flight test, took the four-engined, sweptwing plane into the air for the first time. Within a matter of days the airplane had been flown at an altitude of more than 42,000 feet and at speeds exceeding 550 miles per hour as an intensive flight test program was inaugurated. Three weeks after the maiden flight the Air Force announced that a limited number of tanker versions of the new Boeing would be purchased, and would be designated KC-135.

Later, the plane averaged 636 miles per hour on a point-to-point 13-minute flight from Seattle to Portland, Ore.

The 707 prototype is essentially a military model, complete with two large cargo doors and provisions for installation of cargo tie-downs and aerial refueling equipment. Plans also called for the airplane to be demonstrated to commercial airlines. It represents a private investment by Boeing of more than $15-million.

The KC-135 configuration, an advanced version of the 707, will make possible greater range, striking power and mobility for the Air Force’s present and future jet air fleets. With a cruising speed in the 550 mile-per-
hour class, bettering by some 100 per hour the fastest jet transport yet built, the new plane as a commercial airliner will be capable of regular transcontinental flights in less than five hours, and non-stop New York-to-London service of less than seven hours. Depending on range and payload requirements, the new Boeing will carry from 80 to 130 passengers, cruising at an optimum operational altitude between 30,000 and 40,000 feet. The KC-135 will be called Stratotanker, with the commercial version named Stratoliner.

In the B-52 field, while flight testing of the two prototypes continued, the first of the production airplanes, a B-52A, came out of the factory at Seattle on March 18 and took to the air for the first time on August 5. The company's Wichita, Kans., Division continued to tool up toward second-source B-52 production. Plans also were announced during the year for construction of a $10-million flight test facility for the B-52 program at Larson Air Force Base, Moses Lake, Wash., with operations scheduled to start early in 1955.

The B-52 production airplane differs from its two experimental predecessors in having side-by-side seating for pilot and co-pilot instead of the tandem arrangement in the "X" and "Y" ships. In addition, the B-52A is about three feet longer, giving it an overall length of 156 feet.

The B-52's eight Pratt & Whitney engines are mounted in pairs on sharply-raked-forward pods under the thin, high-speed wing. The main landing gear units retract into wheel wells in the body.

At Renton, the 500th airplane of the Stratofreighter series came out the door on February 8, and at the same time it was revealed that new cost-saving and production records for four-engine heavy transport aircraft had been set by Boeing in its C-97 program. Production of the double-deck, 350-mile-an-hour C-97's had been on schedule for a total of 54 consecutive months with but one break in December, 1950, when the production quota was missed by a single airplane.

In world-wide use by Strategic Air Command and Military Air Transport Service, the Boeing Stratofreighters are now the standard USAF aerial refueling tankers.

Since Boeing delivered the first production type Stratofreighter, a C-97A in July, 1949, production costs continually were reduced.

The KC-97G of 1954 benefited from more than 300 improvements incorporated in the airplane through its 11 models, with the gross weight raised from the original 120,000 pounds of the XC-97 to 175,000 pounds for the KC-97G.

Boeing also revealed during the year that a saving to the government of almost $4.5-million had been realized on a KC-97 contract recently completed. This was made possible through increased manufacturing efficiency, which under the USAF fixed price-incentive type of contract resulted in substantial savings to the government and additional profit to the manufacturer.

October 14 saw the 1,000th Wichita-built B-47 roll out of the Kansas plant, marking the 34th consecutive month of on-schedule production. It
made its appearance just seven years, one month and two days after the original XB-47 came out of the Boeing plant, thus establishing the largest single production program in aviation history.

Stratojet No. 1,000 was a B-47E which was powered by six General Electric J47 engines developing 6,000 pounds of thrust as compared with the 5,800 pounds of thrust provided by engines on the preceding model. Two other available power increases were announced during 1954: one, a new collar-type rocket rack mounted beneath the fuselage has positions for 33 ATO (assisted takeoff) units of 1,000 pounds of thrust each and can be dropped from the plane after power is expended; the other, installation of a water injection system in the J47 engines, providing a 17 percent increase of available power when needed.

Still another B-47 innovation revealed during the year was the installation of Pratt & Whitney J57 engines in the outboard pods of two Stratojets for accelerated high altitude engine testing. The specially-equipped medium bombers are being used as part of the B-52 test program.

RB-47E Stratojets accompanied the standard B-47E's off the Wichita production line during 1954. Boeing's Wichita Division also has under way an 18-month modification program, bringing older Stratojets scientifically up to date.

A new Boeing gas turbine engine, combining the advantage of greater power and more economy over its predecessor, was announced in June. Designated the Model 502-10, the engine is a development of the Model 502-2 which powers a variety of vehicles, aircraft, boats, pumps, compressors and generators. The new engine produces a maximum of 270 horsepower with a normal rated power of 240 horsepower, an increase of 65 horsepower over the earlier type. Fuel consumption, meanwhile, was reduced by 25 percent. The 502-10 weighs only 245 pounds dry, or 320 pounds complete with lubricating oil, accessories, engine mounts and oil cooler.

Boeing's new $5.8-million flight test hangar was in full operation early in the year. With a length of 785 feet, width of 200 feet and a height equal to that of a seven-story building, the hangar can comfortably house five B-52's and will be able to accommodate airplanes of the future with wingspans up to 300 feet.

Boeing moved into a new electronics building in Seattle early in the year, while at Wichita a new two-story cafeteria-engineering building served to meet expanding needs there. Also at Seattle, construction was started in mid-year on a $1.5-million B-52 pre-flight facility on Boeing Field, and later in the year on a new material handling building measuring 600 by 484 feet.

In the field of missiles Boeing continued in the development of its Bomarc F-99 pilotless interceptor while an engineering study of the application of nuclear energy to aircraft also was continued.

The company's total employment at year-end was more than 65,000. In the research field, practical designs were developed for jet engine reverse thrust devices to enable jet transports, bombers and fighters to
THE INDUSTRY

Rollout of first production Boeing B-52

operate from the majority of existing airports. The devices are designed to divert the tremendous power of jet engines so that it is easily, quickly and safely made available for braking purposes once the airplane's wheels have touched down on a runway.

With more and more titanium being used in aircraft production, Boeing's engineering process unit developed two processes. One process inhibits scale formation while the other converts normal scale to a form which later permits more convenient removal.

Laminated glass blades were installed in Boeing's transonic test facility at Seattle. Seventy-two blades are used, 36 to a stage, in the tunnel's two-stage fan. Made of laminated glass cloth measuring .014 of an inch thick for each layer, the thickness of the blades tapers from 56 laminations at the root to eight at the tip. When set in the fan the tips of the three-foot plastic foam-filled blades describe a 24-foot diameter circle and rotate at a maximum of 480 revolutions per minute.

Cessna Aircraft Co.

Completion of tooling, first flight and acceptance by the U.S. Air Force of the T-37 as the Air Force's official jet trainer was the outstanding event for Cessna Aircraft Company during 1954. This side-by-side jet trainer emphasizes the new look for training command in preparing Air Force pilots for first line fighter jets. The seating arrangement will simplify jet training by utilizing visual as well as oral instruction.

During the year, Cessna built and sold 1171 commercial airplanes, totalling more than $12-million. Cessna also produced 198 military airplanes during 1954, for a total of 1369 airplanes.

The year brought the phasing-out of the L-19 Bird Dog, and receipt of an IRAN contract (Inspection, Repair as Necessary) which is intended to condition the aircraft for continued field use. Within the contractual life of the L-19, Cessna built and delivered 2480 of these airplanes.
First production deliveries on Cessna's twin model 310 were made also in 1954. By early 1955, the production rate was expected to be one model per working day.

The company continued with its production record of delivery on or ahead of schedule on all military sub and prime contracts. Military subcontracts were being accomplished for Boeing Airplane Company, Lockheed Aircraft Company, and for Buick, Oldsmobile, Pontiac division of General Motors on the F84-F. At year-end the backlog was about $35-million.

At the Cessna Prospect Plant work progressed on the CH-1 helicopter. Cessna's hydraulic division showed a sales increase over the previous year. A climb from a total sales volume of $2-million in 1953 to $2.25-million in 1954 was a 12½ percent sales increase.

During 1954, the Research and Development department devoted a greater portion of its time to research on boundary layer control with respect to fixed wing application. The flying article known as the 319A is Cessna's experimental BLC aircraft. With the system used on the 319A which consists of two high speed axial flow fans actuated by hydraulically operated motors, the article has developed a lift coefficient as high as 4.0.

Work was accomplished also on a turbo engine installation known as the XL-19C. The power plant is a Continental Artoust 210-1 weighing 266 pounds and developing 280 hp on take-off.

A large subcontract was received in 1954 from the Boeing Airplane Company for the B-52 stabilizer assembly. Work was well under way on the installation of new jigs.

An improved version of the combat-proved L-19 made its first flight during the year in the form of the OE-2. Designed with specific missions in mind, the OE-2 has a top speed of over 180 mph, yet is capable of operating from as small, unimproved fields as did the L-19. The OE-2 is powered with a Continental super-charged 265 hp engine. The original contract calls out 25 OE-2's which will go to the Marine Corps.

Chance Vought Aircraft, Inc.

Chance Vought Aircraft, Incorporated, one of the oldest airframe producers in the aircraft industry, became a completely independent corporation July 1, 1954, completing a cycle that began 37 years earlier when Chance Milton Vought founded the company in Long Island City, New York, in 1917.

Previously a division of United Aircraft Corporation, East Hartford, Connecticut, since 1939, the common stock of Chance Vought was distributed by United Aircraft on July 1, 1954, and now Chance Vought has no legal or corporate connection with United.

All officers of United resigned from Chance Vought's board of directors and the board now consists of five Texas business men and four of Chance Vought's officers. F. O. Detweiler, formerly general manager of the division, became president at the time the new corporation was formed and C. J. McCarthy, formerly vice-president of United Aircraft Corpora-
Cessna enters helicopter field with CH-1

tion, resigned to become chairman of the board of directors of Chance Vought Aircraft, Incorporated.

The spin-off found Chance Vought engaged in an important new project, the XF8U-1, a high-performance Navy day fighter for which the company won a design competition in 1953, and in production of the F7U-3 Cutlass and Regulus guided missile.

The F7U-3, a twin-jet fighter aircraft in the more-than-650-miles-an-hour class, was built and delivered to the Navy in quantity during 1954, with large numbers of the craft reaching the Fleet.

The F7U-3 is the successor to the F7U-1 Cutlass, the first sweptback-wing fighter to fly from a Navy aircraft carrier and the first U. S. fighter designed from its inception to incorporate jet-engine afterburners.

The Regulus guided missile, designed and produced for the Navy, is a surface-to-surface missile capable of being launched from ships, submarines and shore bases. The Regulus is highly versatile, one of its versions being equipped with landing gear to permit recovery after a test mission. Test missiles have been flown and landed repeatedly, some as many as 15 times, and offer an economical method of training Navy personnel in the use of this complex and important weapon.

In announcing the existence of the XF8U-1 day fighter, the Navy stated that "details of the new jet fighter are being withheld until it is in operation, but it will have higher performance than previous Navy day fighters. The design chosen was considered by the Navy fighter design and evaluation experts to be the best suited for Navy requirements from designs submitted by eight aircraft manufacturers."

In addition to being a substantial prime contractor for the Navy, the company manufactures components for the Boeing B-47 Air Force jet bomber and for the Lockheed P2V long-range Navy patrol bomber.

Chance Vought occupies 2,300,000 square feet of floor space at the Naval Industrial Reserve Aircraft Plant, Dallas, Texas, under a lease with
the United States Government. Since occupying the Dallas facility in 1948, the company has made substantial expenditures for manufacturing and engineering equipment, including extensive machine shop equipment, tool-manufacturing machines, engine-test equipment, a fully equipped foundry and other auxiliary manufacturing equipment.

In addition to the company-owned equipment, Chance Vought has financed substantial improvements to the leasehold which have greatly increased the capacity of the plant, including an engineering building and a production hangar, the costs of which already have been amortized.

The total of all such expenditures, including improvements to leased property, amounted to approximately $14,000,000 during a six-year period. Chance Vought expected to complete early in 1955 a $900,000 low-speed wind tunnel as an additional improvement.

Since the beginning of the Korean emergency in 1950, the Navy has made available for expansion the sums of $12,540,740 for additional machine-tool equipment and $9,562,270 for new construction as part of the defense buildup of the Naval Industrial Reserve Aircraft Plant facility. Of these amounts, approximately $7-million has been expended for machine tools and equipment. Approximately $7.4-million has been expended for new construction, the major items being a warehouse and manufacturing building, a structures-test building, and a missile installation and test hangar.

The plant population during 1954 stood at approximately 14,500, slightly under the peak employment total in World War II. The company's payroll averaged more than $1,000,000 a week. Sales for the six months period ended June 30 amounted to $77,666,640 on aircraft, guided missiles, parts and services, and the company had a backlog of unfilled orders, including letters of intent, of more than $280,000,000.

Approximately 250 employees are stationed in California, in connection with Regulus testing operations, while an engineering facility in Boston, Massachusetts, established in 1953 as the result of a survey which indicated that engineers were available in that area, employs another 250 persons. Chance Vought's engineering force includes approximately 1,700 trained engineers.

Convair

A Division of General Dynamics Corp.

Merger of Consolidated Vultee Aircraft Corporation into General Dynamics Corporation; the first free vertical-to-horizontal-to-vertical flight of the world's first vertical takeoff fighter; official Navy announcement of successful employment of Navy's new anti-aircraft weapon, the supersonic Terrier guided missile; first flight of the world's first turboprop seaplane transport; initial flight of America's first twin-engine turboprop military transport; first supersonic flight of a seaplane; official announcement that the world's first known supersonic bomber is in production in America; and continued high output of commercial transports and military trainers highlighted 1954 development, production and management activities of Convair.
THE INDUSTRY

With the filing of formal documents on April 30, 1954, Convair, a Division of General Dynamics Corporation, came into being. With the merger, Convair retained its name, identity, and organizational structure, and began functioning as an operating division of General Dynamics Corporation. Gen. Joseph T. McNarney, USAF (Ret.), continued as president of Convair and also became a senior vice president of General Dynamics.

First free vertical flight of the Navy XFY-1 delta-wing vertical takeoff turboprop fighter, built at Convair-San Diego, occurred August 1, 1954, at Moffett Naval Air Station, California, following a series of vertical flights in a tethering rig. The revolutionary fighter made its first transitional flight—rising vertically, leveling off at 175 feet into horizontal flight, and backing down to land vertically—on November 2, 1954, at Brown Field Naval Auxiliary Air Station, near San Diego.

The world’s first turboprop seaplane transport, the Navy R3Y-1 Tradewind, made its first flight off San Diego Bay February 25, 1954, while its assault transport counterpart, the Navy R3Y-2, first flew from the Bay October 22, 1954.

First flight of America’s first twin-engine turboprop military transport, the Air Force C-131C, was made from Convair-Fort Worth on May 20, 1954.

In October, the Air Force announced that it had ordered an undisclosed number of B-58 supersonic bombers—first of the type ordered in this country—to be built by Convair-Fort Worth.

At Convair-San Diego, nearly 70 Convair-Liner 340 commercial transports were built during 1954 while production of Air Force T-29 navigator-bombardier trainers reached a peak toward the end of the year.

Meanwhile, at Pomona, Calif., in a new government-owned plant, Convair was engaged in a comprehensive program of research, development and production of Terrier guided missiles for the U. S. Navy Bureau of Ordnance. This includes weapons, systems analysis and the preliminary design of new and improved guided missiles systems.

On November 12, Navy announced that in the air defense phase of the Atlantic Fleet’s largest postwar exercise, Lantflex 1-55, the 37-year-old converted battleship USS Mississippi successfully employed Navy’s Terrier.

The Terrier, capable of being fired from either shipboard or ground stations, has completed its test program which began in the spring of 1952 at Naval Ordnance test station, Inyokern, Calif.

This slim, needle-nosed missile is designed to intercept aircraft at much longer ranges and higher altitudes than conventional anti-aircraft weapons under any conditions of visibility. Because of the high percentage of successful flights in the Terrier’s test program, almost all launchings against target drone aircraft have been made by dummy missiles that did not carry explosive war-heads. The dummy signals a kill by releasing a puff of smoke near the target plane. Even without war-heads, the missile has smashed several targets by direct collision.

The Terrier is the result of joint Navy Bureau of Ordnance, Convair and Johns Hopkins University Applied Physics Laboratory Development
The AIRCRAFT YEAR BOOK

program. Production is being carried on by Convair at its Pomona plant.

Production continued at Fort Worth on B-36J models throughout the first eight months of 1954. The J version differs from earlier B-36s in that its maximum gross weight is more than 400,000 pounds as compared with 358,000 pounds for earlier models. B-36 output ended in August, but all of the Strategic Air Command's fleets of B-36s will be rotated through Convair-Fort Worth every two years for modernization, inspection and maintenance.

Convair-Fort Worth also had begun work late in 1954 under an Air Force contract to modify an undisclosed number of RB-36 reconnaissance bombers into carriers for Republic RF-84 reconnaissance fighters in Project Ficon, wherein the parasite fighter can be launched and retrieved by the mother bomber while in flight.

Flight testing of two Air Force C-131C turboprop transports was being handled by Convair-Fort Worth crews. In March, the Texas plant was awarded a subcontract to build an undisclosed quantity of tail fins and outboard wing assemblies for the Boeing B-52 bomber. Fort Worth plant employment on October 10, 1954, totaled about 17,500.

Convair-San Diego maintained a high level of production during 1954. Approximately 70 Convair-Liner 340s were delivered; late in the year they were being produced at a rate of six per month.

Besides building the 340s for commercial and foreign carriers, the San Diego plant was producing two versions of the transport for the Air Force, the C-131D and C-131B.

Production of Air Force T-29 Flying Classrooms accelerated during the year, reaching a peak toward the end of 1954.

Engineering flight testing of the Air Force's first supersonic delta-wing all-weather interceptor, the F-102, was underway at the Air Force Flight Test Center, Edwards Air Force Base, California. Production flying of the plane was being accomplished at Palmdale, Calif., where Convair had begun negotiations to build a $2.5-million facility for handling the F-102 program.

Convair-San Diego continued flight test programs for both the Navy R3Y-1 Tradewind turboprop seaplane transport and the R3Y-2 turboprop assault seaplane. For assault operations, the R3Y-2 lands in offshore waters, taxis to the beach, opens its bow door upward, drops a ramp and debarks loaded vehicles or troops onto the beach. Upon leaving, the pilot reverses the propellers and the plane backs away and takes off. The multipurpose R3Y-2 can carry 24 tons of cargo, on the main cargo deck of extruded magnesium which is 88 feet long and more than 9 feet wide. The 80-ton bow-loader is designed to handle four 155mm. howitzers, three 2½-ton trucks, six jeeps, two half-tracks or other types of military equipment. Bow door opening is 8 feet 4 inches wide and 6 feet 8 inches high. The transport can be fitted with 102 demountable rearward-facing seats for normal transport operations. It can also carry 92 litters and 12 attendants if the plane is needed for air evacuation purposes.

Development of the Navy XF2Y-1 and YF2Y-1 Sea-Dart delta-wing jet seaplane fighters continued off San Diego Bay during 1954. Test pro-
grams included supersonic flights in shallow dives and rough-water landing and takeoff tests on the open ocean. The Sea-Dart utilizes retractable hydro-skis for improved rough-water landing and takeoff performance.

Convair's XFY-1 vertical takeoff turboprop fighter was tested early in 1954. The delta-wing XFY-1 takes off and lands vertically, but it flies horizontally at speeds exceeding 500 miles per hour. It is designed to operate from the decks of ships at sea and on land where no runways are available. Tactically, the plane can protect ships at sea from enemy air attacks or provide close air support to ground troops.

Powered by a General Motors Allison YT40-14 5850-horsepower turboprop engine turning a six-bladed contra-rotating Curtiss-Wright propeller, the XFY-1 was first tested in a tethering rig in a 184-foot airship hangar at Moffett Naval Air Station, California.

The plane was removed in September from Moffett to Brown Field, where on November 2, Convair Test Pilot J. F. Coleman pulled the craft up vertically, leveled off for its first horizontal flight, lasting 21 minutes, and returned to base, landing vertically.

Convair-San Diego, in addition to its aircraft projects for commercial and military customers, also was at work during 1954 on a number of restricted programs, including development of guided missiles and electronic systems, and advanced-type aircraft.

At year-end Convair-San Diego employment totaled around 21,000.

The net income of General Dynamics for the 9-month period ending Sept. 30 totaled $12,392,834 after Canadian and United States taxes, as against $9,377,061 for the like period in 1953.

Research and development programs in support of long-range planning policies continued during 1954 at the four plants of Convair: San Diego and Pomona, Calif., and Fort Worth and Daingerfield, Tex.

At Pomona, Convair was engaged in a program of research and development, as well as production, of guided missiles for the U. S. Navy's Bureau of Ordnance including weapons, systems analysis and the preliminary design of new and improved guided missiles' systems. These projects
were being performed in the new Naval Industrial Reserve Ordnance Plant (NIROP) facilities operated by Convair under Bureau of Ordnance contract.

Convair's Daingerfield plant, otherwise known as the Ordnance Aero-physics Laboratory, continued operating in 1954 for the U. S. Navy Bureau of Ordnance under the technical direction of The Johns Hopkins University Applied Physics Laboratory. OAL was principally engaged in development and testing supersonic ramjet-powered guided missiles for the Navy's Bumblebee program.

The Laboratory comprises essentially a supersonic wind tunnel, two sea-level ramjet engine test cells, a high-altitude engine test cell, and the necessary supporting groups, including shops, electronics and instrumentation, photographic, facility and design, and accounting.

Among facility and instrumentation developments at the Laboratory were the design and development of equipment to indicate and record test data and to calculate corrected coefficients and data from the supersonic wind tunnel and ramjet engine tests while the tests are in progress. The basic data include force, moment and pressures. Considerable progress was noted in the techniques of visual observation of flow patterns around models in a supersonic wind tunnel, including color Schlieren, vapor screen and shadowgraphs.

Plans were announced during 1954 for Convair-San Diego to construct the first model seaplane towing basin on the West Coast, a 700-foot hydrodynamic laboratory with four units—two 300-foot towing basins, a 100-foot square turning basin, and an office structure.

Construction of a $100,000 data reduction laboratory at San Diego started in October. Completed during the year was a $250,000 test facility atop Point Loma, San Diego, for a project of restricted category. A major structure is a steel tower covered with aluminum sheeting on three sides. Other portions of the facility include two sheds and a horizontal testing fixture for vibration and air-pressure tests.

A large solar furnace was put into operation in 1954 at San Diego for the study of various metals and ceramic materials in connection with research projects.

It was announced during 1954 that more than a thousand engineers and technicians would be added to the plant's Engineering Department within a year. Four hundred of the new personnel were to be electronics engineers and technicians assigned to long-range projects under development for the armed services.

Aircraft research projects at San Diego included water-based types for the Navy, supersonic types for the Air Force, and turboprop transports for commercial operation. In connection with classified projects, wind tunnel studies were conducted in the San Diego laboratory; the Southern California Cooperative tunnel, Pasadena; the Naval Ordnance Laboratory, Silver Spring, Md.; and NACA's supersonic tunnel at Langley Field, Va.

Flight research studies were conducted with the Navy's R3Y-1 and R3Y-2 turboprop seaplane, the Navy XF2Y-1 and YF2Y-1 delta-wing jet
seaplane fighters, the Air Force F-102 delta-wing supersonic all-weather interceptor, and the Navy XFY-1 vertical takeoff turboprop fighter.

Placed in operation in 1954 at Convair-Fort Worth was a small U. S. Air Force low-power reactor, used as a source of radiation for engineering test purposes in connection with Convair's development of nuclear aircraft.

A 750-ton capacity press was built for the Fort Worth plant to be used in stretching and twisting sheets of metal into airframe parts, thus saving much costly tooling. It is designed to handle 3/8-inch aluminum alloy stock or its equivalent.

Three titanium projects were concluded at Fort Worth during the year. The first called for use of alloy titanium to replace stainless parts in two B-36 jet pods. The other programs were concerned with replacing chrome-molybdenum and stainless steel with commercially pure titanium in B-36 engine nacelles.

Increased emphasis was placed on the importance of electronics in the research development and production of aircraft and guided missiles during 1954 in the four plants of Convair.

Electronics activity was stepped up, including initial production of the Charactron special-purpose cathode ray tube; the establishment of a pilot assembly line to study latest electronic production techniques; work in the fields of airborne mapping radar, radar homing, and long-range tracking and guidance; and the formulation of electronic and control equipment required in designing and developing overall weapons systems.

Electronic activity at Pomona was associated with Convair's research, development and production of Terrier guided missiles for the U. S. Navy, Bureau of Ordnance. At Daingerfield, considerable electronics activity was involved in the development of instrumentation for the testing of missiles and ramjet engines.

Production of the special-purpose cathode ray tube, the Charactron, began during 1954 and was scheduled to reach 30 units a month by early 1955.

In San Diego, where 400 of the 1,000 new engineers expected to be hired were scheduled for assignment as electronics engineers and technicians on long-range projects for the armed services, the Engineering Department's electronics laboratory set up a pilot assembly line to study the latest production techniques for assembling electronic systems for which Convair holds contracts.

Also at San Diego, where a large portion of electronics activity was in the areas of airborne mapping radar, radar homing, and long-range tracking and guidance, the largest effort was expanded in the mapping radar field. Work was under way on six radar projects, some essentially research devices, others advanced to the point of limited production. A study was initiated to establish the configuration of a compact bombing computer to use with these radar systems.

A large portion of the electronics activity at Convair-Fort Worth was directed toward systems engineering, a specialized type of engineering effort accomplished through the aerophysics section of the Engineering Depart-
ment. This section was directing the formulation of electronic and control equipment required in designing and developing overall weapons systems.

As an adjunct to this activity, the aerophysics section operated a modern computing laboratory which handled digital- and analog-type problems. An IBM 701 electronic data processing machine is used for digital solutions. Selected combinations of REAC and Electronic Associates analog equipment operating through a single console are used for problems requiring an analog solution. The digital computer is used extensively to solve problems whereby a large number of variables is introduced and special emphasis placed on obtaining results of a dynamic nature.

Douglas Aircraft Co.

With a balanced production program including both new and established models of airplanes and guided missiles, Douglas Aircraft company enjoyed one of its most successful years in 1954.

Manufacturing activity, number of personnel and plant area all were expanded during the year to meet increasing delivery requirements. Major production effort was directed toward the manufacture of twelve models of airplanes and three types of missiles.

Two of the airplanes in full production for the military services made their first flights in 1954. They were the swept-wing, twin-jet RB-66 developed for the Air Force and the Navy's compact A4D Skyhawk, the nation's smallest atom bomber.

Douglas also continued production of three major commercial transport aircraft on the flexible assembly line of its Santa Monica Division. These were the DC-6A Liftmaster cargo plane, the DC-6B passenger liner and the newer, faster DC-7 series of airliners. Military versions of the Liftmaster also rolled from the same multiple-tooled assembly line.

At the company's Long Beach Division, where the RB-66 and B-66 light bombers were being produced in quantity, manufacture of the huge C-124 Globemaster transports continued for the Air Force.

Four separate models took wing from the Douglas El Segundo Division for the Navy: the new A4D, the record-holding F4D Skyraider jet interceptor, the large A3D Skywarrior and two versions of the propeller-driven AD-Skyraider series. The AD-5 is the "multiplace" plane capable of ship-board conversion for a variety of missions and the AD-6 is the single-place attack bomber. The turbo-propeller powered A2D Skyshark was phased out in 1954.

At Tulsa, Oklahoma, Douglas was producing the Boeing-designed B-47 Stratojet bombers as well as portions of the B-66 series for the Air Force.

Rounding out this diversified production, the Santa Monica plant turned out three major missiles: Nike and Honest John for the Army and Sparrow I for the Navy.

To accomplish this heavy manufacturing assignment, the company employed between 65,000 and 72,000 men and women during the year. This compares with a high of 63,000 for 1953 and represents the largest employment since the peak production of World War II.
Plant area also was expanded by the acquisition of new sites and enlargement of previously-existing facilities to a new post-war high of 13,460,000 square feet of covered area—an increase of nearly 1,260,000 square feet over the previous year.

Most significant expansion was through the lease of a facility bordering the Tucson, Arizona, airport. Assigned to the Long Beach Division as an Air Force facility, the Tucson plant encompasses 197 acres on which there are 20 buildings. Not all of the 900,000 square feet of covered area was employed as the year ended, but tooling was in progress for production of parts of the C-124 and B-66 series. A modern electronics laboratory also was being installed in an air-conditioned, reinforced-concrete structure.

The Tucson plant also will be established as a flight center for production testing of Air Force aircraft.

A new electronics laboratory at Long Beach accounted for more than 30,000 square feet of increased plant area.

A major addition to the El Segundo plant was a $2,000,000 building of advanced design to house the engineering staff, and a three-unit steel assembly building for production of the bantam Skyhawk. The Torrance, (Calif.,) location of the El Segundo Division also was expanded during the year with completion of three-story brick administration building.

Pending acquisition of a new site for construction of a combined production and office addition, the Santa Monica Division leased a number of office, plant and warehouse buildings in the surrounding industrial area.

The increasing role of missiles in the Douglas production program was emphasized during 1954 with the announcement that the company, in conjunction with Western Electric company, will begin production of Nike missiles at Charlotte, North Carolina. Originally an automobile assembly plant and subsequently acquired by the Army for use as a Quartermaster Depot, the 76 acre establishment will be designated the Charlotte Ordnance missile plant. It provides 1,200,000 square feet of floor area for quantity
production of the nation's first combat-ready guided missiles. This will be in addition to production of Nike on the West Coast under the Santa Monica Division.

Two previously classified Douglas missile projects were made public during the year. One is the Honest John long-range artillery rocket, a fearsome surface-to-surface missile capable of delivering either an atomic or conventional high-explosive warhead. The other is the Sparrow I air-to-air guided missile developed in conjunction with the Sperry Gyroscope company for the Navy. Airframes for this supersonic rocket, carried in multiple units on jet aircraft, are also produced at Santa Monica.

In view of the importance of Honest John as a primary military weapon, Douglas is justifiably proud of its quick development. The original proposal for a rocket based on Army Ordnance specifications was submitted by the company in 1950. Detailed design, development and manufacturing was culminated in a successful test-firing program in August, 1951. Further tests of improved rockets resulted in the award of contracts in 1953 for large-scale production of the type of rocket now being delivered to troop units.

New airplanes, flown for the first time in 1954, also captured public attention. The A4D Skyhawk was hailed as a major forward step in the design of lighter, less complicated—and consequently less expensive—airplanes. This tiny bomber, smaller than many operational jet fighters, made its first flight on June 22, just 19 months after engineering had been started.

Six days earlier the RB-66, first in a versatile series of twin-jet light bombers, made its successful maiden flight. This sleek, swept-wing speedster was developed for the Air Force from the basic design of the Navy A3D Skywarrior. The reconnaissance version is equipped to perform high or low altitude missions deep within enemy territory. First of the subsequent bomber versions also was flown before the year ended.

The Long Beach Division, keeping ahead of schedule on its heavy commitments for delivery of giant C-124 Globemasters, also completed the prototype YC-124B. This was an adaptation of the basic Globemaster configuration to utilize four turbo-prop engines which will power a subsequent C-133 logistic support transport. The YC-124B was test flown for the first time on February 3. It is the first four-engine turbo-prop transport developed for the Air Force, and the flight test program demonstrates that aircraft using that type of propulsion are able to lift greater loads over longer ranges at higher speeds than conventional piston-powered cargo carriers.

Production of commercial transports at the Santa Monica Division was highlighted during the year by roll-out of the 500th airliner of the DC-6/7 series. Many of the 27 world airlines which have purchased these famous airplanes participated in the roll-out ceremony on July 23.

Early production was started in 1954 on an advanced, long-range model of the DC-7 series. Labeled the "Seven Seas", the DC-7C will be able to operate at full capacity over its normal range of 5000 miles. This permits
THE INDUSTRY

non-stop operation, in both directions, between principal cities of Europe and the United States.

Because the new model will be able to cruise at 350 miles an hour with a full payload, it will enable airlines to maintain faster long-range schedules than any other commercial transport in existence or production.

Compared with earlier models of the DC-7 series, the “Seven Seas” has ten feet greater wing span and slightly more than three feet longer fuselage.

Standard DC-7s, which inaugurated non-stop transcontinental flight service in both directions near the close of 1953, racked up scores of speed records in the year just passed. These included flights from San Francisco to New York in five hours, 57 minutes; San Francisco to Chicago in four hours, 52 minutes; Santa Monica to Jacksonville, Florida in five and one-half hours; Santa Monica to Miami in five hours, 50 minutes; Los Angeles to Washington, D. C., in five hours, 26 minutes; and New York to Los Angeles in seven hours, seven minutes.

Probably the most important employment of a Douglas commercial transport during the year was in regularly-scheduled trans-polar flights linking the West Coast of the United States with Europe. This service, inaugurated by Scandinavian Airlines System on November 15, is offered with standard over-water versions of the DC-6B airliner.

Sales and deliveries of both commercial and military airplanes were at high levels, making the outlook for continued high earnings for Douglas. Sales of the DC-7 series alone reached 123 transports in 1954, and the backlog of commercial airliners of the DC-6A, DC-6B and DC-7 series insured continuous delivery through the last quarter of 1956.

Net sales at the close of the company’s third quarter were $699.5-million some $67-million above the comparable data on 1953, and the backlog at the close of the calendar year was in excess of $2-billion dollars.

Fairchild Engine and Airplane Corp.

A varied program, ranging from development of a new operations base in Florida to the manufacturing of a new plane alongside the C-119 Flying Boxcar production lines at Hagerstown, Md., highlighted the year for Fairchild Aircraft Division.

Early in 1954, the Division received an official commendation from the United States Air Force for its outstanding record in meeting its military production requirements. Building of the C-119 Flying Boxcars was slowed down by Defense Department production orders, but original contracts continued in effect. Average employment figures approximated 8,250.

A modification center was established on 500 acres of land adjacent to the St. Augustine, Florida, Municipal Airport. It will be used to improve military aircraft.

In July, Fairchild rolled the first production model of the C-123B Avitruc assault transport from the final assembly line. Extensive engineering modifications were made on the C-123 after the Air Force awarded a production contract in October, 1953. Component parts are being manufactured by the Aircraft Division for the Boeing B-52 jet bomber. Vertical
fins and outer wing panels have been built at Hagerstown and transported by special rail flat cars and by air to Boeing's Seattle, Washington plant.

Extensive modification work on Flying Boxcars was also started at Hagerstown. The C-119's have been undergoing revision at the Fairchild plants in an IRAN program.

First C-119 troop and cargo carriers were delivered during the year to the Strategic Air Command and the Air Training Command.

New and improved methods of parachuting men and supplies in combat operations were developed during the year by the Air Force and Airborne infantry divisions using Fairchild C-119's in maneuvers throughout the United States. A series of training problems rehearsed Army Airborne units for the major Exercise Flash Burn—TacAir 54-7 conducted jointly by the Army and the Air Force in April at Ft. Bragg, N. C. More than 100,000 men participated in the maneuvers.

Throughout the year, additional maneuvers were held at Ft. Bragg and at Ft. Campbell, Ky.

Errands of mercy were again booked by C-119's as they airlifted wounded French and Vietnamese forces from Dien Bien Phu and other Indo-China areas. Flying Boxcars were also used to drop thousands of tons of military and medical supplies to the French Nationalist forces throughout Indo-China. C-119's also delivered supplies and medicine to flooded areas of Damascus, Baghdad and Pakistan and at home in Iowa.

Fairchild Engine Division operations for 1954 were highlighted by three important developments: receipt of a development contract from the USAF for a small turbojet engine of an entirely new design; in June, laying of the keel on U.S. Navy's first midget submarine inaugurated construction operations on the first vessel; and the beginning of construction operations for a new main plant and advanced turbine test laboratory at Deer Park, Long Island.

The new turbojet design project is aimed at the development of a lightweight powerplant for target drones and pilotless aircraft.

Construction of Fairchild's new advanced turbine test laboratory is part of a long range propulsion systems development program.

In addition to the laboratory, Fairchild's new main plant will provide approximately 400,000 square feet and will cover approximately 80 acres of the 210-acre site.

Production of the J44 small turbojet powerplants continued for the U.S. Navy and operational use in the major military commands as power for guided missiles and target drones. Guided missile and experimental installations are still held under wraps. However, Fairchild continued production of J44's for U.S. Navy, Ryan-built Q2 Firebee target drones.

Construction also continued on the Fairchild-designed midget submarine for the U.S. Navy.

Productionwise, Fairchild Engine Division continued subcontract manufacturing of turbine wheels, front frame and rear frame assemblies, and nozzle diaphragms for General Electric J47 turbojet engines. It also main-
THE INDUSTRY

tained output of special-purpose, precision-built compressor equipment for the Atomic Energy Commission.

During the year the Fairchild Guided Missiles Division devoted its primary emphasis on the design, development and production of missiles and missile weapons systems for the military services. There was a 25 percent increase in employment in the Division during the year. The Guided Missiles Division also completed a number of missile systems study and evaluation programs for various branches of the military services.

The Division produced both land-based and shipboard radars for use with missile systems. It also manufactured radar simulators. These are used in conjunction with flight simulators and are part of mobile training units designed to simulate jet night fighters for ground training of combat crews.

Further developments were made in the applications of molded reinforced plastics for missile components and to other armament and commercial products. A transistor analyzer designed as a laboratory tool for the evaluation and testing of transistor performance was marketed during 1954.

The Stratos Division during 1954 developed a high capacity airborne refrigeration system which was installed and flown in the X-3 supersonic research airplanes. Other new Stratos refrigeration systems were built for a variety of combat fighters and jet bombers for both the Air Force and the Navy. Stratos also produced the cabin air-conditioning system for the Boeing Model 707.

Fairchild C-123 assault transport
The Division expanded its production of air turbine drives for accessory equipment, adding several new models to its line. It also produced a mechanical fuel proportioner for use in aircraft with multiple tank installations. The proportioner accurately meters the flow from a number of tanks in accordance with pre-established proportions.

During the year, the Speed Control Division of Fairchild developed and produced mechanical, electrical, and hydraulic variable speed drives for general industrial use as well as specialized aircraft and military applications.

Engineering studies were under way by the Division to develop a variable speed drive for use in flight refueling systems to maintain constant tension on the fuel line under various air conditions. Studies were also under way toward adaptation of variable speed transmissions for use in flight simulators.

In the Spring of 1954, the Fairchild Engine and Airplane Corporation acquired the American Helicopter Company, Incorporated. Among the projects under development is the Army XH-26 single-place, pulse-jet helicopter. The XH-26 progressed to the military evaluation stage of development during 1954.

The early success of the pulse-jet-powered XH-26 helicopter stimulated the initiation of development of the MX-1660 project, a three-ton-pay-load pulse-jet-powered helicopter. The complete preliminary design and establishment of certain physical test facilities were accomplished in 1954. The American Helicopter Division operates in three locations: the Division's Administration and Engineering Headquarters are located at Manhattan Beach, California; the Plastics Research Plant is located at Costa Mesa, California; and the third plant is located at Falcon Field, Mesa, Arizona.

Goodyear Aircraft Corp.

During the year, Goodyear Aircraft Corp. enlarged its productive capacities, enlarged its research and development facilities and increased its employment roll and physical capacity.

More than 10,000 employees worked on assignments in the six Akron plants and at the Wingfoot Lake Airship Base. Another 2,000 employees were active at the company’s Goodyear Arizona plant.

A production milestone was reached in May when the Goodyear XZS2G-1 airship, newest addition to the U.S. Navy’s anti-submarine warfare team, was flown for the first time. The craft, a prototype model, is a newly-designed and planned replacement for airships which were used so effectively in anti-submarine warfare service by the Navy during World War II. An undisclosed number of the airships will be built.

Speed of the craft is in excess of all previous K-types. It has an inverted “Y” configuration of three stabilizers and control surfaces on the stern of the ship. Flight controls may be operated manually or by automatic pilot. It is manned by a crew of eight officers and men.
Goodyear X52G-1 planned to replace famed anti-submarine airship

The company is also building for the Navy an undisclosed number of Goodyear ZPG-2 airships, largest nonrigid aircraft in existence, and Goodyear ZSG-4 airships, designed as intermediate search craft.

First production model of the Goodyear ZSG-4 was flown at Wingfoot Lake Airship Base in April.

A world record for sustained flight without refueling of an aircraft under power was established in August by a Goodyear ZPG-2 airship. The craft was flown for 200.2 hours, eclipsing by more than 29 hours the previous record, set in 1946 by a Goodyear-ZPM airship. Flight was made to demonstrate the airship’s potential for extended flight.

Work was completed this year on a radically new and improved winged tow target for aerial gunnery practice at high altitudes. Designed and constructed by Goodyear Aircraft in cooperation with Wright Air Development Center, Dayton, O., of the Air Research and Development Command, the target is being given extensive tests by GAC and U.S. Air Force engineers. The 1400-pound all-metal target, which has a 25-foot wing span, is capable of being towed at speeds in excess of 500 miles per hour.

During the year, production in the airplane wheel and brake, canopy and laminates, vinyl products and metalcraft divisions remained steady. Goodyear also manufactured airframe parts (such as wings and other components) for newest types of military aircraft; radar antennas, radomes, canopies, BONDOLITE (lightweight metal structural material), ducting, crosswind landing gear, artillery carriages, as well as complete aircraft. Of particular significance was the company’s increased work with guided missiles and guided missile systems.

The firm expanded its extensive line of GEDA electronic computing equipment to comprise some 13 items.

Grumman Aircraft Engineering Corp.

The first flight of its latest Navy fighter, the supersonic F9F-9 Tiger; occupation of a new, modern plant for final assembly and flight testing of jet aircraft, and the development and phasing into production of a faster,
more maneuverable Cougar fighter, were the outstanding accomplishments of the Grumman Aircraft Engineering Corporation, during 1954.

Grumman moved its plant for final assembly and flight testing of jet aircraft from Bethpage, Long Island, to less-populated Peconic River. This modern, Navy-built facility was the first to be constructed for jet operation. It has two runways, one 10,000 feet long, and the other, over 7,000 feet.

Here, on August 6, Grumman unveiled its latest Navy jet fighter, the F9F-9 Tiger, a combat airplane which is capable of supersonic speeds in level flight.

The Tiger, designed around the Navy’s concept of a powerful carrier striking force equipped with fast, hard-hitting aircraft with retaliation ability to take the fight to any enemy’s home ground, carries modern armament, including air-to-air and air-to-ground missiles.

The construction of the Tiger was simplified in all possible respects, including manual folding wing tips and the use of one-piece machined aluminum alloy skins for the upper and lower wing sections. The first flight was made in less than 15 months after receipt of the Navy’s Letter of Intent.

The Tiger’s indented fuselage, which is nipped in at the wing roots, is designed to reduce drag at transonic speeds. Powerplant is a Wright J65 Sapphire axial-flow turbojet, rated at 7,200 pounds of thrust, and augmented by an afterburner. Present Tiger contracts exceed $190-million.

On April 1, Grumman’s F9F-6 Cougar, the Navy’s first operational sweptwing jet fighter, set an unofficial coast-to-coast speed record. Taking off from San Diego, and, refueling in midair over Hutchinson, Kansas, three Navy pilots completed their flight to Floyd Bennett Field, Brooklyn, in less than four hours. The first pilot was clocked in three hours, 45 minutes and 30 seconds.

The following week, Grumman announced that an even faster Cougar was being phased into the production line to replace the F9F-6. Designated the F9F-8, the new model’s improved performance was achieved by modifying the leading and trailing edges of the wing and lengthening the fuselage. Grumman engineers saved much time in gathering performance, stability and control data by converting an F9F-6 into an aerodynamic prototype of the new model.

The Cougar’s movable wing slat was replaced with a fixed, cambered, leading edge and the trailing edge was extended, increasing the chord by 15 percent. The resulting relatively thinner wing gave the Cougar added speed, while the larger wing area and cambered leading edge improved its maneuverability and low-speed handling characteristics. Elimination of the hydraulic system in the wings and lengthening of the fuselage made space for additional fuel. Both the F9F-6 and F9F-8 are powered by Pratt and Whitney J48 turbojet engines.

Grumman during 1954 was in production on the Albatross, a utility and rescue plane, used jointly by the United States Air Force (SA-16A), Navy (UF-1) and the Coast Guard (UF-1G). The SA-16A Albatross,
flown by Air Rescue Command pilots, participated in missions of mercy in all parts of the world.

In addition to the Tiger, Cougar and Albatross assembly lines, the company was also in production on the S2F sub-killer. This twin-engine plane was the first aircraft launched from a steam catapult aboard an American aircraft carrier. This took place in June from the deck of the USS Hancock, off San Diego.

Fully equipped with the latest search, destructive and navigational devices, the S2F is capable of performing the two-fold function of hunter and killer, previously accomplished by two planes. Powered by two Wright R-1820 engines of 1425 hp each, the S2F has exceptional single engine performance and can operate from the decks of the smallest carriers in the fleet.

Hiller Helicopters

Hiller Helicopters in 1954 continued as its major production activity the building of H-23B utility helicopters for the U. S. Army, and became a key manufacturer of helicopters for the Army's constantly expanding helicopter program. Commercial Hiller 12-Bs were also manufactured for commercial customers and foreign governments throughout the world.

In October the Hiller 8RJ2B ramjet engine was certificated by the Civil Aeronautics Administration as the first ramjet engine to be certificated in United States aviation history. This engine, certificated for installation on the two-place Hiller Hornet, is also the first CAA approved tip mounted power plant for helicopters.

An additional quantity of two-place Hornets (Army designation H-32, Navy designation HOE-1) was ordered by the government for field evaluation testing as a followup to the initial quantity ordered for evaluation at military test centers.

Additional distributors were added both domestically and in foreign countries to build Hiller worldwide distributorships.

In the field of operations, the U. S. Army continued its program of helicopter familiarization by utilizing H-23s in an ever increasing number of camps and Army posts. The Transportation Corps, as the biggest user of helicopters, also became the agency most interested in their development. National Guard units also obtained H-23 helicopters for training purposes at locations throughout the United States.

Kaman Aircraft Corp.

First flight of the Army-Navy sponsored twin-turborotor helicopter took place at Kaman Aircraft Corporation's plant early in 1954. This ship, a standard HKT-1 helicopter built by Kaman, was modified by installation of two Boeing 502-2 gas turbines in place of the single standard Lycoming O-435 piston engine.

The twin turbines, which together produce 380 horsepower, are mounted side by side in the same location as was the single 240 horsepower piston
engine which they replaced, and their combined weight does not exceed the weight of the single piston engine which originally powered the HTK-1.

During the year, Kaman, under a contract with the Navy's Bureau of Aeronautics, conducted a Rotor Tip Light Study. The tip lights consist of small electric light bulbs housed in transparent plastic covers at the end of each rotor blade. Purpose of the project was to determine the feasibility of the tip lights as an aid to other aircraft during night flights and as an aid in night formation flying of helicopters.

Kellett Aircraft Corp.

During 1954, Kellett continued its rotary wing research and development activities for the Air Force, Bureau of Aeronautics, and Office of Naval Research, as well as its subcontract manufacture of aircraft components for the larger prime contractors. The year saw the successful flight testing of the Model KH-15 helicopter, a small, one-man, rocket-powered craft designed to show the effectiveness of a unique gyroratory stabilizing system considered applicable to helicopters of various sizes and configurations.

Another Navy project dealt with development of a compound helicopter, for which a flying test bed was scheduled for flight testing early in 1955. Additionally, research studies were conducted for the Air Force, relating to rotor blade aero-elastic investigations and the study of a helicopter employing large flapping hinge offsets. Work on the modification of a service-type tandem helicopter was initiated during the latter part of the year.

Lockheed Aircraft Corp.

During 1954 Lockheed Aircraft Corporation introduced eight new aircraft models. Also, the company continued its production of Super Constellations, the Navy's veteran Neptune and the family of Lockheed jets.

New aircraft from Lockheed in 1954:

1. **XFV-1.** Lockheed's vertically rising fighter for the U. S. Navy can take off and fly and return to land from a spot no larger than its wingspan.
2. **F-104.** In late 1954, the U. S. Air Force announced that a contract had been let for quantity production of this day jet fighter. With photographs and drawings of the supersonic craft still unreleased, and all performance data classified, virtually nothing further can be announced about it.
3. **C-130.** Four turboprops producing 15,000 hp give the USAF's new Lockheed transport the boost to carry loads up to 40,000 pounds at high speeds and high altitudes. To be produced at Lockheed's Marietta, Ga., facilities, the C-130 is an assault transport, cargo carrier and hospital ship rolled into one aircraft.
4. **R7V-2.** The Super Constellation took on four big turboprops for the U. S. Navy's use. Capable of cruising 440 mph, making it the fastest propeller-driven transport in the world, the jet-engine-and-propeller powered aircraft will cut cross-continent flight time to six hours. Lockheed
also is building a version of the same aircraft for the Air Force, under the designation C-121F.

5. P2V-7. This is a submarine hunter-killer which can also do duty as a minelayer, torpedo bomber or patrol craft. This newest Neptune has two jet pod engines to supplement its two turbo-compound engines, besides a stinger tail to house MAD gear for its submarine-killing jobs.

6. New jet trainer, U.S. Navy T2V-1, Lockheed's successor to the T-33 has speed and climb equal to many combat jet aircraft.

7. 1049G. Latest in the line of commercial Super Constellations, this new model will have a gross takeoff weight of 137,500 pounds, tip tanks for increased range and provisions for weather radar in its nose. Already ordered by nine airlines, the new 1049G is convertible from a 43-siesta-seat luxury configuration to a 99-passenger coach aircraft with Lockheed's quick-change interior.

8. 1049D. This is the commercial cargo version of the Super Constellation. It can carry an 18-ton load across the Atlantic and cruise at 335 mph. It has 5568 cubic feet of cargo space and an 83-foot-long interior with big, double doors.

Total sales since 1932, under the present management, passed the $5-billion mark during 1954 and sales of jet aircraft and equipment reached $1-billion. Lockheed had produced more than 6,000 jet aircraft at mid-year.

Lockheed in 1954 began an accelerated delivery program which saw a different airline each month receiving new Super Constellation equipment.

On January 1 of this year the company formally launched a Missile Systems Division to consolidate its efforts in the guided missiles field. By October it had more than 1000 employees and covered 350,000 square feet of floor space in its plant at Van Nuys, Calif.

The Missile Systems Division is carrying out an active program of construction and testing of a classified device, plus research and development in the entire field of missile systems. The Lockheed corporation has
allocated $10-million for an intensive research program in the Missile Systems Division.

Lockheed's Georgia Division at Marietta is now building B-47 jet bombers as well as rushing production on another project: the C-130 for the U. S. Air Force.

In the first half of 1954, Georgia Division sales climbed to $111.8-million as compared to $80-million in the first half of the preceding year. The Division received a substantial order for quantities of the C-130 turboprop transports during the third quarter of 1954.

At Lockheed's Burbank facilities, orders were received in late 1954 for the F-104, Super Constellation radar planes for the U. S. Navy (VW-2) and the U. S. Air Force (RC-121D), the P2V-7, additional R7V-1 piston-powered Super Constellations for MATS use as cargo-personnel-evacuation transports, and the company's jet trainers, both T-33 and T2V-1.

A pioneer in the development of integrally stiffened aircraft structures, Lockheed continued to make progress in this field during 1954. Machining of integrally stiffened parts has been made more efficient through the utilization of a new mill process for heavy aluminum plate. Stretcher-leveling puts five percent permanent set before heat treat and two percent set after heat treat before aging. It has all but eliminated the warpage which has been heretofore associated with machined skins. Stub wing panels were stretched on the 8000-ton Birdsboro press and, when subsequently machined, showed vastly improved flatness.

Epoxy resins were introduced to the tooling division. These materials have unusual properties of strength, resilience and stability, and in addition bond firmly to metal. Tools and dies are being made of this new plastic in one-fifth the time formerly required, and they are produced to closer tolerances at one-third the cost.

During 1954 Lockheed engineers continued their research in the application of titanium to aircraft structures. Methods were developed for forming titanium in the Hydro press for simple flanging operations. It was also found that titanium could be readily drop-hammer formed at temperatures from 700 to 900-degrees Fahrenheit. A method was also developed for draw-forming deep-beaded parts for cargo doors. Titanium was introduced into the engine nacelle of the new C-130 turboprop cargo transport.

Lockheed also made advancements in the field of flash-welding. Considerable research work was done with 17-7 PH stainless steel. This material, unlike conventional stainless steel, can be hardened or strengthened by heat-treatment. This factor makes it possible to form complex shapes in the annealed condition and subsequently elevate the strength to high levels.

A significant development in the field of hot forming occurred at Lockheed during 1954 with the application of "Hydrotherm," a high-temperature, heat conducting liquid to the heating of various hot-forming tooling operations. A design has been produced for a hydrotherm heating and pumping unit which can be connected to a tool which has been cast with tubular fluid passages.
The industry

Research was initiated at Lockheed in 1954 to develop a compression-forming method for eliminating the "springback" in metal forming. Results are promising and the work is continuing.

At the end of September, the corporation employment totaled 42,386, including 26,609 in the California Division and corporate offices, 14,827 in the Georgia Division and 950 in Missile Systems Division.

McDonnell Aircraft Corp.

During 1954, McDonnell Aircraft Corporation observed its 15th anniversary year with achievements in engineering research and production development; completion of a $20-million Facilities Program; and a total year-end backlog for fiscal 1954 of $441-million-plus, a large part of which is comprised of Demon and Voodoo orders.

Sales for the fiscal year (ending June 30) were $123,091,691, with earnings after taxes of $3,621,417. Regular dividends of $1.00 per share were continued; $2,918,557 of the fiscal 1954 earnings were retained to continue the growth of the company, and the book value per share increased from $22.66 to $25.87. The capital stock and earnings for growth increased from $15,535,108 to $18,625,065.

Production deliveries on the F3H-1N Demon, a single-jet carrier-based fighter, continued. Designed as a general purpose Navy fighter, the Demon is adaptable to a wide range of combat missions.

The new version Demon, to be designated the F3H-2N, will be powered by a newer, more powerful engine, the J-71. Production deliveries are scheduled through 1955 and 1956.

Blower section of McDonnell wind tunnel
F2H-2, F2H-2P, F2H-3, and F2H-4 Banshees are currently seeing duty with Navy and Marine operational units in the Mediterranean, Atlantic, Pacific, and United States.

In June, a F2H-3 Banshee was the first jet to be launched by steam catapult from an aircraft carrier, the U.S.S. Hancock.

Extensive work has continued on the F-101A Voodoo for the Air Force. This long-range, sweptwing fighter is powered by two J-57 turbojet engines, and is designed to have versatile combat capabilities enabling it to perform a variety of operational missions.

A photo-reconnaissance version of the Voodoo, the RF-101A, is under development.

On October 26, McDonnell announced the receipt of a $38,700,000 contract from the U.S. Navy for development of an advanced experimental all-weather attack fighter type aircraft. This is McDonnell’s first design entrance into the field of this type aircraft.

In the field of helicopter engineering, McDonnell has unveiled the XV-1 Convertiplane. First to utilize the principle of pressure jets and high disc loading, the Convertiplane embodies a completely new conception of flight, known as the “unloaded rotor” principle—a machine equipped with a rotor for vertical flight and wings and propeller for forward flight.

The XV-1 is a joint development of the Wright Air Development Center of the Air Force, the Transportation Corps of the U.S. Army and McDonnell.

The versatility of the Convertiplane will permit studies on its tactical use for observation and reconnaissance, and further research will be made of its design for use as an artillery or tank spotter. Exploration will also be made in the application of the convertiplane principle to larger aircraft.

Research and development work continued on the XHCH-1 cargo unloader helicopter for the Navy. The rotor of the XHCH-1 is also pressure-jet driven, enabling it to carry heavy loads.

In the rapidly growing missile engineering division, research and production activities continued to expand. A current backlog of approximately $12-million in missile work includes ground-to-air, air-to-air, and air-to-ground projects, of which a major one is participation in the development of the Talos missile system.

The missile division is also developing electronic devices, such as automatic fire control and stabilization equipment for fighters as well as automatic guidance systems for missiles.

A four-year $20 million Emergency Facilities Program has virtually been completed at the company, with the exception of the modification of the Southern California Cooperative Wind Tunnel in which the company owns a one-sixth share. This wind tunnel, which will be used for transonic and supersonic speed testing, should be finished in 1955.

The new low speed wind tunnel at McDonnell went into operation during the summer, as did a new manufacturing building addition. In this new factory area, which provides a 502,937 gross square foot increase in leased floor area, a 10,000-ton hydraulic press is being erected.
THE INDUSTRY

These additions give McDonnell 2,585,863 gross square feet of floor area on 312 acres of land, of which 1,556,332 square feet and 267 acres are owned by the company. The integrated plant on Lambert-St. Louis Municipal Airport consists of 2,353,240 gross square feet, with the remaining office, manufacturing, and storage space being leased elsewhere.

The Glenn L. Martin Co.

Highlights in 1954 for Martin Aircraft were the delivery of USAF B-61 Matador pilotless bombers to NATO forces in Germany, and the completion of the prototype XP6M-1 SeaMaster—a multi-jet seaplane built under contract for the Navy. The Matadors, which can be launched from mobile launchers at secret locations, are the first pilotless bombers to be placed in operational use by the United States.

Full-scale production continued on USAF B-57B twin-jet bombers, the Tactical Air Command’s night interdiction light jet bombers which are undergoing testing and training flights with TAC squadrons. Delivery of the first B-57 aircraft to the Twelfth Air Force in Europe also was announced. New versions of the B-57 developed during the year were the RB-57 reconnaissance aircraft, and the B-57C dual control aircraft used for night instrument pilot training.

Early in the fall, Martin delivered the first of its new “T”-tail P5M-2 anti-submarine Marlins to active-duty Navy patrol squadrons. Marlin patrol planes are now in service with Navy squadrons in both Atlantic and Pacific fleets, as well as with coastal Coast Guard squadrons in North Carolina, Florida, California, and New York.

In May, Martin Vikings first tied and then exceeded the altitude record for single-stage rockets at the White Sands, N.M., proving ground. Viking missile No. 11, carrying 700 pounds of delicate instruments and telemetering equipment designed to probe the upper atmosphere, rose to a record height of 158 miles on May 24, after travelling straight upwards at a maximum speed of 4,300 miles per hour.

In June, Martin disclosed a new technique for packaging Matadors for shipment to distant destinations. The bird is packaged in seven waterproof crates, thus making it possible to assemble a combat-type aircraft in the field using completely interchangeable parts.

In the field of electronics, Martin developed a method of packaging a multiplicity of airborne electronic devices in a manner affording effective heat transfer from aircraft electronic compartments to the outside atmosphere, while at the same time utilizing a minimum of space.

The company announced development of a successful method of driving titanium rivets on portable and stationary production riveting equipment. Also a new process was developed whereby titanium can be spot-welded in a liquid coolant to form a solid weld nugget for use in machining bolts, pins, and other aircraft parts.

Martin’s sales for the first nine months of 1954 were $187,178,497 as against $116,904,036 for the same period of 1953. Employment fluctuated
during the year from a low of 18,000 to a high of more than 20,000 employees.

In September the company established a new Advanced Design Department for the purpose of anticipating the technical requirements of future aircraft, and to conduct specific studies in gravity, nucleonics, rocketry, and space flight.

Gravity studies will center on Einstein's unified field theory—the concept of the basic law of the universe, and will cover methods of devising anti-gravity power plants and/or the means of producing a new force to defy gravity. Nuclear physics studies will probe ways in which to improve, or eliminate altogether the shielding for an aircraft nuclear reactor as it is known today. Radioactive tracers as aids in manufacturing and inspection will come under study for use in probing the behavior of boundary layer air in windtunnel tests.

The new department will also devote attention to simplifying guidance systems in studies of both air-to-air and air-to-ground guided missiles. As these missile designs will call for increasing high speeds, theoretical studies will be conducted at universities on such specific projects as dissociation of gases—data of use in designing missiles that will not burn up as they hit the "heat barrier."

Following the unveiling of the new multijet XP6M-1 SeaMaster, Martin continued to devote attention to seaplane handling facilities, based on the concept that the seaplane must remain in the water as much as possible for servicing and maintenance operations.

During the year Martin expanded its electronic effort aimed at designing and producing improved missile guidance systems. Increasing attention was also paid to the fields of electronic reconnaissance and countermeasure devices for the Armed Forces, as well as to the development of equipment associated with anti-submarine warfare. Considerable work was done with transistors, as applied to airborne digital computing devices, and efforts were being made to complete a 3-dimensional display of weather radar information.

Mooney Aircraft, Inc.

Production was resumed July 1, 1954, at Mooney Aircraft under new management and ownership. In production since July 1 was the M-18C, Mooney Mite, a single-place private aircraft. Eleven units were produced and sold up to November 1.

The prototype of a new four-place model, the M-20, Mooney Mark Twenty, was modified, and flew late in the year. Production was scheduled for early '55.

North American Aviation, Inc.

The 20,000th fighter aircraft designed and built by North American Aviation, Inc., was delivered early in the summer of 1954. On May 14 an FJ-3 Fury Jet was accepted by the Navy at North American's Columbus, Ohio plant, where the fighters are produced.
North American F-100 Super Sabre Jets

Earlier in the year, production had begun on a later version of the Fury Jet when the Columbus Division announced receipt of a contract from the Navy for an undisclosed number of FJ-4s. Aerodynamically improved over its predecessors, the FJ-4 is powered by the Curtiss-Wright J-65 engine similar to the earlier FJ-3. First flight of the FJ-4 was made at Columbus, October 28.

Another new airplane produced by North American during the year was the F-86K, sixth model of the Sabre Jet series, which made its maiden flight from the Los Angeles plant July 15. An all-weather jet fighter, the new Sabre Jet is actually a 20-mm cannon-firing version of the F-86D, differing in configuration only by the additional eight inch length of fuselage necessary to rebalance the plane with its new armament. The Air Force contract calls for an undisclosed number of "K's" to be procured with Mutual Defense Assistance Program funds for delivery to NATO countries.

Also making its first test flight during the summer was the modified two-seat, transonic TF-86 Sabre Jet trainer. Designed for advanced pilot training in high speed flight, gunnery, and dive-bombing, the Sabre Trainer is essentially an F-86F redesigned to accommodate tandem seats, controls, and instrument panels. Only two modifications to the fighter-bomber airframe were necessary to compensate for the additions: the fuselage was lengthened 63 inches between nose and wing roots, and the 35-degree swept wings were moved forward eight inches. The TF-86 is powered by a General Electric J-47-27 turbojet engine of over 5,800 pounds thrust, as is the F-86F, and retains most of the performance characteristics of the fighter-bomber.

Production of the F-100 Super Sabre, the nation's first operational fighter to exceed the speed of sound in level and climbing flight, gained
momentum during the year and was given further impetus with an additional order in excess of $100-million for an undisclosed number of Super Sabres.

In that same month the Air Force Tactical Air Command took delivery of its first F-100s, and the 436th Day Fighter Squadron at George AFB, California, became the country’s first supersonic fighting unit.

The famed F-86 Sabre Jet also continued to rack up records for itself during 1954.

The last “F” models of the F-86 came off assembly lines at the Los Angeles and Columbus plants during the year, with Columbus also phasing out production of the FJ-2 Fury Jet. At Los Angeles the F-86F program was completed on schedule.

While Los Angeles remained busy with F-86D, F-86K, and F-100 production, Columbus activity, which included the F-100, FJ-3, and FJ-4, was increased when the T-28B Navy trainer manufacturing program was moved in from the Downey, California, plant. The remaining work on present orders for the trainer will continue for approximately two years in Ohio, while the vacated space at Downey is being taken up by expanded guided missile and electro-mechanical work. Orders for an additional $37-million worth of FJ-3s for the Navy were also received by Columbus in the fall.

Expansion of company facilities continued throughout the year, with the new $2-million engineering flight test hangar at Palmdale completed and occupied by mid-August. At the Los Angeles plant a new high bay building for final assembly, fuselage and wing manufacturing, and electrical sub-assembly of the F-100 was begun. The 174,000 square foot building would house more than 1,000 production personnel when full operations are underway early in 1955.

More than 120,000 square feet of additional floor space were provided for receiving, inspection, warehousing activities, and purchasing offices at Downey upon completion of a $557,000 warehouse building for the division.

Expansion projects that were organized for the near future were highlighted by the granting of a construction contract for the major portion of a $5-million wind tunnel capable of testing airplane and missile designs at speeds from 347.826 knots (400 mph) to more than three times the speed of sound.

Among the company’s major new facilities will be a Propulsion Development Center for rocket engine manufacture for the USAF and Nuclear Physics Research Laboratories for the continuation and advancement of already well-established research in the atomic energy field. By year’s end North American Aviation planned to start construction of these facilities on a 56-acre site in the San Fernando Valley community of Canoga Park.

During the year the Downey Division figured in the development of several electronic innovations for both civilian and military use, including an Angle of Attack Calibrator, a Vane Jump Angle Computer (NAVJAC), a miniature two-way communications unit, and an emergency traffic control system (NATECS). The Angle of Attack Calibrator measures an airplane’s natural angle of attack in unaccelerated, trimmed flight to obtain
the difference between its designed and actual angles. This deviation data is incorporated in the fire control computing systems of each rocket-firing military airplane during production flight test. The NAVJAC computes the relative jump angle of rockets fired during straight line, trimmed flight conditions of planes traveling at high speed, which information is then used for aim correction by the fire control system.

The communications unit, available for both military and commercial aircraft, occupies less than one cubic foot of space and weighs only 20 pounds. The eight channel crystal control transmitting and receiving device is available for either code or voice communication. NATECS, which is designed for ground vehicles, is a system to clear traffic out of intersections a quarter of a mile ahead of speeding vehicles (ambulances, fire engines, etc.) on emergency calls. The system consists of a transmitter carried in the emergency vehicle and a receiver wired into the controlling circuit of the traffic signals at intersections.

North American's pioneering work in research and development of peacetime power from atomic energy was increased in size and scope in 1954. The unit doing the work, previously called the Atomic Energy Research Department, based at the Downey plant, changed its name to the Nuclear Engineering and Manufacturing Department to better describe the company's activity in the field, which includes the design, manufacture, and supply of reactors and associated equipment, as well as complete engineering services for reactor development and operation. The most recent developments of the department include the design and construction of a powerful "percolating tea kettle" (water boiler type) reactor for special nuclear research, now in operation by the Livermore Research Laboratory of the U. S. Atomic Energy Commission in Livermore, California. Developing 100 watts of power, the reactor is unique in that it is the largest unit of its type to operate with a closed cycle, or "self contained" system. It is possible for the reactor to run for as long as 10 years without refueling.

In midsummer a new $10-million reactor project to be jointly financed by the company and the Atomic Energy Commission was announced. North American is assuming $23½-million of the cost and furnishing the land for the reactor, to be designated SRE (for Sodium Reactor Experiment), which will be a "sodium-graphite" type generating 20,000 kilowatts of energy in the form of heat. The reactor will be part of the AEC program to develop competitive electrical power from nuclear energy. A site for the project was chosen on North American property near the company's present rocket engine field laboratory in the Santa Susana Mountains north of Los Angeles. To avail qualified scientific and industrial groups of a complete list of the research reactors it is prepared to design and build, the Downey Division published the first known atomic energy "catalog" in the nuclear field, under the title "Nuclear Reactors for Science and Industry."

Meeting at the Columbus, Ohio, Division on September 10, the directors of North American Aviation, Inc., increased the regular quarterly dividend from 50 to 75 cents per share on its 3,435,033 shares of capital stock outstanding. This was the fourth quarterly dividend for the 1954 fiscal year, and brought the total to $2.75 per share compared to $1.50 the year before.
The AIRCRAFT YEAR BOOK

Northrop Aircraft, Inc.

The year 1954 found Northrop Aircraft marking its 15th anniversary, while in the midst of peak production on Scorpion F-89D all-weather interceptors for the U. S. Air Force, continued development of the Snark XB-62 pilotless bomber, production of opto-mechanical devices for the U. S. Army Ordnance Corps at its Anaheim (Calif.) Division, and production of target airplanes at the Radioplane Company of Van Nuys (Calif.), a wholly-owned subsidiary.

Northrop has a work force numbering approximately 24,000 with an annual payroll of $111-million.

Scorpion F-89 all-weather interceptors were assigned to fighter-interceptor squadrons of the Air Defense Command and Alaskan Air Command. Also during the year F-89 airplanes became based at Thule Air Base in Greenland, the Air Force’s northernmost defense post deep within the Arctic circle and with the Icelandic Air Defense Force at Keflavik, Iceland.

The rocket-armed F-89D carries its armament punch in permanently mounted wing tip pods, and can fire its 104 2.75-inch rockets with deadly accuracy in a single salvo or in a series of bursts. The 600-mph-class F-89D flies at altitudes above 45,000 feet. Its two-man crew is guided to the target by advanced electronic equipment through inclement weather or darkness. During the year F-89Ds were equipped with more powerful Allison J35-A-35 turbojet engines with afterburners, to provide higher altitude capabilities.

F-89Ds are now rolling off one of the aircraft industry’s shortest final assembly lines. Exacting refinement of “upstream” assembly techniques has enabled Northrop to develop a final assembly line for the F-89Ds that measures only 550 feet long and contains only 11 stations.

During the year, Northrop, in conjunction with the Air Force, installed the nation’s largest sheet metal stretch press. The new Sheridan stretch press is capable of forming substantially large sections of fighter plane fuselage and wing skins in a single operation and will accommodate aluminum sheets measuring as large as 14 by 20 feet. The new press has a rated stretching force of 750 tons.

The company continued development of the Snark XB-62 pilotless bomber under a program that began in 1946. Northrop maintains an operating facility at the Air Force’s Missile Test Center at Cocoa, Florida, where a proving program is currently being carried out jointly with the U. S. Air Force.

In mid-1954, Northrop’s new production flight testing facility at the U. S. Air Force’s jet test center at Palmdale (Calif.) Airport was completed.

Now in its third year of operation, Northrop’s Anaheim (Calif.) division, occupying a 33-acre site, continues production of opto-mechanical devices for the U. S. Army Ordnance Corps, and is also engaged in manufacturing aircraft and guided missile components for the U. S. Air Force.
Research and development projects in the field of fire control and related products are also being carried out there.

Construction began in August, 1954, on a new 198,000 square foot materiel warehouse at Northrop Aircraft's El Segundo (Calif.) facility. The additional building will provide for complete centralization of all Northrop materiel functions including purchasing, warehousing, receiving, shipping and receiving inspection.

In late 1954, Lt. Col John Stapp, U. S. Air Force aero-medical research scientist, traveled 632 miles per hour on a Northrop-buit rocket sled breaking his own ground speed record of 421 miles per hour attained earlier in the year, which had earned him the title, "fastest man on earth."

The record runs were made on a 3500-foot research track at Holloman Air Development Center with the "world's fastest land passenger vehicle," a two-unit rocket sled built for the Air Research and Development Command by Northrop. The purpose of Colonel Stapp's project is to find means for insuring the safety of pilots who find it necessary to bail out of aircraft at supersonic speeds.

Scientists at Northrop are now devoting facilities of a new and extensive research laboratory to exploration of the "thermal barrier," testing materials and finishes for use in aircraft to be built 10 years from now.

Temperature resistant steels and the new titanium alloys are among the metals now being tested in the Northrop lab that offer promise of some solution to the thermal barrier program.

During the year, Northrop developed a "giant sling shot" acceleration test facility, capable of providing acceleration loads up to 25 G's for testing of aircraft components. A 250-pound aluminum carriage is pulled along a 45 foot track at high speed by a pneumatically-driven steel cable. The carriage rides on wheels located above and beneath the track to prevent it from leaving the rails at high speed. The sled can apply forces up to 25 G's to

Northrop F-89D final assembly area
light weight components. Components weighing as much as 1200 pounds can be tested at forces up to 8 G’s.

The Northrop subsidiary, Radioplane Company of Van Nuys (Calif.), continued production of the OQ-19 target drone system. The OQ-19 is a pilotless, radio-controlled airplane used by all branches of the armed services and allied military forces as a gunnery target. During the past year, Radioplane Company has concentrated its research and development work on missile development, new target drones, and aero-mechanical research involving parachute recovery techniques in the field of guided missiles.

Sales for the final quarter of 1954, when initial deliveries of airplanes were made under major fixed-price contracts, reflect the high rate of production during the year. For the three months ended July 31, 1954, sales were $61,958,503, compared with $45,927,249 for the same period a year earlier.

Northrop’s consolidated backlog at July 31 was approximately $512-million, compared with $508-million at July 31, 1953.

Piasecki Helicopter Corp.

The announcement of the completion of the 40 passenger twin engine shaft turbine powered YH-16A “Transporter” and the receipt of a development contract for an even higher powered twin turbined version, highlighted activities at Piasecki Helicopter Corporation in 1954.

Following the first flight of the YH-16 late in 1953, the aircraft was subjected to an extensive ground endurance and fatigue test qualification run. This world’s largest transport helicopter (the first aircraft) is now engaged in a comprehensive flying qualities and performance determination program. The YH-16A (second aircraft) was completing ground tests and approaching the first flight stage by year-end.

Prime production effort is concentrated on the H-21 Work Horse series being manufactured for the U.S. Air Force and Army. 1954 saw these 14 to 22 place transport helicopters enter service with the Air Force in Labrador and at various Army installations in continental U.S.

The year marked the first delivery of Piasecki helicopters to Canada with HUP’s to the Royal Canadian Navy and H-21A Work Horse helicopters to the Royal Canadian Air Force. The Piasecki Helicopter Com-
company of Canada, Ltd., is under contract to the Canadian government to assist in the support of these aircraft.

The HUP fleet helicopter has rescued over 400 dunked aviators since entry into naval service in 1950. In 1954 innumerable mercy missions were carried out in ship disasters, floods, hurricanes and earthquakes in many places throughout the world. Of particular note were the missions performed by 16 HUP’s operating from aboard the aircraft carrier USS Monterey in supplying food and medicine to thousands of isolated persons in the Honduras floods. Thirteen HUP’s aboard the carrier USS Saipan also supplied necessities of life to the stricken area of Haiti after hurricane Hazel.

The 339th and last of the HUP and H-21A “Army Mule” series were delivered to the Navy and the Army in 1954. This was followed by a development contract to incorporate an engine of higher power in each of two of the six place HUP helicopters.

A major step forward was taken when 254,500 gross square feet of manufacturing space was leased. This brought the total gross plant area to 860,000 square feet, which doubles the available net direct manufacturing area. This provides area to manufacture or subassemble items previously subcontracted and to perform substantial amounts of new business.

Employment averaged approximately 3700 for the year.

Piasecki’s military backlog of unfilled orders remained at approximately $100-million during the year.

Piper Aircraft Corp.

Putting the twin-engined Piper Apache into full production with a delivery rate of one per day reached by fall of 1954 was the major highlight of Piper Aircraft Corporation’s activity during the year. In April the first production Apache was delivered and by the end of the year, over 100 had been purchased. As of the end of the year with production slated to go to
The AIRCRAFT YEAR BOOK

one and one half per day, the company had a backlog of five and one half months for the ship.

The Apache is powered by two 150 horsepower Lycoming engines with constant-speed, full feathering Hartzell propellers. Cruising speed is 170 miles per hour at 7000 feet on 75 percent power. Single engine ceiling at full 3500 pound gross is over 6500 feet, over 8000 feet at 3100 normal gross.

Production of the Piper Tri-Pacer continued at a high rate during 1954. This four-passenger ship, powered with a 135 horsepower Lycoming engine, has tricycle landing gear and inter-connected controls. Demand for it continued heavy from businessmen, farmers and ranchers, and the ship found a number of uses quite different than its peaceful role in the United States. A squadron of Tri-Pacers bearing RAF insignia and equipped with bombs were in use during the year hunting for Mau Mau terrorists in Kenya with considerable effect.

The 135 horsepower Super Cub and its companion PA18-A agricultural model were also in heavy demand during 1954. A 105 horsepower version, the PA-18-T was used for initial training at all U. S. Air Force contract schools with cadets receiving their first 25 hours of flight instruction in the Super Cubs before transition to heavier aircraft. Research continued on more effective dispersal equipment on the agricultural models, most popular being the combination 18-A which can be used either with dry or liquid chemical. A new venturi to provide wider swath with dust was introduced and a capacity of up to 15 gallons per acre for liquid spray was made available.

In November Piper introduced more powerful versions of both the Tri-Pacer and the Super Cub. Both were introduced with the 150 horsepower Lycoming engine to replace the 135 horsepower engine used heretofore.

Employment at Piper's Lock Haven plant averaged around 1200 people during the year.

Radioplane Co.

Radioplane Company of Van Nuys, California, subsidiary of Northrop, devoted its major production efforts to the OQ-19 series of target drone aircraft in 1954. The greatest portion of the 1955 production contracts called for delivery of the OQ-19B target drone system, an out-of-sight radio controlled airplane target with newly developed radar corner reflectors rendering the vehicle valuable for plotting board target missions.

Two target drones, designated XM20 and XM23E1, underwent tests at White Sands Proving Ground and at Fort Bliss for Army Ordnance. Another in this series, the OQ-19E, was flight tested at Holloman Air Development Center. This version incorporates a six cylinder engine smoke generating system, and corner reflectors. The Navy Bureau of Aeronautics is also initiating a flight test program for the evaluation of this vehicle, designated the XKD2R-4, which includes the C-2 autopilot system. Other systems under development at Radioplane facilities included a laminated Fiberglas airframe.

122
Republic Aviation Corp.

Republic Aviation Corporation's F-84F Thunderstreak, USAF's first sweptwing fighter-bomber, and its combat twin, the RF-84F Thunderflash high speed reconnaissance fighter, joined the battle-renowned Thunderjet in 1954 on active duty around the world.

The first Thunderstreaks were delivered to Air Force combat units in January, 1954, and by the end of the year were serving in six USAF commands, and the Air National Guard. The first U. S. Air Force units in Europe were also equipped with the plane during the year. North Atlantic Treaty Organization (NATO) nations were scheduled for delivery of Thunderstreaks at the beginning of 1955.

The first Thunderflash photo reconnaissance squadrons were formed at Shaw Air Force Base during the year and modification work was initiated on a number of RF-84F's for use in FICON as the "kangaroo" plane with the GRB-36 aerial carrier.

The Thunderjet, still active in 16 nations around the world, logged its 2,000,000th hour at the end of 1954, setting a new record for total time by jet aircraft.

The T-Jet received two first place trophies and one second from the three-event USAF world-wide gunnery meet and the Mackay Trophy, awarded to the 40th Air Division for "Operation Longstride." In "Longstride" Thunderjets flew 4,485 miles across the Atlantic to Lakenheath, England, and to Nouasseur, North Africa, setting a new world's non-stop jet fighter distance record and demonstrating the Strategic Air Command's global mobility.

Following in the path of its predecessor Thunderjet, the Thunderstreak set a new speed record for the 1900-mile Bendix Trophy classic during the National Aircraft Show, when Capt. Edward W. Kenny of Air Training Command flew his F-84F past the finish pylon in three hours, one minute
and 56 seconds, achieving an average speed with refueling stops of 616.208 miles an hour.

Earlier in the year the Air Force disclosed that the speedy Thunderstreak, like the Thunderjet, had joined the ranks of America's atomic bombers.

Three new Republic aircraft were revealed in 1954: the F-103, a radically advanced experimental interceptor; the XF-84H, a turboprop fighter incorporating for the first time an afterburner for jet thrust augmentation which operates in conjunction with the turbojet-drive propeller; the YF-84J, a super-Thunderstreak fighter-bomber powered by a J-73 engine.

Republic's research department, with cooperation from Simmonds Aerospace, Inc., and Electronics Corporation of America, developed and demonstrated a compact fire and explosion suppression system, providing vulnerable areas of aircraft with protection from the hazards of gunfire.

A new ejection seat tested by the company features an automatic lap belt release mechanism to insure separation of the pilot from the seat after bail out.

In 1954 several new items of equipment were installed in Republic's $1-million research laboratory. A 600,000-lb. capacity test machine which can apply either compression or tension loads was installed for aircraft structural testing. The 15-foot long machine base is used to support test specimens up to 4½ feet in width during bending tests.

To provide capacity for testing larger fuel systems the Fuel Laboratory was equipped with an additional 600 gallon a minute fuel pump and an alternating current power supply for running aircraft fuel pumps and equipment during tests.

In the field of manufacturing research Republic continued its activity in plastic tooling, developing several new compositions of reinforced plastic resins and applying them to new tooling developments.

In one development, large stretch-forms used to shape sheet metal such as wing skins are being made as laminated epoxy shells. In another, Republic is substituting laminated plastic (paper-based phenolic) tubing for metal as reinforcing members in plastic jigs and fixtures. One 240-pound tool made of glass cloth-reinforced epoxy resin replaced a 3,100-pound Kirksite equivalent which required a 1,000-pound dolly to prevent sagging. The plastic tool required no dolly and was easily handled by two men.

The company continued to expand its facilities. A fourth plant, at Hicksville, Long Island, consisting of 31,500 square feet, was equipped for guided missile and plastics activities.

Almost an acre of floor space was added to the Farmingdale facilities by construction of a new engineering mezzanine to accommodate the F-105 engineering project.

Largest addition during the year resulted from the purchase of the adjacent Fairchild Engine Division plant in Farmingdale consisting of 425,000 square feet of floor area. A natural acquisition because of its prox-
iminity to Republic's main plant buildings, the Fairchild facility will enable the company to consolidate engineering and experimental operations. Occupancy of the plant is expected during 1955.

The addition of 494,500 square feet during 1954 brings total floor space to 2,813,000 square feet as compared to 1,650,000 square feet before the Korean war. New shop areas, office space and research installations were equipped with the most modern facilities.

To insure ample capital for its all-out effort for the Air Force the company continued its $15-million line of credit with the Chase National Bank of New York and the Bankers Trust Company of New York.

Net income for the first nine months of the year was $6,167,055. Sales for the period amounted to $225,834,526.

Ryan Aeronautical Co.

A renewed emphasis in the field of prime contracts, in which Ryan Aeronautical Company held eminence in World War II and the years immediately following, marked the company's progress in 1954.

During the Korean War, Ryan's vast array of machine tools and know-how in the production of components for the "hot" parts of engines, both piston and jet, was put to capacity use in turning out thousands of units for the nation's leading engine and aircraft manufacturers.

At the same time, Ryan's long interest in airframes and its pioneering work in guided missiles was bearing fruit. Stepped-up activities in both fields were reflected in 1954 as the award of prime contracts for such proj-
ects as the Firebee, pilotless jet drone missile; guidance systems, navigation systems, and helicopter hovering devices, were awarded. In addition, Ryan is working on a $7-million project directly for the Air Force.

By year's end, more than 25 percent of Ryan’s work was in the prime contract category, as compared with only five percent in 1953. Subcontract jobs remained at a high level, but the gap between prime and subcontracts was being narrowed.

To keep pace with its jet engine research, Ryan in 1954 built a large test cell in the San Diego area. The $175,000 structure will provide Ryan with advanced knowledge in the development and manufacture of high-temperature components for jet engines and complete afterburners, and will also assist in improving designs and applications of jet propulsion to Ryan airplane designs, both piloted and pilotless.

In the electronics field, Ryan’s expanded engineering division worked during the year on a variety of advanced Air Force and Navy contracts with substantial amounts of new electronics work being negotiated.

A self-contained airborne helicopter hovering device is being produced by Ryan for the airborne equipment division of the Navy Bureau of Aeronautics. Ryan airborne navigational systems are being utilized by the Navy. The Firebee drones, on which an extensive testing program has been conducted at Holloman Air Development Center, are occupying an increasingly important place in the Ryan production picture. The Navy, which along with the Air Force and the Army has sponsored the original development of this high-speed, remote-controlled, recoverable jet drone, ordered a production quantity of the Firebees. At year-end it was being tested at the Pt. Mugu guided missile test center for operation in support of the fleet anti-aircraft, aerial gunnery and guided missile training program.

Firebees are now being evaluated by all three services for use as a target drone, but its potentialities as a guided missile are also envisioned by Ryan officials.

Disclosed officially for the first time in 1954 was Ryan’s contribution to the Corporal surface-to-surface missile. Several years ago, Ryan began production of these engines for Douglas Aircraft Co., when that firm built the first of these surface-to-surface missiles. Ryan in 1954 was producing these engines in volume for the Firestone Tire and Rubber Company, which holds the prime contract.

Based on the financial report for the first nine months of the fiscal year, 1954 was expected to be the most successful year, from a profit standpoint, in the company’s history. Net income for the first nine months was $1.6-million, approximately 20 percent higher than the $1.3-million for the comparable 1953 period, and above the profits for the full 1953 fiscal year. It appeared likely that 1954 would be Ryan’s first $2-million profit year.

Sikorsky Aircraft Div.
United Aircraft Corp.

THE INDUSTRY

The S-56 was announced publicly January 18 when it was shown to representatives of the various U.S. military services and the press. Primarily a Marine Corps and Army development, the S-56 is powered by two Pratt & Whitney R-2800s with a combined rating of over 3,600 hp. Known as the HR2S-1 (Marine designation) and the H-37A (Army), the S-56 features a five-bladed single main rotor and a four-bladed anti-torque tail rotor. The landing gear is retractable. The craft carries 26 fully-equipped troops and, in eventual commercial production, it is planned to seat 30 to 35 passengers. Full production is scheduled for the fall of 1955.

The S-58, a Navy and Army development, was announced to the military services and the press June 3. Essentially an anti-submarine warfare development, the S-58 is designated the HSS-1 by the Navy, the H-34A by the Army, and is currently in production at Sikorsky's Bridgeport facility and units have been delivered to the Navy.

Powered by a single Wright R-1820 engine developing 1,425 hp, the S-58 has approximately twice the payload of the famed S-55. Anti-sub gear may be removed to haul passengers or cargo. Like all Sikorsky helicopters, the S-58 features a single main rotor (four blades) and a torque-compensating tail rotor (also four blades). Somewhat resembling the S-55 in forward configuration, the S-58 is an entirely new aircraft of vastly improved performance.

August 29, the Army announced a new world's helicopter speed record —156.005 mph, set by the Army Sikorsky XH-39 at Windsor Locks, Connecticut. Another record, 24,500 feet for a new world altitude mark, was set at Bridgeport on October 17.

The XH-39, commercially designated the S-59, is powered by a Turbomeca Artouste II, a French development. The engine is made under

Ryan Firebee landing at sea
The AIRCRAFT YEAR BOOK

license in the U.S. by Continental Aviation & Engineering Corporation and is known as the T-51.

The new development, the first turbine-powered aircraft in Sikorsky history, started as an experimental powerplant project on the Army YH-18 (S-52). Experimentation evolved an entirely new aircraft of different configuration and, of course, radically improved performance capabilities. The S-59 has a four-bladed single main rotor, a four-bladed tail rotor, and retractable landing gear.

Active and potential commercial helicopter operators have expressed interest in all three models.

Also begun in 1954 was construction of a new multi-million-dollar branch plant in nearby Stratford, Connecticut. The new plant, expected to be ready in the fall of 1955, will provide over 700,000 square feet of manufacturing space.

Meanwhile, production continued of the famed S-55, the only CAA-certificated transport type helicopter in the world. S-55s in commercial service continued to make helicopter news in 1954. Sabena Belgian Airlines announced it carried 18,000 passengers during the first year's operation of its international helicopter passenger service. Over 4,000 used the inter-airport (LaGuardia, Idlewild and Newark) helicopter passenger service offered by New York Airways, which also extended its passenger service to New Jersey and Connecticut. By special authorization of the CAA, New York Airways inaugurated night passenger service between the airports. Los Angeles Airways continued expansion of its freight and mail service and expected to start passenger flights sometime within the year.

Sikorsky sales to foreign markets went up substantially in 1954. Canada, Japan, India, Sweden and Thailand all accepted delivery of one or more units during the year.

Plant area at the Bridgeport facility remained at 600,000 square feet not including various testing sites and service areas outside the plant proper.

Although concentrating mainly on the development of the three new models announced in 1954, research projects, dealing particularly with component design and performance, continued.

Stroukoff Aircraft Corp.

During the year, Stroukoff Aircraft Corporation expanded and improved its manufacturing facilities completing a new 64,000 square feet hangar building suitable for major airframe assembly in an area adjacent to its existing plant and acquired also, by long term lease, adjoining acreage to provide for future planned expansion.

High point of the year's activity was the completion and first flight of the Air Force XC-123D Boundary Layer transport, just 54 weeks after the initial authorization. This incorporated a new wing and is the latest in a series of wing designs by Stroukoff in which is employed for the first time the principles of Boundary Layer Control developed in cooperation with the Air Research and Development Command and the Wright Air De-
development Center. Take-off and landing distances are cut sharply, stall speed is reduced and greater operational range is made possible without sacrificing top speed. Stroukoff was actively engaged in continuing research in this field directed toward application of the Boundary Layer Control principle to jet fighters and bombers as well as other projects related to the development of military cargo and personnel transport.

Taylorcraft, Inc.

Late in 1954, Taylorcraft flew for the first time its new light airplane with a tough glass and plastic hide. Advantages claimed for the Fiberglass-reinforced plastic exterior were great strength combined with light weight, almost complete resistance to corrosion and sharply reduced maintenance costs.

The plane, which utilizes a basic Taylorcraft design, is 24 feet long, has a 36-foot span, weighs about 1300 pounds, and is equipped with a 145 horsepower engine.

At year-end, Taylorcraft's plant facilities covered approximately 50,000 square feet, and three new Fiberglas models were in production: the Ranch Wagon, the Skyliner and the Topper.

Temco Aircraft Corp.

In 1954 the Temco Aircraft Corp., acquired two new multi-million-dollar production contracts, overhauled and modified fleets of the three largest civilian type transports used by the military, and welcomed as its first vice-president-engineering, one of the industry's top missile and aircraft developers.

In March, 1954, Boeing Airplane Company's Wichita Division awarded Temco a contract for tooling and production of two major fuselage sections of the B-52 Stratofortress.

Four months later Temco won a contract for production of aft fuselage sections for Republic Aviation Corporation's F-84F Thunderstreak fighter-bomber. This contract, in quantity and dollar value, was the largest single order ever received by the nine-year-old concern.

The B-52 and the F-84F maintained at six the number of first-line military aircraft for which Temco is producing major components.

At its Dallas plant, Temco manufactured aft fuselage sections for the Boeing B-47 Stratojet; outer wing panels for the Lockheed P2V Neptune, and large assemblies for McDonnell's F3H Demon and F-101 Voodoo jet fighters. At its Garland, Tex., plant, the company produced fin and cockpit assemblies for the F-84F and wing assemblies for the F3H.

Overhaul and modification operations were centered at Temco's Greenville, Tex., plant. Here the company continued modification of Navy C-97s to VC-97 "Flying Hospitals."

Conversion of Navions to Riley Twins, started during 1953, continued throughout 1954 at the Greenville plant. In October an improved version of the popular light twin was introduced.
Designated the Riley ’55, the new model is equipped with two Lycoming 170-hp engines, a redesigned control quadrant and front seats, and bladder fuel cells and optional wing tip tanks which extend range up to 1200 miles.

Also at Greenville, Temco reconditioned C-47 aircraft for the Air Force; de-sealed and re-sealed fuel tanks on 30 Air Force C-54s; modified a number of Air Force T-6G trainer to LT-6G configuration, and modified a Convair 340 transport for executive use by the king of Saudi Arabia.

Two other large aircraft reconditioning projects were underway at the Dallas plant during 1954. In March, the first of a substantial number of Navy R7V Super Constellations arrived for progressive heavy maintenance. In April the company began work on another contract for progressive heavy maintenance of 33 Navy DC-6s.

Temco in July created the new post of vice-president-engineering for I. Nevin Palley, formerly chief of missile design for Chance Vought Aircraft Corporation. Palley, who directed the Regulus guided missile program, combined Temco’s Engineering and Electronics Departments into a single department which he reorganized on a “weapons systems” pattern.

The new department is designed to integrate the development of airframe, electronics and other equipment for missiles, military and commercial aircraft. It contains four divisions: administrative operations, systems research and development, systems design and systems fabrication.

Prominent in Temco’s physical expansion during 1954 was the completion of a unique cantilevered production hangar at the Greenville facility. The 435-by-161-foot structure has a suspended roof which leaves the interior free of vertical supports. Vertical clearance in the hangar measures up to 45 feet. It shelters three C-97s simultaneously.

Net earnings for Temco for the nine months ending September 30, 1954 amounted to $2,291,090, or $1.37 per share, as compared to $1,499,280, or $.89 per share for the corresponding period of 1953.

Sales for the current nine months’ period were $43,041,694, as compared to $41,888,179 for the same period last year.

Employees at the three Temco plants total about 7500.

United Aircraft Corp.

Because United Aircraft Corporation’s three divisions operate autonomously, discussion of the company’s 1954 activities are found under the names of the divisions: Pratt & Whitney Aircraft (engines), Hamilton Standard (propellers and aircraft equipment), and Sikorsky Aircraft (helicopters). Chance Vought Aircraft (airframes and guided missiles), of Dallas, Texas, became a separate corporation last July.

High level production was maintained in all divisions during the year. The corporation had under construction a major expansion of the Andrew V. D. Willgoos Turbine Laboratory, Pratt & Whitney Aircraft’s gas-turbine engine development facility. The engine division also occupied a new structure in South Windsor for work on development of an atomic aircraft engine.
THE INDUSTRY

A 60,000-square-foot addition to its multi-million dollar plant at Bradley Field, Windsor Locks, Connecticut, was completed for Hamilton Standard, which also acquired a branch plant at nearby Broad Brook. The branch plant will be used for electronics development work.

A new 700,000-square-foot factory in Stratford, Connecticut, is being built to supplement Sikorsky Aircraft's Bridgeport facilities. It is expected to be ready late in 1955 and will be used to augment production activities of the main factory at Bridgeport.

Activities for the year were highlighted when Leonard S. Hobbs, vice-president for engineering of United Aircraft Corporation, was awarded the Collier Trophy for conceiving the 10,000-pound thrust J-57 axial-flow gas-turbine engine.

Unfilled orders for United amounted to $1.5-billion when 1954 began.

The Research Department of United supplemented the research and development work undertaken by its manufacturing divisions during the year.

The 18-foot subsonic wind tunnel, which has an 8-foot alternate test section providing Mach numbers to .95, was occupied with tests of various military aircraft models and high-speed propellers. Considerable testing of the aerodynamics of jet-engine components was accomplished during the year. Helicopter model testing in the department's wind tunnels pointed the way to improvements in helicopter performance. Extensive tests were conducted in small scale equipment on transonic and supersonic flow.

An extension to the Research Laboratory was under construction. This will contain a battery of intermittent transonic and supersonic wind tunnels of various types and sizes from Mach 0.6 to 10.0.

New developments at Pratt & Whitney Aircraft included expansion of the Andrew Willgoos Turbine Laboratory. Designed to test Pratt & Whitney turbine engines in development, the laboratory originally housed four test cells and a central power station. Three altitude test stands, each capable of handling the largest jet engines being developed, were added to the laboratory.

In addition a complete "blow-down" system was installed to provide high-pressure, high-temperature air for various phases of engine development. Extremely high-speed airflow, with conditions varying from sea level to high altitudes, can be simulated by pumping up the storage tanks for one hour while the storage air is being heated during the same period. The system is put into operation when the main shut-off valve is opened. The pressure and temperature is carefully controlled to duplicate speeds as high as Mach 2.75. The duration of air flow from tank to engine or component can be varied. This system was scheduled to begin operation in early 1955.

During the fall the construction of a 97,000-square foot building was completed in South Windsor, Connecticut. The building, leased by Pratt & Whitney, is an expansion of the company's present facilities for work on development of an atomic-energy aircraft engine. The Air Force announced
plans to construct a multi-million dollar atomic research facility in Conn. to be operated by Pratt & Whitney Aircraft.

Hamilton Standard's engineering development program continued to expand in 1954 under the impact of increased interest in the division's turbine propellers and orders for aviation equipment.

The long development of the Turbo-Hydromatic propeller culminated in its successful operation on the Lockheed R7V-2 Constellation powered by the Pratt & Whitney Aircraft T-34 engine. Engine testing began during the year on a new concept in turbine propellers known as the nose-mounted type, which will be available for supersonic military applications and subsonic high speed transports.

Basic research on supersonic blade configurations continued, and a new one-piece type of hollow steel blade reached the experimental production stage.

Synchro-phasing of propellers to hold blade positions constant in relation to those of other propellers on multi-engined airplanes moved into the flight testing stage on a Lockheed 1049C Constellation. As the next step beyond RPM synchronizing the new development for commercial, piston-engined transports was adapted from the synchro-phasing system used on Hamilton Standard's Turbo-Hydromatics.

Major attention was given by the division's engineering staff to the many problems of the thermal barrier occasioned by sharp increases in aircraft flight speeds and cooling requirements. The weight of air conditioning and cockpit refrigeration units was reduced, and new designs capable of operation at the higher temperatures and pressures of high speed flight were evolved. In this connection, a design for refrigeration units which relieves high bearing temperatures by permitting cold air to flow over the bearings, and a radical and simple water separator with no moving parts, were outstanding developments. Currently Hamilton Standard is engineering complete air conditioning systems for both fighter and bomber types.

Advanced concept hydro-mechanical controls for turbojet and turbine-propeller engines were placed in production and gave excellent performance in service. Electronic controls went into wide use on Boeing B-52 bombers and a tailpipe temperature limiting control system for the Orenda jet engine was placed in production.

The division developed its line of pneumatic starters during 1954 and had different models in production. Development work on self-contained starting systems was accelerated, and a propyl nitrate-powered starting system was delivered to the Air Force. Substantial progress was made on a military contract for a fuel-air starter.

The division continued volume production on several high speed, variable displacement pumps ranging from a small version with an output of two gallons a minute at 2,000 psi and operating speed of 11,500 rpm to a large model with an output of 24 gallons a minute at 3,000 psi and operating speed of 8,000 rpm.

Sikorsky Aircraft continued to intensify its research and development
program on rotary wing aircraft by developing existing designs and investigating advanced helicopter configurations.

Development of rotor blades played a large role in the success of the Sikorsky helicopter series. To make possible research in this field of aerodynamics Sikorsky engineers designed, built, and instrumented a rotor test stand. This 1,000 horsepower research unit will be augmented by a second test rig of 4,000 horsepower capable of increase to 8,000 horsepower to prepare for the larger helicopters of the future.

Scientific data obtained from rotor stand test runs coupled with research results in bonding of metals led to the development of Sikorsky's blades—the only individually interchangeable all-metal main rotor blades in production.

Translating the results of this research program into production, Sikorsky Aircraft flew three new designs in 1954—a large single engine anti-submarine machine; a twin engine transport type; and a fixed shaft gas-turbine powered helicopter that established world altitude and speed mark in its first 20 hours of flight time.

ENGINE MANUFACTURERS

Aerojet-General Corp.

The year 1954 brought continued expansion at Aerojet-General, particularly at its Sacramento, California, plant. In addition to 9,000 acres previously owned by the company, Aerojet-General acquired approximately 5,000 additional acres to provide a buffer zone for its rocket manufacturing and testing facilities. Solid propellant manufacturing lines were also expanded at Sacramento and design criteria was completed and ground broken for liquid-propellant rocket test facilities.

Other significant advances during the year included the 5KS-4500 solid-propellant assisted-takeoff rocket which provides 4500 lb. thrust for five seconds. Twelve such units are used at one time on the Navy's A3D

Douglas Sky Warrior takes off with twelve 5Ks-4500 Aerojet-General smokeless JATO's
Douglas Sky Warrior, a carrier-borne bomber. Flight tests were successfully completed on a high thrust liquid-propellant assisted-takeoff rocket for the Air Force’s B-47 airplane. Two of these rocket powerplants are installed in the B-47; one on each side of the fuselage. The rocket is an integral installation which extends when in use and retracts when not in use leaving the aircraft aerodynamically clean.

Although the 14AS-1000 standard JATO was still being produced, it was supplemented by the new smokeless 15KS-1000 JATO which is being mass produced at the Sacramento facilities.

At Azusa, mass production of metal parts for 2".75 Navy ordnance rockets continued at a high rate. Significant cost reductions were realized in this program as well as that of the 15KS-1000 production line.

Production of the Aerobee rocket for upper air research continued during 1954 and the altitudes reached have exceeded 90 miles.

Solid propellant rocket research at Aerojet-General continued as a large segment of the company’s research activity. Emphasis was placed on creating various propellant formulations that may make possible the use of one group of metal parts for varying thrusts and durations. Solid propellants also have found desirable applications for such things as pilot ejection seats, signal rockets, turbojet starters and many types of ordnance weapons. Research and development also continued on solid-propellant gas generators.

In the liquid-propellant rocket field, missile powerplant work greatly increased.

Several highly successful programs for assisted takeoff and in-flight thrust augmentation for piloted aircraft were also underway at Aerojet-General.

Aircooled Motors, Inc.

During the year, development work continued on new versions of the Franklin 335 and 425 cubic inch engines for both helicopter and fixed wing installations. A new version of the 200 horsepower helicopter engine was released with major improvements to greatly increase service life. Development was completed on a 300 horsepower version of the 425 cubic inch engine employing a new turbosupercharger developed by Aircooled Motors which results in an engine of efficiency in power, weight, altitude performance and fuel consumption.

Allison Div.
General Motors Corp.

At Allison in 1954 production was completed on the T40 turboprop engine. This was the first turboprop put into production in this country. It consists of two identical power sections, each only 19 inches in diameter. Through shafts, turning at 14,300 rpm, each power section drives a dual rotation propeller through a common reduction gear. The power sections are connected together so that, in effect, they form a single unit; however, each power section drives through a clutch located in the reduction...
Allison employee removes burrs from impeller of J33 turbojet engine compressor

gear which permits flexible operation of either one or both of the power sections.

Beginning with a design target of 4250 hp, Allison successively raised its sights to 5850 hp, the present guarantee on the engine. In addition, production engines consistently have demonstrated more than 6000 hp.

Principal use of T40 engines is in the Convair R3Y Tradewind which was nearing operational status by the year-end. A bow-loading configuration also offered by Convair was of interest to the Marines as a flying landing craft.

A specialized use of the T40 turboprop engine was in the VTO aircraft produced by Convair, the XFY-1, and Lockheed, the XFV-1. These two aircraft made their first flights in 1954 and were being test flown to determine the practical usefulness of aircraft which could take off vertically, cruise at fighter speed in horizontal attitude and then land tail first in a restricted area.

VTO aircraft require engines which can develop more pounds of propeller thrust than the weight of the complete aircraft. Since they produce more than two hp for each pound of engine weight, T40s meet this specification.

A secondary advantage in a twin-power section turboprop engine is that one power section by itself can be used as a separate engine. Thus
The AIRCRAFT YEAR BOOK

one-half of a T40, with a new reduction gear, becomes the T38 rated at 2925 hp.

There is no military application for this engine, but during 1954 a great deal of flight experience was accumulated on T38 engines powering the twin-engine Allison Turbo-Liner. This is a conversion of a Convair 240 to turboprop engines.

Several hundred flights of this nature were made during 1954 on the West Coast, East Coast, military installations and airline centers. Reactions to the demonstrations were most favorable and close attention was paid particularly to the lower noise level, better take-off and climb characteristics as well as speedier descent and shorter landing run. At every demonstration it was pointed out that the Turbo-Liner in itself is an obsolete aircraft and does not represent an optimum installation of turboprop engines. Nevertheless, as a demonstrator the Turbo-Liner did point the way toward faster, more economical transports of the future.

The T56, like the T38, is a single power section engine and which develops nearly 30 percent more power than the T38 with improved fuel economy. First flights of the T56 were made during 1954 with five aircraft. First was the B-17 Allison flight test bed with the T56 installed in the nose. Five days later, Lockheed’s test bed, Constellation “1961,” made its first flight with a T56 in one nacelle. The first aircraft to be powered wholly by T56 engines was the first of two Convair C-131C aircraft purchased by the U. S. Air Force. This was followed by the first flight of the second C-131C, and finally the first flight of the first Lockheed YC-130 was made.

All of these aircraft continued to accumulate flight test hours during 1954. With small diameter engines developing well over two hp for each pound of weight, each aircraft was distinguished by clean tapered nacelles. It was estimated that these new nacelles provided less than half the drag of standard nacelles. Further, these new engines have good fuel economy. These and other factors add up to serviceable engines which set new standards for transport aircraft in speed, load-carrying ability and economical operation.

Allison also made further progress in 1954 in the development of turbojet engines. The new high-thrust J71 met its model test requirements and was flying in the twin-engine Douglas RB-66, which made its first flight on June 28. A flight test program also was initiated on two J71 engines installed in a Northrop F-89E. No production program is contemplated for this aircraft which is to be used only for flight experience with the J71. At the same time additional J71 flight time was being accumulated as the fifth engine in a North American B-45.

In the J71 Allison has demonstrated the highest compression ratio ever achieved with a single-compressor turbojet. It retains the same basic diameter as its predecessor, the J35, yet produces nearly double the thrust. The J71 is of rugged construction and is capable of field maintenance.

Meanwhile, the J33 and J35 engines continued to give excellent service and added to their reputations for durability and dependability. Tyndall Air Force Base operated one J33 engine to 1400 hours before overhaul.
This was the maximum current allowable time on J33 engines, and the Tyndall achievement represented the first time the 1400 hour mark had been achieved with a jet engine. Another type of J33 engine was announced as the powerplant in the Martin Matador, first guided missile to go into operational use. The J33 engine also powers the Navy's Regulus missile, produced by Chance Vought. Large quantities of the J33 model also were produced for the Lockheed trainer, T-33 for the USAF and TV-2 for the Navy.

Production quantities of the axial-flow J35 also were supplied Northrop for the F-89D Scorpion which during the year went into service in additional far northern defense bases.

With the completion of additional jet engine test facilities, Allison prepared for further engineering development of present engines as well as taking sights on new power plant requirements for the future. At the year-end employment totalled approximately 14,000 with more than 5-million square feet of floor space in use by the Division.

Continental Aviation and Engineering Corp.

Continental Aviation and Engineering Corporation, a subsidiary of Continental Motors, continued to expand its small turbine activities during the year. Deliveries to the Air Force of the MA-1 gas turbine compressor started in January and continued throughout the year. This gas turbine is used to supply compressed air for starting the large turbojet engines in the North American F-100, the Convair F-102 and the Douglas B-66 airplanes.

Production deliveries of the J69-T-19 turbojet engine for the Ryan Q-2 target drone were begun during the latter part of the year. Another version

Cessna T-37 trainer is powered by two Continental J-69-T-9 turbojets
of this engine, the J69-T-9, was put into production for use in the Cessna T-37 twin-jet trainer.

Prototype applications of the XT51-T-1, 280 hp., turboprop engine, were made in the XL-19C observation plane. A prototype installation of the XT51-T-3, rated at 420 hp., was made in the XH-39 Sikorsky helicopter, which established a new speed record of 156 miles per hour on August 26, and a new (unofficial) altitude record of 24,500 feet on October 17.

Curtiss-Wright Corp.

Four additional installations of the Curtiss-Wright Corporation's J65 turbojet brought to eight the total number of announced modern military aircraft for which it has been selected. No other jet engine has been chosen for as many advanced tactical plane types, and the engine is in other programs of classified status.

Other developments included:

Production started on Turboelectric propellers for new, high-powered turboprop engines, and further progress was made in extruded blade production methods and in the development of supersonic blades.

Design work was completed on new and advanced types of simulators for electronic crew training.

A diversification program was commenced with the acquisition of licenses to manufacture a variety of new products in the fields of electronics and plastics.

And installation work was completed on a 12,000-ton horizontal steel extrusion press—of its type the largest in the world.

The J65, originally produced as a 7220-pound engine which has consistently exceeded its guaranteed thrust rating, was revealed during the year to exist in various models of advanced rating. One of these is a 7800 pound configuration installed in the North American FJ-4. Another is an afterburner version which has been announced for the Air Force's Lockheed F-104 and the Grumman F9F-9 Tiger, a shipboard fighter that the Navy has disclosed is supersonic in level flight.

The other J65 installation disclosed during 1954 was, beside the FJ-4, F-104, and the F9F-9, the Douglas A4D Skyhawk lightweight attack plane. Previously announced have been the North American FJ-3 Fury, Martin B-57 twin-jet bomber, Republic F-84F Thunderstreak fighter-bomber, and the RF-84 reconnaissance fighter.

Now in service with the military, the Curtiss-Wright J65 has proved to be economical in operation, with fuel consumption as much as six percent below specification.

Development of another Curtiss-Wright turbojet, the J67, a two-spool axial-flow engine designed for extremely high output, continued during the year.

The company's T49 turboprop engine was revealed to be installed at year-end in a Boeing XB-47D bomber in preparation for flight testing early in 1955.
THE INDUSTRY

Progress was also made in the rocket and ramjet fields, although no specific information was made available.

Curtiss-Wright's Turbo Compound engine passed the two million miles performance mark in military and commercial service during 1954. More than 5,400 of these engines have been delivered and development of advanced models is continuing.

Presently rated at from 3250 to 3700 horsepower for takeoff, the Turbo Compound has acknowledged capacity for greater output. It is presently powering a variety of military aircraft as well as the Lockheed Super Constellation and Douglas DC-7 commercial transports. These planes have been selected by 27 leading world airlines for their new long-range, high-speed fleets.

In addition to U. S. military aircraft, the Turbo Compound during 1954 was chosen for installation in Bristol Britannias by the Royal Canadian Air Force. Intended for long-range duty, this plane, designated the CL-28, will be the largest aircraft ever produced in the Dominion.

A new Douglas DC-7C model, for non-stop flights up to 5,000 miles in range, was announced during the year. To power this transport, Curtiss-Wright has developed the EA-1 Turbo Compound, a commercial version rated at 3400 horsepower for takeoff that has been service-proven by the U. S. Navy. This engine, which provides additional METO power as well, will be type-tested in 1955.

Designed by the company's Propeller Division, Turboelectric propellers are now in production for the new cargo, turboprop-powered Lockheed C-130 and Douglas C-133A airplane. Curtiss-Wright Turboelectric propellers are also in operation or will be operating on the Douglas YC-124B,
Lockheed YC-130, Convair XFY-1, Lockheed XFV-1, Boeing YC-97J, and Boeing XB-47D airplanes.

Additional flight testing of supersonic propellers will also be accomplished during 1955.

Production of the Propeller Division's regular line of hollow steel bladed Curtiss Electric Propellers for both commercial and military use continued during 1954 while production was accelerated in fabricating the single-piece extruded hollow-steel blade.

At the corporation's Electronics Division there were delivered during 1954 a variety of Curtiss-Wright Demmel training equipment. Undisclosed numbers of Simulators were delivered to the Air Force for advanced training of crews assigned to the Convair B-36 bomber and the Douglas C-124, Boeing C-97, and Fairchild C-119 transports. During the year orders were received for and design work was started on Simulators for the Boeing RB-52 eight-jet bomber, and these four military transports: the Douglas C-118A, Lockheed RC-121, Lockheed C-130 turboprop, and Convair C-131.

Duplicators, another all-electronic instrument flight training aid produced by Curtiss-Wright, continued in production during the year. Numbers of these units were delivered to the Air Force, which now uses them at many domestic and foreign bases. Commercial airlines, including Iberia, Air France, Eastern Air Lines, and TWA, also took delivery of Duplicators during 1954.

A Curtiss-Wright engine-propeller combination propelled a U. S. Navy ZPG-2 to a new world's record of 200.2 hours for a non-stop flight of aircraft and fuel without refueling. The Goodyear blimp is powered by two 800 horsepower Wright Cyclone 7 engines turning two 16-foot, 7-inch Curtiss Electric propellers with hollow steel blades.

Announcement was made during the year of still further expansion of Curtiss-Wright's manufacturing activities, which already include products outside the aircraft field. Licenses and engineering agreements were concluded with Swiss and German companies to provide the corporation with rights to produce scientific apparatus for the fields of electronics and ultrasonics. These include devices for measuring, computing, and control.

During 1954 Curtiss-Wright published the third volume in the Machinability series. Prepared for the Resources Planning Section, Industrial Planning Division, Air Materiel Command of the Air Force, the book was made available to industry as its predecessors had been. The new volume carried the program into the new field of machining titanium.

Installation had been completed by the end of 1954 of the world's largest horizontal extrusion steel press at the company's Metals Processing Division plant at Buffalo, N. Y. This 12,000-ton press can handle steel, titanium, or non-ferrous metals and is capable of extruding a 9,000-pound billet to a 40-foot length.

The Division is presently producing in quantity approximately 40 different types of blades for gas turbine engines, some forged and some cast, and the foundry is making a variety of stainless steel castings, also for jet engine use.
THE INDUSTRY

Another large installation completed during the year was that of a large addition to the ramjet laboratory at the Wright Aeronautical Division in Wood-Ridge, N. J.

The laboratory addition, costing $7.7-million, is being erected in co-operation with the U. S. Air Force and will provide a means for testing large capacity engines under simulated conditions of high speeds and high altitudes.

Curtiss-Wright Europa, N. V., with offices in Amsterdam, the Netherlands, continued during 1954 to service and supply the corporation's products to NATO nations.

The sale of spare parts and servicing of Curtiss-Wright engines and other equipment for the military, the airlines, and private plane operators is a function of Caldwell-Wright Airport, Inc., another corporation division.

Marquette Metal Products, a corporation subsidiary at Cleveland, O., continued producing electric and hydraulic windshield wipers for all types of aircraft, including high-speed jet fighters.

The Plastics Division increased its lines of consumer and industrial products during the year and developed new processes in its field. Its facilities include molding equipment with capacities up to 48 ounces.

Curtiss-Wright reported for the nine months ended September 30, 1954, a consolidated net profit of $11,454,782 after provision for federal income taxes. This compared with a consolidated net profit, after taxes, of $8,058,376 for the nine months ended September 30, 1953.

Consolidated net sales for the first nine months of 1954 amounted to $348,261,589 compared with consolidated net sales of $317,885,461 for the first nine months of 1953.

Unfilled orders, plus scheduled production under advance contracts, for Curtiss-Wright Corporation and its subsidiaries totaled approximately $736-million as of September 30, 1954.

General Electric Co.

During 1954 twenty-one of the General Electric Company's product departments and divisions were directly involved in the research, development and manufacture of aircraft products, components and systems.

The battle-tested J47 series engine was further improved and developed by many engineering advances. Among these was the introduction of low pressure drop nozzles and detergent additives which allow higher flow rates for the water and alcohol "highballs" served to the J47 jet engines.

Another improvement was the introduction of a ceramic coated combustion liner, which resulted in significant savings of the strategic materials.

The J47-27 turbojet engine was installed as the power plant for the new North American TF-86, the two-seater training version of the Korea-famed Air Force B-86 Sabre Jet.

During the year the B-47E, operational bomber, and the RB-47E photo-reconnaissance airplane were equipped with J47-25 engines capable of 6,000 pounds of thrust each. This gave these Stratojets 50 percent more
power than that which took the XB-47 into the air at Seattle, Washington, for the first time seven years ago.

Speed records set by G-E powered aircraft during the year include a new cross-country mark of four hours, eight minutes from New York to Los Angeles; a new world's record of 649.3 miles per hour in the 500 kilometer speed run; and a new mark of 692.8 miles per hour in a 100 kilometer event.

In June, twelve of the nation's top jet fighter units met in Las Vegas for the finals in the Air Force's jet target shooting competition. Both the winners and runners-up were the Air Training Command's marksmen flying J47-powered F-86-F Sabre Jets.

In July, a B-47 bomber completed flights totaling more than 600 hours without having to overhaul or replace a single engine, setting a jet engine endurance record for this type of plane. During its 600 hours, the B-47 participated in the SAC Navigation and Bombing competition at Davis-Monthan AFB, Arizona, last October, two trans-Atlantic, non-stop flights and a 12-hour special mission in the U. S., as well as dozens of routine flying operations.

General Electric's newest production engine, the J73, was powering the North American F-86H. During the year, airplane and engine evaluation flights were made in the J73 powered Republic F-84J, the latest in the series of Thunderjets and their successors, the Thunderstreaks. Newest and most powerful of General Electric production engines, the J73 has considerably more thrust and lower fuel consumption than the J47, yet it is the same size.

New developments in titanium alloy and their fabrication made possible even greater use of these alloys for jet engine applications. The weight of the J73 production engine was reduced by the use of titanium alloys.

A new and unusually large compressor house was added to the division's facilities to test some of the advanced designs of compressors, combustors, turbines, and other jet engine components. In conceiving the design of the air moving plant, it was determined that the system should supply air to and exhaust from the test cells over a complete range of 0.0625 to 100 pounds per second and 0.05 to 20 atmospheres. Essentially, this air moving plant must, each minute, compress a volume of air equivalent to more than 20 box cars full into a volume equivalent to one box car full.

General Electric established and equipped an entire department within the Aircraft Gas Turbine Division solely for the purpose of investigating, developing, and demonstrating basic new principles in the fields of aircraft and missile propulsion systems and turbine driven aircraft accessories. Investigations were made in areas which bear on future products, including aerodynamics, mechanical design, controls, combustion, materials, processes, and measurements.

The consummation of component development programs was the demonstrator engine. This is a test vehicle which is designed, built, and tested to demonstrate and evaluate basic new engineering principles under actual operating conditions.

In addition to its own development and research facilities, the Com-
pany's division was backed up in its engine development programs by two research organizations in Schenectady. At the G-E General Engineering Laboratory, advanced measuring systems were developed so that AGT Development Department engineers could study phenomena such as the effect of geometry on the vibration characteristics of engine parts. At the G-E Research Laboratory, the Department programs were supported through research in metallurgical, chemical, aerodynamic, and combustion phenomena.

At the Aircraft Accessory Turbine Department the company reached volume production in its full line of accessory power equipment for reciprocating and jet engines. At its Lynn, Mass. headquarters, this department produced turbo-starters for the Martin B-57, afterburner fuel pumps for the North American F-86D, turbo-hydraulic pumps and turbo alternator drives for a new USAF bomber. In addition, production of turbo superchargers for military and commercial piston engine aircraft continued at a high rate.

Placed in production during the year was the new model CH-10 turbosupercharger, developed for use on the Boeing Super-Stratocruiser now making non-stop trans-Atlantic flights for Pan American World Airways.

The Small Aircraft Engine Dept. was developing a gas turbine engine for helicopters which will be comparable in size to the conventional piston power plant but many times as powerful. Designated XT-58, the engine is being designed for the Navy's Bureau of Aeronautics primarily to power helicopters. However, with some modifications, it can be adapted as a
power plant for fixed-wing aircraft either as a turbo-prop or turbojet.

GE's Electronics Division continued the search for better radar in 1954. The Tube Department announced development of a new five-inch cathode ray tube for radar, with a high-resolution electron gun which provides an exceptionally narrow trace on the screen to considerably aid target identification. It also unveiled a three cm. pulse magnetron, designed for reliable operation without pressurization up to 60,000 feet, for use in airborne radar gunsights.

At the Company's Electronics Park in Syracuse, N. Y., a powerful new radar height-finder was in production. It detects planes three times as far as previous units of this type. Meanwhile, the Light Military Electronic Equipment Dept. at Utica, N. Y., produced the most powerful airborne radar ever built. It is installed in a new Lockheed long-range, high-altitude reconnaissance scout plane, patterned after the Super Constellation transport, and is used by Navy and Air Force as a flying radar station over the Atlantic and Pacific.

During the year the company found new aviation uses for silicones in answer to a number of problems. The Construction Materials Division with headquarters in Bridgeport developed a silicone rubber wire answering the problem of the increase in ambient temperature of military planes.

Several silicone rubber compounds were developed by the Chemical Division in Pittsfield during 1954. The Plastics Department began production of super-tough Silicone rubber for use in jet engines and other aircraft equipment. Gaskets and "O" rings made from this type rubber have proved to be effective seals for synthetic base oils at temperatures as high as 375 degrees Fahrenheit.

The Silicone Products Department produced silicone fluids, named Viscasil Fluids, which can be poured freely at temperature extremes.

A lightweight, flexible tubing, highly resistant to wide temperature and pressure ranges, was developed from G.E.'s SE-100 silicone rubber compound as part of the de-icing system of the Grumman S2F-1 Sub-Killer airplane. It can withstand temperatures ranging from 250 to −65 degrees Fahrenheit and requires practically no replacement for the life of the plane.

The Company's Carbolyo Department began production in 1954 of vacuum melted, high-temperature alloys for turbine wheel buckets of jet engines and other applications. The new alloy, developed by the G-E Research Laboratory in Schenectady, N. Y., is capable of withstanding higher temperatures than any wrought alloy now in production.

The Company's Lamp Division at Nela Park, Cleveland, Ohio, announced availability of an improved airplane landing lamp that is expected to provide a longer and more uniform service life, a more stable beam pattern, lower maintenance costs, and greater assurance of safety than in previous lamps.

To aid in designing and testing aircraft motors, the Company's Specialty Component Motor Department, located in Ft. Wayne, Ind., installed new testing facilities for shock tests up to 100 G's, vibration to 100 cycles per sec., cold tests to −112 F., and altitude work up to 100,000 feet.
The industry

The department develops and builds motors for both aircraft and missile applications. These motors are usually designed for 24-volt d-c, or 400-cycle, 208-volt systems. Major applications include tail wheel retractors, wing flap control, propeller pitch control, cowl flap actuators, radio tuners, phasing control, radar spinners, synchronizers, and computer, pump, and servo-motors.

Continuous scientific research and technological development for better instrumentation and metering of aircraft equipment in flight functions was being carried out by the Instrument Department’s Measurements Laboratory at Lynn, Mass. Among the developments announced during 1954 was the MA-1, a light weight compass system for aircraft. This new navigational aid has a free gyro drift rate of less than 4° per hour, far surpassing the old 12° to 18° drift rate standard. The department manufactures over 50 kinds of aircraft meters and instruments, including tachometers, magnetic compasses, fuel indicators, temperature and pressure indicators, flap and landing gear position indicators, and mass fuel flow meters.

The Apparatus Sales Division’s aviation engineering unit developed an automatic aircraft generator and protective system which parallels an aircraft’s 400 cycle alternators without human supervision. Also developed during the year were two a-c electrical systems which require no attention from the pilot.

Placed in production during the year was a new a-c generator protective and control system specially developed for the Douglas B-66 bomber which provides greatly improved protection against over and under excitation of paralleled generators.

During 1954 information was released concerning Vulcan, a rotating gun firing mechanism with an extraordinarily high rate of fire, which was developed by the Aeronautic & Ordnance Systems Division for the Army Ordnance Corps. Vulcan underwent installation and firing tests during the year. The Aeronautic and Ordnance Systems Division which is responsible for a wide range of highly engineered systems and products, includes an Aircraft Products Department, a Naval Ordnance Department, and a Guided Missiles Department. It also is responsible for the operation of the Company’s Flight Test Laboratory in Schenectady, New York.

Improvement on the FC-5 flight control system continued, and a contract was signed for installation of the system in a new Air Force fighter.

Production and delivery of the G-E designed remote-controlled radar-directed defensive armament systems for Boeing B-47 Stratojet bombers continued, and a contract for installation of an improved version of the system in Douglas B-66 bombers was announced during the year.

The Flight Test Laboratory continued extensive developmental and experimental testing of the Company’s aviation products and jet engines. Three new planes on embalment from the Air Force were added to its fleet of jet and piston engined “flying laboratories,” making a total of nine available.

Testing programs completed during the year included those on the Company’s newest jet engines, flight and engine control equipment, radar, armament systems, and other electronic equipment.
The AIRCRAFT YEAR BOOK

Lycoming Div.
Avco Manufacturing Corp.

During 1954, it was disclosed that the Lycoming Division was working on two confidential contracts for gas turbine engines for the United States Air Force. The work on the division's first gas turbine engine was substantially advanced by the end of the year.

At the beginning of the year, the division, previously separated into a Bridgeport-Lycoming division (Stratford, Conn.) and Lycoming-Spencer division (Williamsport, Pa.) was consolidated into one division, with headquarters at the Stratford plant.

Lycoming continued production of aircraft engines for commercial and military uses in horsepowers from 65 to 1525. In addition to more than 55 Lycoming engine models, Lycoming builds the R-1820 and R-1300 radial engines for the military under license from Curtiss-Wright.

During the year, Lycoming announced the development of a new air compressor for the starting of jet aircraft, the CA125, which could be mounted on skids, on a trailer, on a truck, or as part of a self-propelled vehicle. It continued its production of complete assemblies, such as the rotor assembly for Piasecki helicopters, of component parts for jet aircraft, of gears and machine parts, of castings, of hardened and ground precision parts and of industrial engines.

Marquardt Aircraft Co.

Late in 1954, Olin Mathieson Chemical Corporation acquired a substantial interest in Marquardt Aircraft Company. Olin Mathieson counts among its activities the development and production of high energy fuels and holds a substantial interest in Reaction Motors, Inc., producer of rocket engines for guided missiles.

Marquardt observed its tenth anniversary during the year. Employment for the company totalled 1100 at year-end.

Much of the achievement recorded by Marquardt in the field of supersonic ramjets remained cloaked in military security, but the engines established records for speed, distance and endurance well up in the supersonic range. Most of these records were established in 1954 under actual flight conditions on missile test beds. In all cases the supersonic ramjet performed as predicted and in some instances exceeded performance expectations.

146
THE INDUSTRY

Substantial additions were made to the Marquardt Jet Laboratory during the year, including the installation of new test cells, sponsored by the U. S. Air Force, which provide for more versatile use and control of air employed in testing ramjets and related components. The U. S. Navy sponsored a modern facility for testing gas turbines and afterburners. This test cell has complete instrumentation facilities and thorough silencing of intake air and exhaust gases.

In all, Marquardt Jet Laboratory embraces a total of seven test cells, while its compressors and air storage tanks provide the equal of 165,000 horsepower in rate of discharge.

Additions to the company's manufacturing and engineering facilities also were made during the year. These included the acquisition and installation of machine tools, and the construction of a company-financed engineering building which added 30,000 square feet of space to the plant facilities.

During the year Marquardt made significant strides toward its objective to engage in the volume production of the products it develops. These strides were evident particularly in the field of air turbine powerplants and turbojet and afterburner exit nozzles. One type of the latter incorporates a reverse thrust nozzle which increases the safety, range and operating efficiency of turbojet powered aircraft.

Development work related to afterburners for turbojet engines represents a substantial portion of Marquardt's volume of business. In addition to the development of complete afterburner, the company has orders for test quantities of variable exit nozzles from several manufacturers of turbojet engines, thus broadening the base of operations in this field.

As part of its work in the ramjet field, Marquardt has developed auxiliary air power turbines and controls for ramjet engines. As other applications developed, the company became more active in the field of auxiliary air power turbines for piloted aircraft. Orders for a quantity of these drives was received from the USAF for a new fighter aircraft. A contract for the development of a turbine drive supplying both hydraulic and electric power for a new Navy fighter represented another facet in the company's diversification program.

Pratt & Whitney Aircraft Div.
United Aircraft Corp.

Quantity production of the company's J-57 turbojet engine moved into high gear during 1954, research and development facilities at the Andrew Willgoos Turbine Laboratory were greatly expanded, work on the development of an atomic aircraft engine continued, and the Air Force announced a contract for a new Pratt & Whitney Aircraft jet engine, the YJ-75. The company announced that it has a new turboprop engine, the T-57, under development.

During the year production models of the Air Force-sponsored Boeing Aircraft Company's B-52 intercontinental bomber flew. The B-52 is powered by eight J-57 engines. During the 1954 National Aircraft Show at Dayton, a B-52 traveled faster cross country than the jet fighter which was
the winner of the Bendix Speed Race. The B-52 averaged 624 miles per hour and the fighter, 616.2 miles per hour.

As 1954 drew to a close, increasing numbers of the North American Aviation's F-100, powered by J-57 engines with afterburners, were being delivered to the Air Force for operational use.

Besides the F-100, two other J-57 powered fighters with afterburners exceeded the speed of sound in their first flights. These were the production model of the Douglas Aircraft Company's F4D Skyray, a Navy fighter, and the Air Force's twin-engined F-101 Voodoo, manufactured by McDonnell Aircraft.

Flight testing of the Convair F-102, Air Force fighter, powered by the afterburner J-57, and the Navy's twin-jet (J-57s) attack bomber, the Douglas A3D, were begun during the year.

Boeing's 707 tanker-transport first took to the air on July 15, 1954. Four P&W J-57s power this aircraft. The Air Force has ordered the tanker version of this aircraft, designated the KC-135, into production.

Working under Air Force and Atomic Energy Commission contracts for the development of an atomic aircraft engine, P&W continued its research during the year. In October, an additional 97,000 square feet of new working space in South Windsor, Connecticut, was leased by the company. P&W is recruiting the services of qualified nuclear engineers. The Air Force announced plans to construct a multi-million dollar atomic engine research facility in Conn. to be operated by Pratt & Whitney Aircraft.

The 5,700 horsepower Pratt & Whitney Aircraft T-34 turboprop engine was in the advanced stages of flight testing as 1954 drew to a close. Two four-engined aircraft, the giant Douglas YC-124B Globemaster for the Air Force, and the Navy's Lockheed R7V-2 Super Constellation took to the air. A T-34 powered version of the Boeing four-engined C-97 Stratofreighter (the YC-97J), is slated to fly early in 1955.

Production of the 7,250-pound-thrust J-48 centrifugal-flow jet engine continued in 1954. This engine was slated to be phased out by the last quarter of the year but the Navy ordered a substantial additional quantity of the J-48-P-8 engines. Delivery of these engines will start in 1955. The Navy has also ordered parts to modify an earlier version of the J-48 (the J-48-P-6) to the more powerful P-8 model. The conversion will include the installation of Waspaloy turbine blades and an increased rear inlet screen.

On April 1, 1954, three J-48 powered Grumman F9F-6 Cougars set a new transcontinental speed record by flying from San Diego, California, to New York City in less than four hours. The fastest time was recorded by Lieutenant Commander Francis X. Brady, who flew the 2,438-mile route in three hours, 45 minutes and 30 seconds.

In addition to jet engine production at the main East Hartford plant,
assembly and testing of R-4360 Wasp Majors and R-2800 Double Wasp piston engines continued at a steady pace. Present models of the R-4360 are expected to be phased out during the second half of 1955, but production of the R-2800 will continue through 1955 and beyond.

The Andrew Willgoos Turbine Laboratory, largest privately owned gas-turbine laboratory in the world, put three large new test cells into operation during the year. These test cells were built to accommodate the largest engines now under development.

A dam and pump house was constructed on a brook running through company property at East Hartford and was put in operation in September. A 4,000,000-gallon reservoir collects drain water which is pumped into the test cells for spray-cooling exhaust gases from afterburner jet engines.

In July Pratt & Whitney Aircraft metallurgists announced the development of a nickel-based, heat-resisting alloy called “Waspaloy” for use in jet engine turbine blades. Waspaloy turbine blades installed in the J-48 engine have boosted that engine’s power rating to 7,250 pounds of thrust.

Jet parts manufacture was extended into the branch plants at North Haven and Southington, Connecticut. While the main function of the branch plants continued to be the machining of parts for the R-4360 Wasp Major and the R-2800 Double Wasp piston engines, several piston departments were rearranged and jet parts production installed.

More than 33,000 people, working on three shifts, were employed by P&WA at the end of the year. Production, engineering, research, inspection and warehouse space totaled more than 6,000,000 square feet, all located in Connecticut.
The AIRCRAFT YEAR BOOK

Reaction Motors, Inc.

During 1954, Reaction Motors, Inc., producer of liquid propellant rocket engines, continued its growth in the rocket industry. December marked the company's thirteenth anniversary.

RMI 20,000 pound thrust engines have powered the entire series of Martin (Navy) Viking high altitude research rockets. In May 1954, Viking No. 11 under RMI rocket power rose to a world's record altitude for single stage rockets of 158 miles and achieved a peak velocity of over 4300 mph.

The newest RMI development in rocket power was unveiled during 1954. Tiny rotor-tip rocket engines to provide helicopters with added lift have been successfully tested in Marine Corps helicopters resulting in appreciably greater aircraft performance.

Early in the year, the Mathieson Chemical Corporation, producer of industrial chemicals, agricultural chemicals and pharmaceuticals, acquired an interest in Reaction Motors, Inc.

A joint Navy-RMI $4-million construction program was underway at year-end to provide greatly expanded and improved rocket facilities. The new plant will consolidate in one area the administrative offices and the manufacturing, engineering and research divisions. Nearly 200,000 square feet of specially equipped plant area will house these divisions on a 50-acre site near the present Rockaway facility. Test installations at Lake Denmark, seven miles from Rockaway, will be improved and expanded as part of the programs. RMI will occupy these new facilities in January 1955.

Westinghouse Electric Corp.

Expansion and consolidation of plant facilities, and continuation of extensive programs for development and production of equipment for aircraft and airborne operations keynoted the 38th year of Westinghouse activity.

As part of the Company's current $296-million expansion program, now 75 percent complete, a new development laboratory with ultra modern facilities will be constructed at the Westinghouse Aviation Gas Turbine Division.

Carrier trials of the Chance-Vought F7U-3 Cutlass, powered by two Westinghouse J-46 engines, were successfully completed early in 1954. This engine develops about 6000 pounds thrust and is designed for multi-engine airplanes.

Westinghouse designed and constructed large axial-flow compressors and drive motors (83,000 horsepower) for the Air Force's giant Propulsion Wind Tunnel at the Arnold Engineering Development Center, Tullahoma, Tenn. By mid-1955 it was expected that checking and calibration of the transonic tunnel would be underway. Equipment for the companion supersonic tunnel was being assembled on the side. Each tunnel will be served by its own enormous axial-flow compressor and both will be driven by four motors totaling 216,000 horsepower.

A 30-kva, constant-speed (5700 to 6300 rpm) alternator was built by
the Small Motor Division to contend with the extreme conditions of air temperature, flow, and moisture content encountered in modern flight. Because of the plane speed the cooling-air temperature at low altitudes is 200 degrees Fahrenheit, and the alternator must also be able to accept up to nearly two quarts of water per minute in the air stream.

Silicone insulation is used throughout the machine. This permits operation with hot-spot temperatures of 480 degrees Fahrenheit. Air is bled from the main stream at eight different places plus an air bleed through the shaft to maintain the rear bearing at normal temperature.

Another development in aircraft alternators was a 400-cycle alternator that will develop 40 kva with intake air at sea level at an effective temperature of 250 degrees Fahrenheit, and at 50,000 feet, of 100 degrees Fahrenheit. Also, aerodynamic considerations at supersonic speed permit only 3/4 the weight of air flow ordinarily available at high altitude.

Westinghouse engineers have designed a control that automatically starts up and parallels the alternators of an aircraft electrical powerplant. Not only does this mean one less thing the pilot has to do, it also means better electrical performance, less likelihood of the pilot making an error, elimination of considerable wiring, and a few pounds net reduction in weight.

In multi-engine planes, such as the eight-engine Boeing B-52, should one generator fail, another is cut in automatically. This transfer scheme comprises two units—a transfer contactor and the control unit that senses when transfer is necessary. The sensing element embodies a saturating reactor operating in a high-gain circuit and includes a time-delay element to override system transients.

Material engineers at Westinghouse have developed a new diaphragm sensitive to minute changes in air pressure. Design factors: the flexing of only a few thousandths of an inch be essentially the same at —30 degrees C and at 110 degrees C as at room temperature; the diaphragm be air tight, not absorb moisture, and be able to withstand vibration and shock common to airborne apparatus; production models of the diaphragm possess a high degree of uniformity.

A new radar coupler developed by the Company’s Air Arm Division combines the abilities of the fire-control radar system with the W3A autopilot. Once the radar has picked up a target, it directs the autopilot, which then proceeds to align the fighter plane for the kill. When the pilot presses a button, rockets are launched automatically as soon as the enemy craft is in range. An indicator system then advises the pilot to bring the plane out of the attack to prevent collision.

A dime-sized gyroscope motor has been designed by Westinghouse for application where space is at a premium—on the moving antenna of aircraft fire-control radar. The “inside-out” synchronous motor has a tiny wound stator; the rotor is also the inertia wheel of the gyroscope. This inside-out design, common to gyroscope motors, permits an element with a large polar moment of inertia to be built into a small space. The 2-phase, 400-cycle motor operates on less than a volt per phase, and revolves at 8000
rpm. The gyroscope measures the angular movement of the antenna, enabling computers to calculate firing information.

Another development of the Company’s Air-Arm Division was a magnetron power supply for conventional magnetrons (such as the 4J50) used in radar systems. It is composed completely of static parts—saturating reactors, linear reactors, and capacitors. Operating as a pulse modulator, it supplies 400 or 800 pulses per second, with pulse widths from a fraction to several microseconds. The new device is designed for airborne radar applications where conventional tube modulators cannot pass vibration and shock specifications.

In the field of transistors, Westinghouse expanded its available products during the year. The Company announced that three new germanium PNP junction transistors were available from the Company’s Electronic Tube Division.

The transistors (Types 2N54, 2N55, and 2N56) are designed for low-power, low-frequency amplifier applications. Each is capable of dissipating 200 milliwatts at 25 degrees C. All are provided with leads for wired-in installation. The average cutoff at the 6-milliwatt power level is 500 kilocycles.

The average current gain of the transistors are: 2N54—0.97; 2N55—0.95; 2N56—0.92.

A new lubricant, formulated solely of silicone monomers, with no additives, was undergoing trial by Westinghouse Research engineers during the year. The tests at year-end indicated from 100 to 200 degrees Fahrenheit greater range in thermal stability. It was tested to loads above 2400 pounds per inch of gear tooth face, exceeding the military specification requirements by more than 700 pounds.

During the year Westinghouse engineers were designing a 4000-horsepower d-c motor to drive a stand used for testing helicopter blades, the largest vertical d-c motor ever built by Westinghouse. It is quite similar to vertical waterwheel generators, having a thrust bearing at the top and a guide bearing at the bottom. It was being designed so that the power on this test stand can be subsequently doubled by adding an identical motor in tandem with this first unit.

Helicopter blades must not be subjected to sudden accelerating torques, especially at slow speed. In addition to a “soft” start and smooth control over the entire operating speed range (125 to 275 rpm) extremely accurate positioning of the rotor blades for adjustment is necessary. The control can index the shaft within two degrees over a sector of 45 degrees.

In 1954 the aircraft department of the Small Motor Division completed a four-engine mock-up facility for aircraft a-c electric power systems that is larger, more flexible, and can duplicate more conditions that might be experienced in flight. It incorporates hydro-mechanical, constant-speed drives commonly employed in aircraft. The motors that supply the primary power are each of 200 hp, enabling alternators of 90 kva to be tested. Provision is made for quick set-up of a system. Instrumentation is extensive, of permanent type, and is supported with oscillographs, oscilloscopes, and
recorders. Meter readings can be recorded photographically—a necessity in view of the 60 instruments employed. Special provision is made for simulating the more common system faults. Such situations as an alternator slipping a pole can be created and the results measured.

A specially-designed vacuum-treating equipment is used for Fosterite impregnation of transformers and other components at the Westinghouse Air Arm Division. Fosterite-treating improves heat dissipation and dielectric properties of the component, and renders it impervious to atmospheric conditions.

The Fosterite process was developed to give airborne electronic equipment maximum environmental protection with a minimum of size and weight. An outer coat of highly-viscous resin is applied and cured; the impregnating resin is then introduced under vacuum to provide complete filling.

The aircraft department of the Small Motor Division now has a bearing tester possessing several novel features. It provides for independent variation of four parameters: load (both thrust and radial), speed, temperature, and vibration.

A horizontal table has space for two sets of 24 bearings. The table is spring-mounted so that its own natural frequency is low. A circular vibratory motion (similar to that experienced in aircraft service) is imparted to the table by a motor driving through a connection with an unbalanced weight. A force of 3380 pounds at 10,000 rpm can be developed. Eleven different frequencies from 86.4 to 287.5 cycles per second are obtainable.

While the tester is not yet fitted for supersonic research, it will reproduce the other environmental conditions likely to be encountered on aircraft. To isolate the effect of temperature, one set of bearings can be held at any convenient temperature while that of the set is varied at will up to 160 degrees C, all other conditions of load, speed, and vibration meanwhile being held common.

Westinghouse dime-size motor
Another research tool completed last year by the aircraft department of the Small Motor Division was a high altitude chamber that can duplicate conditions of 65,000 feet on a 120-kva machine or 80,000 feet on one of 90 kva. For some equipments altitude equivalents of 100,000 feet are possible. The new quarter-of-a million dollar high-altitude laboratory can not only carry the temperature down to —55 degrees C, but also up to 120 degrees C. Thus, rotating machines can be subject to a temperature range of 175 degrees C (314 degrees F.)

Another new research tool of the aircraft department was a new feedback test stand devised to meet the requirements of large aircraft alternators. Alternators are now tested in pairs, loading one against the other, so that the total energy supplied is only that of their combined losses. A 100-hp d-c motor drives a gear with two output pinions, one to drive each flange-mounted alternator. The flange-mounting plate for one, however, can be rotated through several degrees by a small motor driving through a gear. Thus the phase difference between the two machines on test can be varied continuously. Since torque depends on phase difference, any desired real load up to about 300 horsepower can be applied. Power factor is varied by changing excitation, instead of using large, expensive, and unwieldy reactors.

PROPELLER MANUFACTURERS

Aeroproducts Operation, Allison Div.

General Motors Corp.

Dayton, Ohio, has experienced a year of increasing activity in the development of propellers for turboprop aircraft. Significant progress in turboprop development was made in 1954 with the successful flights of the converted Convair 340 to the Air Force C-131C equipped with Aeroproducts propellers, powered by Allison T-56 turbine engines. Over 200 hours of multi-engine flight time have accumulated on propellers on this installation, which is the first Air Force sponsored turboprop on flight status. Also, 1954 brought the total propeller flight time to nearly 1000 hours on the Allison Turboliner, the first American commercial turboprop, which has proven the practicability of the turboprop aircraft. Aeroproducts is supplying contra-rotating turbo propellers for the Convair R3Y Tradewind, the Navy’s first turboprop seaplane transport, powered by four Allison T-40, 5500 eshp turbine engines. Other turbo propellers are under development at Aeroproducts, and recently a new model for another Air Force installation has passed engineering tests at Wright-Patterson Air Force Base.

Although considerable emphasis has been given to development of turbo propellers, Aeroproducts has continued to supply propellers for the Air Force Fairchild C-119 “Flying Boxcar,” the North American T-28 trainer, and the Navy’s Douglas AD series carrier based aircraft.

There has been a continuing program at Aeroproducts of manufacturing self-locking hydraulic actuators, with an electric emergency drive, for in-
installation on the Republic F84F jet fighter. The emergency electric feature of this actuator enables pilots to trim the “flyable tail” and safely land their aircraft when failure of the aircraft hydraulic system occurs.

Delivery of Aeroproducts Synchronized Linear Hydraulic Actuators also began in 1954. These actuators are installed on jet engines of undisclosed design to operate variable exhaust orifices, and on the air inlet doors of a ram-jet engine. Four units are required on each engine, and will operate in synchronized travel regardless of the load differential at each actuator. Aeroproducts synchronized actuators include the special features of low inertia of synchronized parts, and the lubrication of moving parts by the operating hydraulic fluid. Infinitely variable positioned brakes can be incorporated into actuators of this design to provide fail-safe systems or controlled locking. This brake enables aircraft engineers and designers to provide emergency actuator operation by incorporating a pneumatic override system.

Air Driven Emergency Generator units which are lowered from fuselages of aircraft during emergency electrical power failure are now being manufactured by Aeroproducts Operations for installation on the Navy Douglas A4D Skyhawk. These generators were designed to meet the aircraft industry’s need for a dependable yet light weight emergency electrical power source.

Aeroproducts air driven generators consist primarily of two bladed variable pitch windmills. A simple fly weight-type governor maintains a constant RPM of the generator rotor by mechanically changing the pitch of the propeller blades. This governor maintains a constant RPM of the generator rotor by mechanically changing the pitch of the propeller blades. The governor mechanism is entirely mechanical and does not rely on the electrical system in any way for its operation. When extended into the airstream, the blades unfeather automatically and the generator accelerates to the designed speed in less than five seconds.

An increase of 9000 square feet in the manufacturing area was under construction at Aeroproducts. Requirements for this expansion became necessary following contracts for additional propellers for installation on Air Force C-119 Fairchild “Flying Boxcar” and the Navy Douglas AD carrier based aircraft.

Hamilton Standard Div.

United Aircraft Corp.

Hamilton Standard’s operations during 1954 were marked by continued growth of its aircraft equipment business, expansion of its experimental and production facilities, delivery of its first production turbine propeller, the Turbo-Hydromatic, and continued production of its Hydromatic propellers for commercial and military aircraft.

In the commercial propeller field deliveries of the 43E60 reversing Hydromatics continued for Douglas DC-6A’s and DC-6B’s, Convair 340’s and Lockheed 1049 Super Constellations. Also important, commercially, were deliveries of 34E60 reversing Hydromatics for Douglas DC-7’s and
The AIRCRAFT YEAR BOOK

DC-7C's and 22D30 Hydromatics for Beech D-18's. During the year the entire modern DC series (DC-6 and DC-7) as well as the Boeing 377 Stratocruiser series became 100 percent equipped with Hamilton Standard propellers.

In the military field, propellers were in production for the Lockheed C-121C, R7V and other versions of the Constellation; the R6D and C-118 versions of the DC-6; the Boeing KC-97F, the Fairchild C-123 and the C-119F version of the Packet; the North American AJ-2 and T-28B; Lockheed P2V, Grumman S2F-1, UF-1 and SA-16A; Consolidated Vultee C-131A, and T-29B, C and D, and the Martin P5M.

Production was resumed of the old 12D40 controllable counterweight propeller which was first designed and produced in 1933. The re-order was for replacements for Air Force and Navy trainers.

Delivery of the first production Turbo-Hydromatic propellers was of major significance. Backed up by an exhaustive laboratory and flight test program at Hamilton Standard, the Turbo-Hydromatics were installed on the Lockheed R7V-2 Super Constellation. They helped give the R7V-2 a cruising speed of 440 mph, making it the world's fastest propeller-driven transport.

During the year, Hamilton Standard continued to produce air conditioning systems, refrigeration units, starters, fuel controls, hydraulic pumps and valves for major manufacturers of turbine engines and aircraft. Thirty-eight different aircraft models were using one or more of the division's equipment products.

Among the turbine aircraft for which Hamilton Standard equipment was either in production or on order: Boeing B-52, C-97J, 707; Canadair F-86E; Chance Vought F7U-3, F8U; Convair F-102, R3Y, YC-131; Douglas B-66, A3D, F4D, A4D; Grumman F9F-9; Lockheed F-94C, C-130; McDonnell F3H; North American F-86D, FJ-2, 3 and 4; F-86H, F-100.

Among the engine builders using the division's equipment items were Pratt & Whitney Aircraft, Wright Aeronautical, General Electric, and, in Canada, A. V. Roe.

In England, deHavilland received its first production order for its version of a Hamilton Standard air conditioning system, for which licensing arrangements were completed in 1953. The system will be used in a new Royal Navy Supermarine carrier fighter. In addition, deHavilland, which has been building Hamilton Standard propellers under license for over 20 years, last year signed a license to manufacture Hamilton Standard Hydromatic pumps.

Construction of a two-story addition to Hamilton Standard's pneumatics laboratory was completed and operations were in full swing in the new structure by the end of the year. The steel and concrete building doubles the floor area available for the division's research and development in pneumatics. It houses highly-specialized equipment reflecting the growing demands imposed on aircraft air conditioning and pressurization systems and

156
starters by the jet age and by the widely-varying operating and climatic conditions under which such equipment is used.

Among the test devices in the new structure: A sand and dust test chamber, a shock test rig, a centrifuge (for whirling parts on a beam to simulate tight turns and pull-outs of jet aircraft), a spin pit (for whirling turbine rotors to destruction), a simulated jet plane cockpit, an altitude chamber, an environmental chamber (to simulate various conditions of climate throughout the world), an electronic vibration machine (for fatigue testing of air conditioning equipment), four air conditioner test booths and five valve test rigs.

Also completed during the year was a 60,000 square-foot addition to the factory. One section of the addition will house two huge tube-reducing machines and a hot form press with ten times the capacity of the division's present steel blade equipment. A branch plant was opened in nearby Broad Brook, Connecticut, in facilities purchased from the Broad Brook Company, a textile firm. Situated in the plant are a variety of machining and inspection operations, most of them of an experimental nature; electronic experimental and assembly work, and engineering drafting. Employment remained at about the 8,000 mark throughout the year.

ACCESSORY MANUFACTURERS

The Aero Supply Mfg. Co. Inc., Corry, Pennsylvania, 38-year-old manufacturer of aircraft hardware and components, closed 1954 operations with a new president and a new board of directors, and with a substantial rise in sales as a result of these moves. William H. Coleman moved into the presidency of the firm last April following the new board's election of company officers.

In 1953, sales for the first six months were $3,018,000, jumping to $3,850,000 for the same period in 1954.

The installation of an incentive system, which hiked the plant's production; the inception of an aggressive public relations program which is acquainting the industry with Aero's potential, and a vast improvement in labor-management relations contributed to the firm's better business outlook.

In an effort to encourage new thinking in the fields of aircraft fuel systems and fuel system components, the company in 1954 announced the inception of the Aero-Corry Research Award competition, open to all students in accredited engineering colleges and universities in the United States and Canada. The competition is designed to attract new ideas and to engender an interest in the plant among potential young engineers.

Major new-product advance by the firm this year was the acquisition of the manufacturing rights to the Eckel valve, a recent development of V. W. Eckel of Northridge, California. Under the agreement Aero Supply will manufacture and sell a unique solenoid-operated shutoff valve about one-half the size and weight of most conventional type units.

Also in the field of new developments, Aero Supply has moved to eliminate the shortcomings of conventional flapper valves. The company's engineers have developed new type valves which act as flappers only when their
action is needed, during flight maneuvers of the aircraft and in case of occurrence of forces which would cause undesirable movement of fuel in tanks. On the ground, however, during the level movement of the aircraft, or under other preselected conditions Aero Supply's new valves remain safely locked in the open position and permit unrestricted fuel flow in both directions. The tanks can be fueled at the downstream side of the valves without the danger that the valve will be sucked into the closed position.

Ultrasound research and development was the chief activity of Aero-projects, Inc., West Chester, Pa., during 1954. Successful accomplishments in this field caused the company to expand its facilities to 15,000 square feet of floor space, a 150 percent increase over the previous year.

The most important phases of the programs were the application of ultrasonic energy at power levels in metallurgical problems and in emulsion manufacture. Of particular significance was the development of ultrasonic soldering equipment known as Sonobond which makes it possible to solder a variety of metals without the use of flux.

Ultrasonic soldering of aluminum also offers new weight-saving possibilities. With a practical means for soldering aluminum, steel and other metals can be replaced by aluminum.

A wide range of Sonobond equipment has been developed, from small hand models to heavy industrial units. Successful techniques have been developed for using this equipment to solve production problems.

Air Associates, Inc., Teterboro, N. J., designer, manufacturer, and distributor of aircraft products and electronic equipment, expanded its activities to new market areas in 1954 with the establishment of an international division. The new division will act as a central export sales agency for the other company divisions.

During the year, the company unveiled facsimile equipment which transmits and receives any printed or written matter over telephone or microwave circuits. Specially designed to speed-up inter/intra plant and office communication as well as record duplication, this electronic messenger delivers copies of any material up to 8½ x 14 inches in a matter of minutes.

Air Associates also introduced a new low-cost Aerotron line of radio and navigation equipment.

The company's product research and development program included such projects as a newly designed pneumatic valve which restores to a jet pilot the instinct-guiding feel in his automatic power controls; a test stand to check and trouble shoot pneumatic valves; a compact valve system capable of withstanding high temperatures and pressures; a complete line of lightweight, high performance 400-cycle (a.c.) motors; and several other products.

Outstanding events for the Aircraft Radio Corporation, Boonton, N. J., during the year included: choice of ARC radio by Navy and Air Force for their new primary trainer, T34; by the Air Force for their new intermediate twin jet trainer, T37; and by the Indonesian Air Force for their light aircraft.

The 430 employees of the corporation continued during the year to
manufacture airborne and navigation equipment and associated test equipment for both military and commercial uses, with over 80 percent of the work being military. Sales for 1954 totaled $8.2-million.

In 1954, *Aluminum Company of America* developed: a new super-strength aluminum forging alloy; new facilities for producing big forgings; the world's largest extrusion press; and a giant rolling mill for the production of tapered sheet. During the year, Alcoa's production of primary aluminum increased over 8 percent.

Probably the most important development of the year was the addition of an extrusion press of 14,000 ton capacity. During the spring of 1954, production was initiated on the 14,000 ton extrusion press at Alcoa's Lafayette (Ind.) works. This unit, which extended greatly the size of extrusions available, was the first major press to begin operations under the Air Force Heavy Press Program. The press can produce an extrusion having a finished weight as much as 2500 lbs. and at the same time measuring as long as 110 ft. The size that can be produced in that length has increased with the operation of the 14,000 ton press from 5.4 lbs. per foot to 22.7 lbs. per foot.

In combination with the 14,000-ton press, Alcoa installed a giant, 180 ft. long stretcher with a pulling capacity of 3,000,000 lbs. This unit can stretch-straighten extrusions long enough to finish at 110 ft. after cutting off grip marks.

For the past three years Alcoa has been operating a 15,000-ton forging press at the company's Cleveland (O.) works. Late in 1954, this unit was joined by a big 8,000-ton press. In the spring of 1955, two presses having 35,000 and 50,000-ton capacity were to be added.

Larger forgings from these giant presses will help provide an increase in the size of one piece aircraft structural components. A section made in one piece rather than one assembled from smaller components provides savings in assembly costs and weight in combination with better strength.

Alcoa also developed a new aluminum forging alloy, X7079, during the year. Alloy 7079 allows an improvement in the transverse ductility in heavy sections with strengths comparable to those of 7075 (75S). Because this new alloy develops these properties in heavy forging (over 3 in. thick)
cross sections, it will be particularly valuable for use in the big forgings that will be produced on presses of the 50,000 or 35,000 ton class. The better uniformity of properties in heavy sections is made possible because X7079 is less quench sensitive than 7075. These factors allow forgings to be delivered after heat treatment with normal guaranteed properties in sections up to 7 in.

Another advance achieved by Alcoa for its aircraft forgings was an improvement in tolerances offered. Press forgings in general are now available with very low draft angles (often 0° is possible). Design proportions have been cut by 25 to 50 percent.

The expansion of the company’s Vernon (Calif.) works was accompanied in 1954 by another west coast expansion at the Vancouver (Wash.) works where a new extrusion plant was put into operation.

Alcoa kept pace with demand for larger tapered sheet and plate during 1954 by initiating production on a big 144 in. tapered sheet mill at its Davenport (Ia.) works. The giant mill, leased to Alcoa by the Air Force, is capable of rolling tapered sheet and plate up to 10 ft in width.

During 1954, the company installed facilities at all of its five foundries for the production of castings under the Alcoa Plaster Process. This marked the perfection of the new process for large scale production.

In 1954, Anderson, Greenwood & Co. continued to expand its military business, accelerating design and fabrication of ground handling and launching equipment for pilotless aircraft, and initiating a contract involving jet-assisted projectiles.

Ground handling and launching equipment for pilotless aircraft proved to be a large project requiring investigation into complicated problems resulting in simple and economical solutions. Company high speed testing facilities were built in developing a private project, jet-assisted projectiles, for which, after two years of work, a government feasibility contract was received.

During development of high pressure ground equipment for pilotless aircraft, it was noted that in certain instances no accessory equipment was available to satisfy certain high pressure requirements. In solving this problem, the company developed valves, dessicators, and quick-disconnects that are now in production for both commercial and airborne use.

Engineering modification of B-47 aircraft, in process since 1952, was continued in 1954 for the Wichita Division of the Boeing Airplane Co. Complete engineering changes were handled both for aircraft on the production line and aircraft in service, for which kit changes were designed.

For Avien, Inc., Woodside, N. Y., 1954 was marked by introduction of the company’s Gravimetric Flowmeter. Requiring only a single wire between transmitter and indicator, and eliminating the necessity for intermediate power units, the system features true mass flow measurements for either integrated or rate indication, with totalizing available for multi-engine application.

Adapting its capacitance type fuel gage to the problem of gaging liquids
under extremes of temperature and pressure, Avien also introduced its Liquid Oxygen Gage, bringing previously unattainable accuracy and system simplicity to the function of measuring breathing oxygen.

The company’s Exhaust Gas Thermometer made available accuracy approaching that of laboratory equipment through the application of Avien’s d-c reference source and cold junction compensation, and use of servo-driven, long-scale indicator.

Other new products introduced during the year included the Thervel Liquid Level Switch and Remote Position Indication Systems.

In fuel gage manufacture, Avien continued its program of simplification and weight reduction with the full scale production of its two-unit system, including lightweight 2-tube tank units, single package indicator-amplifiers, and its moisture-proof subminiature connectors.

Production during the year averaged 1500 systems per month; plant and administrative employment totaled 550. Manufacturing and engineering floor space reached 80,000 square feet. Engineering facilities were expanded with the formation of a subsidiary, Control Laboratories, Inc., to carry out basic research and development on servo systems and controls. The company’s customer service activities were enlarged with the formation of Avien Service Corporation of California, at Culver City, California, to handle sales engineering and technical service for the West Coast area.

The BG Corporation, Ridgefield, New Jersey, during 1954 developed a new spark plug for installation in all of the current engines requiring a long-reach shielded spark plug. This development is a departure in design from current non-platinum aircraft spark plugs to provide excellent durability and performance. Testing to date has indicated promising results, and early approval is anticipated. Platinum electrode spark plugs are continuing in production at a high level.

BG also continues to manufacture ceramic terminal sleeves and spark plug and ignition harness test sets for use in conjunction with piston engine operation.

In the gas turbine engine field The BG Corporation is concentrating heavily on the development of igniter thermocouples and thermocouple harnesses for all of the major gas turbine engine manufacturers. Of special interest is the further success with the development of the semi-conductor igniter for use in conjunction with low tension capacitance discharge ignition system. New also is a vaporizing igniter for use in gas turbine engines utilizing low grade fuel oil.

In the field of gas turbine thermocouples and thermocouple harnesses, BG has now developed an integral thermocouple and harness assembly which is light weight and durable.

For the Electronics Industry, The BG Corporation has increased its line of special ceramics and is in large scale production on high alumina ceramic hermetic seal terminals and bushings in a variety of sizes.

At Bendix Aviation Corporation’s Eclipse-Pioneer Division in Teterboro, N. J., 1954 activities were varied and rapidly being adjusted to a competitive peace-time level.
Product activity at Teterboro continued to emphasize research and development in the fields of air turbine-driven accessory equipment, automatic flight systems, airborne precision components, and flight, engine and navigation instrumentation.

One area of research to which considerable effort was directed during 1954 was a Vacuum Tube Reliability Control Program aimed at the elimination of defective and potentially short-lived electronic tubes destined for critical airborne applications. The program provided data relating to the rate of change of prime criteria from which life expectancy computations could be made.

One of the most heavily-stressed areas of development during the year was Eclipse-Pioneer's air turbine-driven accessory program. By the end of the year an ever-widening variety of turbine-driven equipment was coming from Eclipse-Pioneer's development laboratories and being processed through the Division's expansive Air Turbine Facility. One of the developments to come out of this program was an air turbine starter for turbojet and turboprop engines which pioneered the use of titanium turbine wheels.

Other new turbine-driven units included a standby power supply for gyro flight instruments. Operable by either air pressure or vacuum, the unit developed 100 watts of 115-volt, 400-cycle power, included frequency regulation of ±5% and was capable of starting and operating as many as four gyro flight instruments. In a late stage of development was an afterburner fuel pump and metering system by which afterburner performance in jet aircraft could be modulated.

Included among the turbine-driven units which were in production as the year came to a close were such items as afterburner fuel pumps, water alcohol pumps, in-flight refueling pumps, and lightweight 9 and 15 KVA constant speed generators.

Long a leader in the manufacture of gyros, E-P placed substantial emphasis during 1954 on various levels of gyro development and improvement. A gravity shift erection system was also developed in E-P's gyro laboratories for use on various gyro flight instruments, including E-P's new remote attitude indicator system, reverse sphere attitude gyro, and vertical gyro transmitter.

On May 18, a flight under the guidance of a completely transistorized autopilot system was made in the Division's B25 Flying Laboratory. During April of the same year a completely transistorized autopilot system was delivered to the Air Force for evaluation in high performance aircraft and by year's end it had undergone numerous ground tests and installation checks.

Development of a PB-20 autopilot, representing a completely new design philosophy, was completed, and an executive autopilot, similar in design to E-P's PB-10 commercial autopilot, but lighter in weight and developed particularly for executive aircraft, was being readied for production. Earlier in the year Eclipse-Pioneer also made delivery of an autopilot for use on the Lockheed-built Vertical Take-off Navy fighter.

During 1954, the Pioneer-Central Division of Bendix Aviation Cor-
THE INDUSTRY

poration at Davenport, Iowa, was made completely autonomous in the sales, service, design, and production of oxygen equipment. Production of oxygen regulators and liquid oxygen converter systems was steadily increased during the year and intensive development continued on new types of oxygen breathing equipment.

Production and development of gyro equipment and fuel flow transmitters continued with the start of production of several new models.

Ultra-sonic cleaners, originally developed to meet the microscopic cleanliness requirements of breathing oxygen equipment and other products of this Division, were put into production for sale to other organizations.

The Hamilton Division of Bendix continued manufacturing jet engine fuel controls, flow dividers, aircraft carburetors, fuel pumps and other aircraft engine accessories requiring precision manufacturing techniques and extensive testing. In addition, a program of overhaul of jet engine fuel controls was initiated.

The Engineering Department of this division continued to develop jet fuel controls for engines in the low thrust class and on fuel and hydraulic pumps for both aircraft and missiles.

Up-to-date engineering facilities were provided in a new building with complete and modern laboratory equipment for development of engine and related components. The laboratory equipment includes a jet engine test cell for jet engines up to 5,000 pounds thrust and dynamometer equipment for pump development having power requirements up to 150 horsepower.

The gasoline filter manufactured during the year by the Bendix-Skinner Division is a filter and water separator used for gasoline and propellant fuel. The filter consists of a single demulsifier element and 12 filter elements mounted in a fabricated tank.

The tank assembly is welded nickel and copper alloy construction. A mounting plate is welded around the inside diameter of the tank to support the 12 filter elements. The lower portion of the tank forms a sump for collecting water, and pressure gage connections and vent valve are provided near top of tank.

The cover assembly contains a 2-inch inlet flange, Navy Standard B-176, and a vent valve and pressure gage connection. A sump gage assembly is provided for observation of the water level in the sump.

The demulsifier assembly consists of a pleated demulsifier element assembly filled with fibre glass and a nickel and copper alloy housing.

Each filter element assembly consists of a pleated element, spring and retainer, buffer plate, mounting ferrule, and gasket.

Four mounting brackets are welded to the outside of the tank.

Backwashing, or reversing the flow, may be used to remove accumulation of solids from the 12 filter elements.

A new Aircraft Temperature Indicator was developed by the Friez Instrument Division of Bendix which is especially suited to temperature indications of metal surfaces, carburetor air, cabin, cockpit, radome, and engine intake air. All can be shown on a single dial connected to a multi-point selector switch.
It is unique in that Thermistors are employed as the temperature sensing elements. The Thermistors can be made in various sizes and shapes. The sensing element, consisting of two pellet-type thermistors, is for surface temperatures. The indicator itself is compact, weighing less than one pound, and requires no amplification.

The indicator consists of a standard aircraft panel meter with a complete bridge circuit and power supply built into the back of the meter. The unit can be provided with a regulated voltage supply built in if required.

Bendix-Pacific increased its engineering facilities in 1954 with a new 23,000 square foot building. Several engineering achievements were added to the Bendix-Pacific hydraulic, electromechanical and electronic product lines.

A new self-displacing accumulator was developed to eliminate operational handicaps in remote installations and in closed loop aircraft surface systems. The accumulator incorporates double chambers and double pistons joined by a piston rod. Half the unit operates as a conventional accumulator while the second half acts as a displacement sump. The accumulator enables faster operation of powered flight controls with a reduction in size of pressure and return lines to remotely located servo valves.

A new line of high response servo valves for guidance systems of both missiles and aircraft also was developed. The small valves weigh less than a pound, are capable of operating on 8 milliamperes maximum differential current, and have a rating of approximately 10 horsepower.

A telemetering system using transistors was successfully developed and flight tested. A complete 3-band telemeter including the transmitter can be packaged in a cylinder 1 inch in diameter by 6¼ inches long.

The Electro-Span system of digital control designed for remote measurement and control functions such as shaft positioning, on-off switching and proportional control was released by the division during 1954. This system may be used in conjunction with any electrical transmission medium, including VHF radio, telegraph lines and microwave links. Voice communication can be time shared with telemetering and control where voice channel band-width exists. Operation of a true digital system such as Electro-Span is unaffected by such transmission vagaries as distortion, frequency drift or phase shift. Accuracy and resolution of a ten digit system is 0.1 percent.

Several new aircraft products, resulting from recent research and development programs, were in the production stage at the Bendix Products division, at South Bend, Ind., during the year.

Torque link power steering was produced for carrier based aircraft. Cerametallic brake lining had both military and civilian usage, and fuel metering controls were supplied for use on many of the newer, more powerful jet engines.

Direct fuel injection has been adopted on the new turbo-compound engines being used on the DC-7, Super Constellation and other airplanes. Direct injection equipment is also used on military planes such as the B-29's, B-50's and B-36's.
Bendix continued its fuel metering research and development activity including hydraulic mechanical improvement, electronic and magnetic applications and combinations. The Bendix approach is for complete systems including tail gate actuation, afterburner control and modulation, primary engine control with twin spool applications, variable inlet guide vanes, and so on.

This activity is supported by efforts for better engine instrumentation and engine analysis work such as the universal control or knob box applications. Basic development work was, in most cases, completed and engine type tests and airplane flight test were conducted.

Bendix Radio Division reported that the new Bendix RDR-1 airborne radar system for weather mapping and navigation was demonstrated for the first time at the annual meeting of the Aircraft Writers Association in Miami in June. The system, designed especially for airline and private aircraft use, was the first commercial one to be marketed in the country.

The RDR-1, weighing less than 137 lbs., was engineered to a specification prepared by the ARINC Airlines Electronic Engineering Committee, except for the frequency of operation. Instead of the specified frequency of 5400 mc (5.7 cm), Bendix Radio engineers chose 9300 mc (3 cm) or “X” band radar for the RDR-1.

In addition to the radome, which is not supplied by the manufacturer, five major units comprise the system: nose-mounted antenna scanner, control unit, PPI indicator, synchronizer-amplifier-power supply, and transmitter-receiver. The indicators and the control unit are normally available in the cockpit, while the remaining units are mounted in the radio rack.

RDR-1’s gyro-stabilized antenna scans 360 degrees, utilizing a pencil beam which will present an angle up to 120 degrees to either side of the

PPI Indicator on Bendix Airborne Radar System
The aircraft's heading, depending upon the configuration of the plane's leading edges.

Maximum range of the radar sweep is 150 miles. A switch on the indicator permits the display of ranges of 0-20, 0-50, or 0-150 miles. Range markers provide calibration at 5, 10 and 25-mile intervals respectively. An antenna tilt control provides adjustment of the beam elevation angle over a 30-degree range.

While designed primarily for weather purposes and as a storm warning device, RDR-1 has provisions for ground beacon navigation and terrain mapping.

While the A.C. power consumption is given for single-phase condition, the equipment can be used with single-, two- or three-phase supplies. The unit transmits on 9375 or 9255 mc., with a peak power output of 40 kilowatts, a PRF of 400 cps, and a pulse length of 2 microseconds.

The antenna rotates continuously at 15 rpm. Horizontal polarization is used and stabilization of the antenna may be maintained by use of the plane's autopilot gyro, or from a separate gyro if the plane is not equipped with an autopilot.

The Bendix ADF-70 radio compass receiver, also announced in 1954, was designed to replace previous Bendix receivers insofar as function is concerned. It requires only a ½ ATR mounting space and will be considerably lighter. Approximately 20 tubes are employed, all of which are miniatures, except the rectifier.

The LPA-70A flush-mounted loop antenna for the Bendix ADF system went into production in October. Another new product added to the list of Bendix Radio devices was the SCL-3 Selective Calling System.

The new ASR-3 airport surveillance radar and the PAR-2 precision approach radar, GCA equipment designed and built for installation by the CAA at major airports during the year, was also sold abroad by the Bendix Aviation Corporation.

During 1954 the Bendix Red Bank Division completed developments in the field of special purpose electron tubes and aircraft electric power generating and regulating system components. One was the mass production of a new Hard Glass Miniature Beam Power Amplifier RETMA 6094. This tube has been ruggedized to withstand extreme stress conditions and with an envelope of hard glass, it will operate at a bulb temperature of 572 degrees Fahrenheit for a minimum of 1000 hours as compared to 356 degree Fahrenheit for present tube types employing soft glass. The hard glass feature will help to break aviation's heat barrier created by high operational bulb temperatures and limiting space factors.

Red Bank has also developed a line of high temperature (type C) AC Generators designed for high speed high altitude military aircraft. Generators in a range of 20, 30, 40 and 60 KVA have been qualified. Complete systems including Feeder Fault Protection have also been designed for the generators and regulators are of the mag-amp (static) type with no moving parts.

Red Bank also developed during the year a 2500 VA Inverter incorporating mag-amp (static) regulators for both voltage and frequency con-
THE INDUSTRY

trol. This represents the first high output Inverter with static regulators capable of withstanding the extreme vibration and shock conditions encountered in missile operations.

The Bendix Scintilla Division produced in 1954 a new jet engine ignition system known as the TMGLN. This system differs from the conventional design in that electrical energy is provided by the system itself and not from an outside source.

A magneto is provided in the TMGLN system to generate the required electrical energy. This ignition system is standard equipment on the Curtiss-Wright J65W-4 engine.

New applications have been developed for the miniature jet ignition systems which are being used on air generators, aircraft heaters, auxiliary power units, compressors, and gas purge generators.

A high temperature electrical connector was developed by the Scintilla Division that provides a positive fire barrier for at least 20 minutes, and uninterrupted power for at least five minutes, when vibrated during exposure to a 2000 degree Fahrenheit flame.

Pesco Products Division, Borg-Warner Corporation, Bedford, Ohio, continued its development of aircraft fuel and hydraulic pumps and special application electric motors during 1954.

Introduced during the year was a line of small centrifugal fuel booster pumps for guided missiles, helicopters and executive aircraft. A new type line mounted centrifugal fuel transfer pump was also made possible by a new concept of impeller design, which provides fuel flow through long inlet lines and is instantly self-repriming in the event the inlet becomes uncovered during maneuvers.

A plug-in type fuel booster pump was made possible by the new impeller design. Mounted in the side of the fuel tank with an inlet line extending into the sump, the pump may be removed from a fuel tank without loss of fuel. This pump is self-priming and is equipped with a Pesco designed and built 400 cycle AC motor. For minimum weight, there is no seal between the pump and motor, and the motor runs full of fuel.

Pesco's gear type pressure-loaded pumps kept pace with jet-engine development in their requirements for high pressure fuel. Latest developments incorporated three gear-type high pressure pumping elements and a centrifugal inlet booster in one housing with all of the necessary valves and filters.

In the field of hydraulics, Pesco continued development of Cartridge Pumps for propeller governors and guidance servo controls. These pumps provide pressures to 3000 psi without the necessity of drive shaft seals or external connections.

A high speed hydraulic pump was developed especially for guided missiles. Operating at 12,250 rpm, the pump is rated at 2.4 gpm at 3000 psi discharge pressure pumping hydraulic fluid at 250° F., yet weighs only 3 pounds.

Late in the year, the opening of Pesco Pacific Service Center in North Hollywood, California, was announced. This facility was expected to be in full operation by the beginning of 1955.
Boston Insulated Wire & Cable Company of Boston, Massachusetts, during 1954 supplied the industry with a wide variety of its wires and cables which were developed for aircraft service. Of particular note are the high-temperature wires for power, lighting and communication circuits used where ambient temperatures exceed 100 degrees Centigrade.

BIW Type PFGGV-600 was available in sizes from 22 to 0 and its external coverings are such that when exposed to flame, they remain an insulator so that in case of fire in a plane or around an engine, the cable will not short-circuit.

Development work continued toward the manufacture of special cables for fuel gauges where the insulated cable is actually immersed in gasoline without deterioration or change in electrical properties. Development work also was carried out in the design and manufacture of small diameter, small gauge wires for communication and instrument circuits where voltage drop is of little consequence.

Improved electrical shielding was an important project at the company with production of braid shieldings of lighter weight with greater degree of noise suppression of ignition circuits than formerly employed on aircraft.

Coaxial cables employing DuPont's teflon, the high-temperature low loss plastic, were manufactured by the company in a wide variety of sizes and types for aircraft use.

An entirely new design of electrical wiring for guided missiles was developed by the company in 1954 and after long periods of testing by the missile manufacturer, this cable was chosen as the most satisfactory to withstand the very unusual service conditions of extreme heat and cold as well as other rigid requirements. Production facilities were set up and production established in the necessary quantities of this cable.

Plastic coated leads and wiring harness have been developed for use on ground radar equipment, missiles, sonar equipment, and other such applications. These leads and harness are thoroughly resistant to fuels, oil, ozone, acids, tearing, age, abrasion, moisture, fungus, and flame. The design of this equipment permits convenient adaptation to new installations.

The Connecticut Hard Rubber Company, New Haven, Conn., during 1954 developed new constructions for low temperature and high temperature resistant silicone rubber coated fabrics using glass cloth, Nylon, Orlon and Dacron as base materials. In addition, a line of fire resistant silicone rubber coated glass cloth found increased applications as fire wall seals and duct covering.

Activity was stepped up in extruded silicone rubber seals and fabric covered silicone rubber and silicone sponge rubber seals for heavy duty applications. Cohlastic HT, a silicone rubber compound with double the tensile strength and abrasion resistance of commercially available silicone rubber, was announced during the year. A silicone rubber inflatable cockpit seal was also developed.

Work in electrical de-icing and heating continued at a high level in 1954 with the development of heating elements laminated and sealed between metal skins.
THE INDUSTRY

The Dow Chemical Company of Midland, Mich., in addition to being a supplier of primary magnesium metal and alloy ingot to various aircraft foundries and other magnesium fabricators, produces magnesium sheet, extrusion, and tooling plate. This material is produced on 4-hi coil mills ranging from 18 inches to 84 inches wide and extrusion presses ranging from 1700 to 13,200 tons. At Bay City, Mich., the company operates a magnesium foundry and a fabrication plant in which aircraft assemblies and airborne equipment of magnesium are produced. A magnesium die casting plant and research laboratory facilities are located in Midland, Mich.

Dumont Aviation Associates, Long Beach, Calif., manufacturer and distributor of aircraft hardware and hydraulic fittings, operated under Air Force surveillance single cognizance inspection in 1954. Dumont manufactures their own aircraft bolts, screws and rivets, and during the past year acquired additional facilities for manufacturing to government and manufacturers' specifications.

Production at Fletcher Aviation Corporation, Rosemead, Calif., continued throughout 1954 with jettisonable fuel and napalm tanks as the main product. Sales for 1954 were $18-million and employees averaged 750.

A 123,000 square-foot factory building was completed and by year-end, work was being done in the new factory. Adjoining the factory is a 3,000-foot airport. A new lift slab 60,000 square-foot office building has been designed, building permit applied for, and preliminary building preparation work is underway.

One hundred of the new Fletcher "Utility" all-metal agricultural planes have been ordered by the Cable-Price Corporation of New Zealand, and a production line was rolling by the year's end. Eleven of these aircraft were shipped to New Zealand in assembled form while the remaining 89 will be shipped as pre-drilled kits.

A new electric welder that causes no interference to radio, television or radar was developed by Fletcher Aviation and is now undergoing field service tests. The 55 hp air-cooled Porsche engine, coupled with jet cooling, is being refined for a number of as yet unannounced projects.

During the year, Flight Refueling, Inc., completed its relocation from Connecticut to the Friendship International Airport at Baltimore, Md. Here the firm constructed and occupied a new manufacturing plant and test facility which integrated all activities of research, design, testing and producing of Probe and Drogue inflight refueling systems and related aircraft fuel system components. Production centered around delivery of A-12 Hose Reel units to the Air Force and Navy and on the FR Flexible Pipe Connector. Engineering and research efforts, in conjunction with the Armed Services, were in the areas of advanced configurations for flight refueling systems. The company's employment increased from 60 to 300 employees during the year.

The Garrett Corporation of Los Angeles, primarily engaged in research, development and manufacture of aircraft accessories and components through its AirResearch Manufacturing Divisions, acquired three new companies during the year. These included Air Cruisers Co., Belmar, N. J.,
and Aero Engineering Co. of Mineola, N. Y., now divisions of The Garrett Corporation, and The Garrett Manufacturing Company of Canada, Ltd., a subsidiary. The corporation structure now contains seven divisions and two subsidiaries, and a total of 7100 people are employed.

At AiResearch, Los Angeles, greatest volume increase in production was recorded in cabin pressure controls, cabin air compressors, and transducers used in air data computing systems, jet engine pressure ratio systems and other integrated computing systems necessary for sustained high speed flight.

Other products manufactured in volume included air turbine motors and starters, actuators, cabin air compressors, cabin pressure valves, cooling turbines, electronic computers and air data systems, temperature controls, miscellaneous valves, heat transfer equipment, gas turbine engines and cooling fans.

New items in production were stainless steel heat exchangers, reactor pumps, extended surface heat exchangers, new type water separators, and transducers.

At the AiResearch Manufacturing Company of Arizona at Phoenix, dollar value of products shipped increased by 123 percent, with increases recorded in turbo machinery production including gas turbine compressors and air turbine starters. Pneumatic valves and electronic equipment were also produced.

Expanded facilities in the various divisions of The Garrett Corporation brought total floor space to 983,000 square feet.

The AiResearch Aviation Service Company Division completed over 1000 jobs in its CAA approved hangars at Los Angeles International Airport. Engineering developments by this division include: a package modification program for Douglas DC-3's; design, fabrication and installation of nylon fuel cells for Lockheed Lodestars; and creation and installation of custom interiors for executive type and other privately owned aircraft. A new self-sufficient radio and electronics department, CAA-approved, was established to round out the Division's activities.

The newly acquired Air Cruisers Division of The Garrett Corporation is engaged in the manufacture of rubberized flotation equipment. Its life rafts, the newest model of which accommodates 25 people, are standard equipment on most of the over-water airlines. Donut type aircraft floats are another Air Cruisers product along with weather balloons.

Consolidated sales for the year for the corporation reached more than $101-million. Backlog amounted to approximately $100-million, about 90 percent of which is for products with a military end use.

The Garrett Corporation increased its laboratory facilities both in Los Angeles and Phoenix. A new production test center, in addition, will be available in 1955 at Phoenix, increasing the company's total development and testing facilities to approximately 147,000 square feet.

General Laboratory Associates, Inc., in Norwich, New York, continued during 1954 to produce ignition equipment.

High energy Capacitor Discharge ignition systems were specifically
AiResearch Manufacturing Co.'s Air Turbine Refrigerator

tailored to the requirements of the later model turbojets. The energy level was raised to four times the rating of models previously in use. At the same time temperature levels have been increased, to keep pace with turbojet and turboprop developments.

Refinement and development continued on surface type igniter plugs and surface systems.

Research was also continued of specialized ignition units for large aircraft heaters, auxiliary gas turbines, missiles and missile launchers, and flame throwers.

One of the busiest and most successful operations of Grand Central Aircraft Co., Glendale, Calif., during the year was conversion of standard or military aircraft to the executive plane.

The company continued during the year as one of the outstanding airplane and engine overhaul, modification, conversion, and repair organizations in the country.

The industry's acceptance of 6066 and 7001, two aluminum alloys perfected by Harvey Aluminum, Torrance, Calif., for structural applications in aircraft, accented the developments made by that firm during the year. Using 6066 extrusions, aircraft fabricators can retain all the characteristics of 6061 and still gain the advantages of higher strength and greater weight savings.

The other alloy credited to Harvey is 7001, which has the highest strength of any commercial aluminum alloy yet developed.
The AIRCRAFT YEAR BOOK

Both are wrought alloys which can be made in any form of wrought product such as extrusions, rod and bar, forgings, and so on.

Harvey Aluminum also supplied the aircraft industry with flattened integrally stiffened 24-inch wide wing panels for production use. Used on Lockheed's XFV-1 vertical takeoff fighter plane, it resulted in a 71/2 percent savings on the wing weight and a 5 percent savings on the tail weight. Substantial savings in machining and fabricating costs and greater strength also were realized by the use of these extra wide aluminum shapes.

In the production of aluminum forgings for the aircraft industry, tonnage progressed satisfactorily with Harvey making advances in metallurgical developments and manufacturing techniques in complex forging operations during 1954.

Ground breaking for a major expansion program to be completed in 1955 was one of the year's highlights for the company.

In the forging division, the new equipment ready for installation includes one 8,000 ton capacity forging press and two 4,000 ton capacity forging presses. In the extrusion division of Harvey Aluminum, the expansion program will see the installation in 1955 of one 8,000 ton extrusion press and one 12,000 ton extrusion press as part of the USAF Heavy Press Program.

A revolutionary new stretch-wrap forming machine featuring full 360-degree arm rotation was announced by Hufford Machine Works, Inc., El Segundo, California, in 1954.

The Carousel model, so named because the operator rides either arm during forming, not only is capable of producing many parts heretofore impossible by a single machine, but still produces all conventional parts from both extrusions and sheets up to 22 inches wide.

With its 360-degree arm rotation around a stationary die and table, the Carousel model quickly forms full circles. In addition, the stretch-wrap forming operation can be complemented with a following roller or wiper which operates simultaneously. This roller, attached to one of the rotating arms, may be operated clockwise or counter-clockwise and is unlimited in the number of passes which can be applied to the work. Other Carousel operations include bulldozing, joggling, stretch-straightening, forming reverse bends and "S" curves.

The Hufford Carousel has been designed in conjunction with Douglas Aircraft Co., El Segundo Division, to expedite formation of parts now employing several types of machines. It is believed with the many types of forming incorporated on one machine that forming costs can be materially reduced because a great deal of hand forming has been eliminated, as well as second operations and handling time.

At Hydro-Aire, Inc., Burbank, Calif., these products played a major role during 1954:

HY-V/L Fuel Pumps: Named for their ability to handle a high ratio of vapor to liquid, this new line of fuel booster and transfer pumps can successfully handle boiling fuel at high altitudes without the vapor-stall characteristics always thought of as inherent in these units.
The LO-U/C Turbine: First of a series of new products to result from Hydro-Aire turbo-machinery research and development program during 1954, was a new class of accessory-drive turbines with a low ratio of speed vs. pressure-head. The new design represents a more efficient turbine for operation within the limited range of the accessory-drive field.

Following the announcement of this new turbine, Hydro-Aire received a contract from a major airframe manufacturer for a turbine driven fuel transfer pump. This new unit combines the HY-V/L pump with the new LO-U/C turbine, thus combining all the design advantages of the turbine with the outstanding features of the pump.

The Friijadrive Twin Turbine System: This is the first twin-turbine system to combine the functions of a bleed air driven turbine and an air cycle machine. The Friijadrive serves two purposes in the airplane; air conditioning of the cabin and supplying a steady source of accessory-drive power for the aircraft.

During 1954, Hydro-Aire’s new Electronics Division made great strides in the continued development of transistors and transistorized circuitry. The company now offers a complete line of germanium transistors and diodes to the industry and a new power transistor has recently been brought on the market.

Jack & Heintz, Inc., Cleveland, Ohio, during the past year evolved new designs for all major components of a-c electrical systems. Prominent among the new a-c equipment designs were generators, control panels, voltage regulators, and circuit breakers.

The air-cooled A-C generators cover the range from 10 through 120-KVA. Typical of design is the G281. This 40-KVA unit, with new high-temperature insulation and a special water-separator device, is capable of operation at environmental temperatures as high as 120 degrees Centigrade.

Jack & Heintz has two vapor-cooled generators: the 12kva, G75 and the 30kva, G188. The company also has two oil-cooled machines: the 40kva, G190 and the 20kva, G192. In addition to the environment-free feature, the oil-cooled machines are at least 10 percent smaller than comparable air-cooled units and permit more compact installations.

The A-C control panels developed in 1954 include: over-voltage protection; phase sequence protection; under-speed or under-frequency protection; anti-cycling; generator control relay; power indication; field flashing; and special interlocking. A principal feature of the new panels is the over-voltage relay. This component has been designed to be insensitive to acceleration forces. The panels can operate either from the D-C bus or independent of it.

The Jack & Heintz A-C regulators developed during the year are of the static-magnetic-amplifier type. Weighing only 12½ pounds, the new regulators feature a magnetic reference which eliminates the use of electronic tubes, and provision is made for reactive load function.

The new line of circuit breakers represented by the 40kva, GC86, have balanced rotary latch, direct solenoid-actuated contacts, noncritical adjust-
ment of interlock contact and simplified inspection. These features make possible important performance improvements over conventional breaker designs.

Other developments by the company included: a high-altitude inverter, a magnetic brake, and a turbo-hydraulic power pack.

Total sales for the year were between $30-35-million and the backlog of unfilled orders was at approximately $30-million. Employment totaled 30,000, and total productive floor space exceeded 500,000 square feet.

During 1954 production of standard flight and navigation instruments continued steadily at Kollsman Instrument Corporation, Elmhurst, N. Y., wholly-owned subsidiary of Standard Coil Products Co., Inc.

Among the new products launched were: a Pressure Ratio Indicator System for use on jet aircraft; the C-2 True Airspeed and Mach Number Computer, filling a $1-million order with the Air Force; and the Sky Compass, an instrument for accurate aerial navigation in high latitudes, which gives the true heading of an aircraft by determining the position of the sun when it is below the horizon.

In demand, particularly for guided missile application, were the Kollsman Synchrotel Transmitters required for the remote electrical transmission of data such as true airspeed, indicated airspeed, absolute pressure, log absolute pressure, differential pressure, log differential pressure, altitude and Mach number. Kollsman Pressure Monitors which provide control signals that are functions of altitude, absolute pressure, differential pressure, and so forth, also had wide application in this area.

Many new units were added to the Kollsman special purpose motors family. These consist of Induction Motors and Induction Generators which are supplied either separately or combined in a single case one inch in diameter. The motors are designed to give maximum torque per watt ratio with minimum rotor inertia, while the generators provide maximum output voltage with minimum residual voltage and phase shift. A principal feature is interchangeability of parts which permits numerous electrically different combinations of motor and generator windings within the case.

Among the unclassified projects completed during the year by the Kollsman Research and Engineering Laboratories was a cabin pressure system that utilizes Pressure Monitors and which eliminated the vacuum tube completely by the use of a transistor amplifier. Ready for the designers of tomorrow's high performance aircraft and missiles is a highly sensitive Acceleration Monitor. This unit will act as a supplement to, or, in many applications, as a replacement for the gyro. By measuring acceleration rather than displacement or rate, as in the case of the gyro, the new monitor anticipates changes in motion and influences the automatic pilot to compensate rapidly, thereby keeping deviations to a minimum.

1954 saw increased concentration in the field of precision optics at Kollsman. The company engaged in the development of, and in some cases produced in quantity, optical devices and systems such as binoculars, photographic lenses containing as many as eleven elements, drift sights, perisoscopic sextants, perisopic bombing sights, anti-aircraft fire control sights for use
in radar bombing and navigation systems, photo-electric sextants, astro-
compasses, and photoelectric trackers. Optical components produced in-
clude, among others, lenses, windows and prisms, aspherical objectives and
mirrors, cones and rods for ranging devices, hyper- and hypo-hemispherical
sighting domes, retroreflectors, roof prisms, angular prismatic scales and
special reticles.

Lear, Inc., Santa Monica, Calif., estimated shipments of well over $50-
million in 1954. Over 212,000 square feet of plant floor space were added
during the year, bringing the company’s total to 527,700 square feet.

The Grand Rapids Division during the year developed automatic flight
control and stabilization systems and components for helicopters, jet fight-
ers and bombers, and other types of aircraft, and on remote actuating and
positioning equipment. One new product was the MB-2 autopilot ordered
by the Air Force for Republic F-84F jet fighters. Another was the Electro-
link remote actuator system, which provides electrical actuating forces of
an order previously available only in hydraulic devices. Volume production
continued on Lear F-5 automatic pilots and increased quantities of Lear
Vertical Gyro Indicator systems were produced.

The Lear-Romec Division, at Elyria, Ohio, put into quantity production
the military type B-26 and B-18B submerged type fuel booster pumps,
special ground test sets for measuring air tightness of airborne electronic
equipment, universal bomb sight desiccators, a two KW heat exchanger for
cooling airborne electronic equipment, a portable electric motor driven
barrel pump for ground use, and new pressurizing equipment for antenna
wave guides and for radar transmitters and receivers operated at high
altitudes.

LearCal Division at Santa Monica produced in quantity the ARCON
automatic rudder control device for all types of aircraft. Also developed by
the division during the year was the new NAFLI instrument flight system
developed to facilitate instrument flight instruction by providing simplified,
natural, flight attitude references immediately recognizable by non-instru-
ment pilots.

The big event at the Lear Aircraft Engineering Division during 1954
was the first flight of the Number 1 production Learstar executive airplane,
followed by its complete CAA “4b” certification flight testing and the
delivery of several production Learstars to corporate purchasers. The Lear-
star, while largely a new airplane, is built around the basic airframe of the
Lockheed Model 18 Lodestar, which makes possible its production at a
cost approximately half the estimated cost of a similar, entirely new airplane.

Also during the year, receipt of military aircraft modification contracts
launched the Aircraft Engineering Division into the fields of aircraft proto-
typing and retrofitting.

The Lear Research and Development Division, Santa Monica, Calif.,
conducted programs in the fields of automatic controls for airplanes, mis-
siles, drones, helicopters, and VTO aircraft; airborne and ground radio
communications and navigation equipment; aircraft and marine radar;
commercial power steering devices; gyro instruments; pumps; and many
other electronic and electro-mechanical devices.
1954 marked the thirty-second year **The Liquidometer Corporation** of Long Island City, N. Y. has devoted to the development and production of a wide range of tank contents gages and position measuring systems for storage tanks, diesel locomotives, marine craft of all types and aircraft.

In the field of aircraft fuel measurement Liquidometer produced a completely new series of miniature coaxial connectors and a weight-volume fuel gaging system. The connectors meet all of the operational and environmental requirements of capacitor fuel gaging systems. They are 1/2 to 1/4 the size of BNC types and anywhere from 2/3 to 4/5 lighter. All the metal parts of the connectors are gold plated to eliminate corrosion and give positive contact. They will withstand 1500 volts, R.M.S.

Both gravimetric weight and volumetric readings are obtainable from a single indicator with a new Liquidometer weight volume fuel quantity gage. This is obtained thru a single gaging system by a new application of the correction of fuel dielectric. The pilot can select either reading simply by throwing a toggle switch.

Another new unit is a pointer-counter type indicator. The dial face of this instrument consists of an easy-to-read counter indicating exactly the amount of fuel remaining and an end mounted pointer which travels around the outside edge of the dial to show the percent of fuel remaining.

Tank units are now made of either aluminum or reinforced plastic tubing. In addition to sensing fuel quantity, some of the tank units contain thermistors to control liquid level.

The new units are being installed on or have been specified for a wide range of advanced aircraft types.

In addition to the plants in Long Island City, Liquidometer maintains additional manufacturing facilities in Bellows Falls, Vermont and overhaul and service facilities in Los Angeles and Montreal, Canada.

Longren Aircraft Company, Torrance, California, pioneers in full metal monocoque fuselage construction and in developing metal forming techniques, completed its twenty-fourth year in the production of aircraft and missile components, sub-assemblies and specialized precision metal parts.

During the past year, Longren continued to produce a wide variety of formed metal structural units and sub-assemblies for major airframe and missile manufacturers including wing slat assemblies and wing attach fittings for the Northrop F-89; wing attach fittings and wing spars for North American F-86 and F-100; engine mounts and wing tip assemblies for Boeing B-47 and B-52; wing pods for Republic F-84; fuselage components and nacelles for Lockheed C-130 and F-94; canopy and fuselage components for Convair F-102, F2Y and T-29; wing fittings for Douglas RB-66; components, fins and stabilizers for Douglas and Firestone missiles.

The company ended 1954 with 250 profit-sharing employees, a plan for the addition of 80,000 square feet of manufacturing facilities and 10,000 square feet of engineering and office facilities on its ten-acre site at the Torrance, California airport, added to its present 67,000 square feet of floor space, and with a backlog of over 2 1/4 million dollars.
THE INDUSTRY

Advances have been initiated in research and development at Longren. Important contributions to the field of shrouded propellers have been made under a study program sponsored by the USAF Wright Air Development Center. Development programs are under way on high speed parachute control and instrumentation, collapsible liquid containers and multi-purpose aircraft maintenance vehicles. With the increase of activity in the field of electronics, Longren has applied its precision metal fabricating ability to the manufacture of electronic metal components.

During 1954 the MacWhyte Company of Kenosha, Wis., continued production of Hi-Fatigue cable assemblies, Safe-Lock terminals and Hi-Fatigue aircraft control cables.

In addition to these items and a general line of wire ropes of varying sizes and grades, the company manufactures tie rods for internal and external bracing of aircraft.

For Minneapolis-Honeywell Regulator Company, the year 1954 saw another milestone in the field of autopilot production. Honeywell commemorated production of its 40,000th electronic autopilot.

During the year Honeywell also announced development of its new E-10 model which introduces new concepts of flight control including control stick steering and flight path stabilization. Other autopilot variations include stabilization systems for Q-2 drones, helicopter flight controls and special navigation and landing aids.

Associated with its flight control developments has been the application of servo mechanisms to flight path stabilization of both airplanes and guided missiles.

Equally significant to the company and to the aircraft industry was development of the first power-type transistor (now in mass production by another Honeywell division) and its application to aircraft fuel measurement.

Another development was a fuel-level switch utilizing a semi-conducting material in a special application which eliminates troublesome mechanical problems associated with float switches.

During the year Honeywell continued development of precise gyroscopes, announcing the first mass production of the HIG units.

The company made strides in the application of electronics to highly complicated jet control problems during the year. Sub-systems or elements of these controls have also been made available separately for the measurement of exhaust gas temperatures, engine thrust, engine speed and operating pressures.

Vigorous research was continued into the application of electronics to a wide variety of other control problems. These include improved automatic landing systems capable of landing planes on aircraft carrier decks, navigation couplers for automatic tie-in, and new concepts of fire control coupling and weapons system developments which can be adapted to a variety of planes and missions.
The New York Air Brake Company continued as major suppliers of both constant and variable delivery hydraulic pumps to builders of military aircraft, rockets and guided missiles as well as those producing transport and civilian planes, with both constant and variable delivery hydraulic pumps.

Progress was made with a new constant displacement pump which, in smaller sizes, delivers 3000 psi at operating speeds to 10,000 rpm. Pumps of this 66 series in the larger capacity sizes advance the maximum continuous speed from 3750 to 4500 rpm and permit intermittent speeds to 6000 rpm. Extensive laboratory and service tests demonstrate an ability to operate at substantially higher temperatures than conventional pumps, with excellent performance at temperatures to 350 degrees Fahrenheit. These pumps do not require reservoir pressurization but will operate with system pressurization to 80 psi and function efficiently at today's maximum operational ceiling.

A second development of special interest was a new series of electric motor-driven pumps for primary, secondary and emergency circuits.

Operations at Pacific Airmotive Corporation, Burbank, Calif., in 1954 were divided into five basic aircraft activities: airframe overhaul, engine overhaul, aircraft parts sales, manufacture of aircraft pressurization and temperature control units, manufacture of test and ground handling equipment.

Industry acceptance of PAC-manufactured aircraft pressurization and temperature control units increased steadily. The Aero-Pneumatics Division was occupied with the design, development and manufacture of proprietary air pressure control equipment. Principal types of control valves developed were cabin pressure regulators, cabin safety valves and modulating air flow control valves. This division also produced a variety of allied supporting equipment such as motor-actuated shut-off valves, and solenoid-actuated valves.

Modernized versions of PAC's specially-tested air pressure equipment were developed during the past year for the military. PAC's new lightweight cabin pressure regulator and relief valve were designed especially for Douglas' new midget A4D Skyhawk. Backlog of this division was approximately $1.5-million.

The Test and Ground Handling Division was engaged in the design, development and manufacture of various types of aircraft test and ground handling equipment. A substantial portion of the business was concerned with proprietary items such as cabin pressure regulator test stands, engine tear-down stands, fabric burst testers and liquid oxygen conversion benches. Other PAC-designed and manufactured test benches include hydraulic test stands, magneto testers, portable power supply units and propeller governor test benches.

The Parker Appliance Company's Rubber Products Division, with plants in Cleveland, Los Angeles and Berea, Kentucky, continued in 1954 to furnish synthetic rubber rings, to applicable military and government specifications, for sealing applications in aircraft fuel and hydraulic systems.
Parker's Engine Accessories Division, in Cleveland, manufactured jet nozzles and other highly engineered and precisely made components for jet engines.

The Tube & Hose Fitting Division, with plants in Cleveland and Eaton, Ohio, produced tube-working equipment—tube cutters, hand tube benders and bench-mounted benders, hand flaring tools and power flarers—for tube fabrication in aircraft production and maintenance.

The Radio Corporation of America experienced its largest production year in 1954, and aviation electronics provided a major contribution to this record. Large scale production was carried out on airborne communications and intercommunications equipment for the Air Force including such items as the RCA developed, high-intelligibility Intercommunication set, the AN/AIC-10. Loran, Shoran, Navigational Radar and Fire Control Radar were also produced during 1954 for the Air Force. Design and development continued at an accelerated pace on such items as infra-red detection devices and missile guidance systems.

RCA, working with the U. S. Signal Corps, continued to advance techniques of Airborne Reconnaissance Television. RCA cameras were installed in L-20 reconnaissance planes and have been used for intelligence gathering, artillery spotting and for the relay of vital information to command posts. These TV equipped planes become the “Eyes” of the commander, relaying the course of battle instantaneously for his evaluation and his decisions.

Commercial Aviation activity also increased at RCA during 1954, and was climaxed by the successful development of the first airborne weather radar designed exclusively for commercial use. This device, designated the AVQ-10, is a C-Band (5.5 cm) radar built entirely to ARINC specifications. The set weighs less than 115 pounds and employs conservatively-rated tubes and components which provide reliability and long life. The AVQ-10 was extensively flight-tested during the fall of 1953 by United Airlines. The results of this evaluation substantiated the theoretical conclusions of Drs. Hitzschefeld and Marshall of McGill University. These men had theorized that C-Band Radar was the most ideal frequency for weather mapping purposes. The United test concluded that C-Band had the ability to “see” significant storms at long range and still provide true scope information so necessary for storm penetration and reconnaissance in areas of heavy rainfall. The AVQ-10 will be in production early in 1955.

Reynolds Metals Company, Louisville, Kentucky, increased the capacity of its primary plants and also its mill facilities in 1954. New equipment was installed in many cases to replace outmoded equipment but in the majority of instances the new equipment represented modernized production techniques, expansion of the Reynolds line of mill products, and advances in size.

At the Reynolds Extrusion plant in Phoenix, Arizona, noteworthy progress was made in the Rectangular Container Program. This program is sponsored by the Air Force in the interest of procuring rectangular configurations that are not now available except by the employment of expensive milling operations.
Other experimental work at Phoenix was the development of hydraulic straightening devices for handling integrally stiffened wing skin extrusions. These extrusions have been successfully produced in widths up to and including 30 inches.

Reynolds Metals Parts Division has recently completed a facility survey and report for the Glenn L. Martin Company, Baltimore, Maryland, regarding the aft section for the Matador pilotless bomber.

Reynolds Metals Phoenix extrusion plant has developed a satisfactory method of producing 2.75 in. Rocket Tubing to the exacting requirements of Navy Specifications. This year a prime contract was executed between the U. S. Navy and Reynolds for the finishing, machining, anodizing and painting of the Mighty Mouse Navy Rocket. Tests are now being conducted by the Armed Services on a new 2 in. rocket. Tubing for these tests was supplied by the Phoenix extrusion plant.

Rohr Aircraft Corporation, Chula Vista, California, continued its program of growth and expansion. Substantial gains in sales, earnings, working capital and net worth of the company were realized in the fiscal year which ended on July 31, 1954. Sales amounted to $101-million as compared to $63-million for 1953.

Most of Rohr's expansion during the year was the addition of new manufacturing facilities. Part of this new equipment was equipped with electronic positioners and electronic controls for profiling and three-dimensional work.

Currently, Rohr is producing nine different types of power packages (complete engine assemblies) for 12 different airplanes. In the commercial field Rohr builds the power packages for the Convair 340 Liner, the Douglas DC-7, and the Lockheed Super Constellation. In the military field, Rohr's packages power the Boeing all-jet B-52, the Boeing KC-97 Stratotanker, the Convair T-29 and C-131, the Fairchild C-123, and the Lockheed P2V, C-121, R7V and the turboprop C-130. The company also manufactures wing tip fuel tanks and aft fuselage sections for the B-52, jet tailpipes and variable nozzles, reciprocating engine exhaust turbine nozzle boxes, and pneumatic system components.

At year-end Rohr's square footage exceeded 1,265,000. Average employment for the year was 8,705, an increase of 1,395 over the 1953 average of 7,310.

The year saw a continued increase in the amount of design engineering Rohr supplied to its prime contractors on items of major importance. The company also continued and augmented its efforts toward the development of new products and in the field of manufacturing techniques. One example of this was the design and production of aircraft pneumatic system components. Rohr engineers also engaged in research and development in connection with sandwich structures, and the company manufactured flat, tapered and double-contoured panels that have satisfactorily met design requirements.
Simmonds Aerocessories, Inc., during 1954 continued developmental work in the field of capacitance type fuel measurement and fuel management.

Among the new installations was that for the fleet of Vickers Viscount turboprop transport aircraft that will be delivered in 1955 to both Capital Airlines and to Trans-Canada. This installation of the Simmonds Pacitron Fuel Gage System includes a circuit for measuring the contents of the water methanol tanks, as well as provision for automatic load limit control, which affords an automatic cut-off of fuel taken aboard in accordance with the flight plan for the aircraft. Simmonds also introduced during the year a two unit Pacitron System that comprises an amplifier-indicator unit, installed behind the instrument panel, and one or more sensing probes, or tank units, depending on the size and shape of the tank whose contents are to be measured. A thermistor level switch is available to provide low level warning light if required.

Additional fuel management functions include both center of gravity control, which provides automatic control of the distribution of fuel-weights, and telemetering, a continuous transmission of information concerning available fuel for remote reading. This latter feature was incorporated in an installation made during the year in a guided missile.

The Simmonds SU Fuel Injection System for gasoline engines up to 600 hp is currently being installed on helicopter and other aircraft engines.

The company's Explosion Suppression Systems were installed during the year on three advance type military aircraft. Explosion Suppression is the new protective technique designed to provide protection against explosions resulting from the ignition of fuel/air mixtures. Simmonds is currently working with the U. S. Air Force and with a group of leading airframe manufacturers in the further development and perfection of this system.

Work continued during the year in the development and manufacture of precision push-pull controls, heavy duty aircraft latches and fasteners, and a related line of aircraft and engine accessories.

Two small gas turbine engines have been developed and placed in production by Solar Aircraft Co., San Diego, Calif.: the Mars, a 50 hp engine, and the Jupiter, of about 500 hp. Aircraft auxiliary power units driven by the Mars are now in use on the Douglas C-124C Globemaster and the Lockheed C-121C, military transport version of the Super Constellation.

In July of 1954 the first APU to be installed on a Globemaster was removed for overhaul after 500 hours of trouble-free service. The Mars is also used in portable shipboard fire fighting pumps and ground power units for starting jet aircraft. The Jupiter model powers a shipboard electric generator set and is under study as a helicopter powerplant.

Large metal bellows, 28 feet in diameter, were built at the company's San Diego plant for a supersonic wind tunnel at NACA's Lewis Laboratory in Cleveland.
A development program was launched to produce high temperature all-metal sandwich structures by means of high temperature brazing. The honeycomb structure, trade named Solite, consists of a core of foil-thin ribbons arranged in honeycomb pattern securely sandwiched between metal facing or skins and shows promise as a solution to this problem.

Research and development work continued on ceramic coatings for the protection of high or low alloy steels against oxidation or corrosion. Solaramic coatings are currently being applied to aircraft manifold systems, jet engine transition liners and inner chambers, afterburner components, aircraft bellows and turbohoods for the Wright turbocompound engine.

Rearrangement of existing space and new construction brought total floor area in San Diego to 541,900 square feet, and in Des Moines, a $2-million expansion program brought total floor space to over 500,000 square feet. Sales for the year were $65-million and net income was $2-million. Total employment over the year averaged 5,400.

At Sperry Gyroscope Company, production volume of civil and military aeronautical systems and equipment continued for a second year to exceed the combined output of equipment for military ground forces, merchant and naval ships, and other non-aeronautical activities. Volume of automatic flight controls, guided missiles, radars, and bombing systems topped the list of 1954 production activities covering more than 30 types of aeronautical systems and instruments plus supporting ground equipments and lesser items for all types of civil and military aircraft.

On the research and development side, expansion of more numerous and diversified programs for the creation of future systems required the addition of more engineering personnel, bringing engineering division employment to 3,450. Total company employment remained above the 16,000 level.

The year was highlighted by first official announcement of the Sparrow I air-to-air guided missile system for the Navy. (See Guided Missiles chapter.)

A new, compact airborne Sperry radar that assures greater safety for troop-carrying transports and essential cargo planes was announced by the Air Research and Development Command. Officially designated as radar set APN-59, the new device is the smallest and lightest radar system for its high power and wide range of aircraft uses, so far introduced.

A single, five-inch radar screen combines many radar functions of search and surveillance over distances up to 240 miles, accurate navigation over uncharted airplanes, detection of distant storms and best weather routes, anti-collision warning of mountaintops and tall structures, or of other nearby aircraft while flying at any altitude up to 50,000 feet.

Production continued on K-type bombing-navigational systems for the newest Air Force heavy and medium bombers. Assembly line volume was also maintained on A-4 "triple threat" radar gun-bomb-rocket sights for day fighter and interceptor aircraft. Existence of the A-4 sight, an im-
proved design superceding the A-1C sight, was made public at Nellis AFB in June, during the Air Force's first all-jet gunnery competition.

A new robot bomber pilot that enables automatic bombing operations in the Boeing B-52 heavy bomber reached full production during the year. The electronic device is an entirely new type of multi-function automatic pilot, known as the Sperry A-14, designed especially to match high-speed performance of the new USAF eight-jet, sweep-wing Stratofortress and aids the bombardier as well as the human pilot in their complex duties.

Other non-classified types of automatic pilots in production include the USAF A-12D for the Boeing B-47 bombers, Navy A-12Y for fighter aircraft, and the USAF type E-4 for other military aircraft.

Development of an integrated instrument system, being readied for production, was also announced. The new flight instrument system, which can be integrated with any Sperry automatic pilot, consists of three new panel instruments that present to the pilot the information of three existing instruments in greatly improved form plus improved flight director information, without requiring additional panel space.

Existence of a powerful giant electron tube that paves the way for super radars reaching far beyond present limits was revealed by the Air Research and Development Command. Known as a megawatt klystron, the eight-foot tall tube is the prototype of a new series of klystrons that are the first to produce over one-million watts of precisely controlled radar power for military systems.

Among other Sperry electronic activities during the year was the establishment of the Electronic Tube Division to produce klystron tubes in greater volume for microwave radars, communications, navigation systems, and television.

During 1954, Sundstrand Aviation, Division of Sundstrand Machine Tool Company, Rockford, Illinois, took over the entire 250,000 square-foot plant formerly shared with another division and continued to manufacture and develop Constant Speed Drive Systems and several types of hydraulic pumps and motors for the aircraft industry.

Extensive flight testing was executed during the year which established the satisfactory operation of Sundstrand Drives using engine oil. This work was carried out on three aircraft, each employing a different type of drive: the F3H with the J71-A2 and J40-WE22 engines, the F-101 with the J57 engine, and the RB-66 with the J71-A9 engine.

Highlight of the year for Transco Products, Inc., Los Angeles, Calif., was a new line of miniature coaxial switches. This is a single pole two throw unit weighing less than 5 ounces and capable of being stacked to provide multiple pole installation. Also announced was a single pole four throw switch, weighing only 12 ounces, complete with mounting bracket. These new additions to the Transco line of remotely and manually controlled coaxial switches provide units for frequencies to 8,000 mc.

To meet increased demand for Ram and Hot Air valves of both butterfly and sliding gate types, engineering testing and production facilities were augmented. Production of valves for use in aircraft air conditioning sys-
tems increased steadily during the year as did fractional horsepower rotary actuators, for use in 28 volt d.c. and 115 volt 60 cycle and 400 cycle a.c. systems.

Vickers Incorporated, Detroit, Mich., manufacturer of hydraulic devices, continued during the year to design and build major accessories for 3000 psi aircraft hydraulic systems. The company introduced several new units in its oil-hydraulic valve, motor and pump aircraft products lines during 1954.

The Flow Sensitive Pressure Regulator announced early in the year prevents stall-out in emergency hydraulic systems. A decrease in oil flow brought on by a reduction in torque available to the pump from the emergency power source causes the new accessory to automatically decrease relief setting. Thus, even though a 3000 psi emergency circuit may deteriorate to 1000 psi or less, the pump will not stall and hydraulic flow will continue to be available to permit use of the system.

Another new Vickers product was the Hydraulic Motor with Manifold Head used in the Douglas DC-7 cabin supercharger. The special multi-purpose head (valve plate) includes an integral relief valve, a temperature bulb port and two special ports for circuit replenishing as well as standard inlet and outlet ports. The new design eliminates eight connections and two lengths of hose previously required and weighs less.

Another design introduced in 1954 was the Double-Acting Relief Valve. Consisting of a Vickers conventional aircraft relief valve and four poppet-type check valves combined in a single housing, this reduces the number of required pressure connections from twenty-eight to four. The new valve provides savings in weight and cost.

The Lightweight Oil-Hydraulic Pump was announced in October. Extensive redesign of functional components coupled with proper material application has produced a variable displacement piston-type aircraft pump that achieves up to 37 percent saving in weight and 33 percent reduction in size.

During 1954 the **Franklin C. Wolfe Company,** Culver City, California, continued expansions of facilities begun in 1953, adding several thousand square feet of floor space, mainly in outside acquirements. In addition, the company increased production facilities by purchasing and building new rubber presses, new metals production machinery and specialized tools.

Besides a heavy increase in research and design to assist guided missile, aircraft and electronic manufacturers in solving sealing problems peculiar to applications in their field, the firm brought out several new sealing products. Chief of these in general application was the flush rivet seal and the flush bolt seal.
CHAPTER TWO

Department of Defense

THE year 1954 was a significant one for military aviation in the United States, marked by redeployment of forces after the end of fighting in Korea, a rescheduling of production slanted toward a near-future goal of a 100 percent jet propelled Air Force, and a re-casting of strategic emphasis for the nation’s long-range military policy.

New aviation records were set—in speed and in altitude by the Air Force’s rocket-powered flying laboratory, the Bell X-1A, in helicopter speed and altitude by the Army’s new Sikorsky XH-39, in refueling flight by a Boeing B-47 jet bomber. New planes were added to the military arsenal, with perhaps the most significant development disclosed by the Navy when it unwrapped the advanced stage of vertical take-off design in two experimental aircraft.

There was progress in development and sharply stepped-up production in the field of missiles. Continuing progress in the A- and H-bomb program was indicated by the Atomic Energy Commission’s announcement that it was preparing the Nevada Proving Ground for a new series of tests early in 1955, probably beginning in February. Further strides were made also in the use of nuclear energy for aircraft as well as surface ship propulsion.
Primarily, however, economy and the international situation directed attention in the Pentagon to the problem of being ready, with budget-limited forces, for either a major war or more police actions of the type of Korea or Indo-China. The result was searching new looks at the "new look" in strategy. Admiral Arthur Radford, Chairman of the Joint Chiefs of Staff, summed it up like this:

"In essence, the military planners are confronted with a double-barreled preparedness problem. We must be ready for tremendous counter-offensive blows in event of a global war; and we must be ready for lesser military actions in local hot-spots when and as directed by our Government. In other words, we must cultivate and promote both national strength and collective strength."

Air Force

Substantial achievement marked the year in the Air Force, despite budget cuts and a rigid personnel ceiling. President Eisenhower gave his approval to a 137-wing program, to be achieved in 1957, and the 1954 goal of 115 wings was reached by late summer. Ten more wings are to be activated in the 12 months beginning July 1, 1955.

Training schedules involving rotation of entire wings overseas for extended training assignments were intensified, and Tactical Air Command units were added for the first time to this program, which has become standard for Strategic Command wings. A new Continental Air Defense Command embracing all services was set, with the Air Force given primary responsibility and General Benjamin W. Chidlaw, already commander of Air Defense Command-USAF, named Commander-in-Chief.

The new speed record by the Bell X-1A actually was racked up in mid-December 1953, when Major Charles E. (Chuck) Yeager dropped from the "mother" B-29 at 30,000 feet, flew the experimental craft at 1650 miles an hour. In the summer of 1954, Major Yeager, again flying the X-1A, reached an altitude not yet officially reported, but understood to be in excess of 17 miles.

During 1954, also, the big 6-jet, 185,000-pound Boeing B-47 Stratojet bomber broke its own distance and endurance record of the previous year by staying in the air 35 hours and flying 17,000 miles in a non-stop refueling flight.

Every fighter plane operational in Air Force combat units is now powered with jet engines, and the day of the all-jet Air Force came noticeably closer when the production of Boeing B-52 Stratofortresses was stepped up and the new Convair B-58 supersonic bomber ordered into production about the time the last of the huge Convair B-36 bombers came off the assembly line.

These orders, announced by Secretary of the Air Force Harold E. Talbott in October, were part of the extensive re-programming of Air Force production which resulted from intensive study that lasted through the first half of the year.

At the same time, Secretary Talbott announced that the new Lockheed F-104 lightweight supersonic air superiority fighter had been ordered into
production, little more than 18 months after the contract was signed for the prototype. Its performance characteristics still classified, the new fighter, powered with a Curtiss-Wright J-65 jet engine, was delivered as the XF-104 and first test-flown at Edwards Air Force Base, Calif., in February, less than a year after it was ordered. It was still being put through airworthiness tests in late summer, but by October 16 had been ordered as a production model.

Accelerated production of North American F-100 Super Sabres was ordered in February, when the Air Force decided to cut back its orders for Republic Thunderstreaks and substitute the later and faster plane. Although engine and airframe difficulties which produced major delays in the F-84F production schedule were overcome, they had moved the program back so far that it was decided to phase the F-100 into the later stages. Only about 15 percent of the total F-84F program was affected. The changeover also cut back production orders for the Curtiss-Wright J-65 engine, used in the F-84F.

A second source of F-100's was set up in September, when the Air Force gave North American a $100-million order for production of an undisclosed number of the Super Sabres at its Columbus, Ohio, plant. The earlier orders for the plane, powered with the Pratt and Whitney J-57 turbojet engine and the first aircraft to exceed the speed of sound in level flight, were for production by North American at Los Angeles.

Following three accidents involving F-100's in the autumn, in two of which the pilots were killed, the Air Force grounded all its Super Sabres pending investigation to determine the cause of the crashes. In view of the numbers of the aircraft in operation safely, however, the inquiry was not expected to turn up any major structural defects.

In addition to the Convair B-58 bomber and the Lockheed F-104 fighter, a third new plane was ordered into production after mid-year 1954 by the Air Force—the Boeing KC-135 jet tanker, commonly known as the Boeing Model 707. Powered by four Pratt & Whitney J-57 engines, with a designed speed in excess of 500 mph, this large, swept-wing airplane is the prototype of this country’s first jet transport.

Also in the late summer and early autumn rash of orders stemming from the Air Force’s new look at its procurement program was a contract of undisclosed size with Pratt & Whitney “for the construction of YJ-75 engines”—presumably prototypes of a new and even more powerful development of the J-57 engine, with its 10,000-pound thrust.

Contracts totaling $72-million were placed at the same time with Pratt & Whitney and with Ford (Chicago) for additional J-57 engines; another for $34-million with Allison for J-71 engines, and one for $35-million with Allison for T-56 turbo-prop engines to be used in Lockheed C-130 aircraft; and a $21-million order with General Electric (Evendale, Ohio) for J-73 jet engines.

Additional orders for aircraft, with neither numbers nor dollar amounts disclosed, were placed in the same program with Sikorsky at Bridgeport, Conn., for H-37 helicopters for the Army; with Lockheed (Marietta) for
additional C-130 turbo-prop planes; with Convair (San Diego) for additional C-131 transports, and with Beech (Wichita) for T-34 trainers.

A successful first flight of the RB-66A, a modification of the Douglas B-66 bomber, was announced in June. The modification was designed to give Tactical Air Command a swift, twin-jet reconnaissance bomber. In November, the Air Force announced it had placed a $41-million order with Douglas for RB-66 production at Tulsa, and a $87-million order with the same company for production of both B-66 and RB-66 types at its Long Beach plant.

At the same time, Lockheed was given a $7-million order for production of T-33 jet trainers at Burbank.

In the field of aircraft armament, the Air Force disclosed during the spring of 1954 that it had developed, in cooperation with the Ordnance Department-U. S. Army and the Ford Motor Company, a new 20mm automatic gun, firing an explosive shell, with a considerably higher rate of fire than any other aircraft gun now in operation—specifically, with greater rapidity and higher muzzle velocity than the 1200 rounds per minute of the .50 caliber aircraft machine gun standard in the Air Force. Designated the M39, it was installed in F-86F fighters and tested in combat against MIG-15's in Korea.

The top secret label still cloaked most of the intensive work which continued on missiles, but the Air Research and Development Command let a little be known about some of its work in other fields.

For example, ARDC announced in early autumn the development of an experimental thrust-reversal device for jet aircraft. Installed on a Republic F-84F fighter, powered with a Curtiss-Wright J-65 turbojet engine, the device employs a series of “cascades” and two movable “flippers” to divert the hot gases from the engine’s tailpipe, turning them forward in the direction of flight. The effect is a reverse thrust not unlike that produced by a reversible propeller. It can be used as an aerodynamic break in flight, permitting contact with slower enemy aircraft; to reduce speed in landing approaches, permitting a steeper descent; and, after landing, as a substitute for friction brakes or parachute to halt the forward roll.

The drag parachute was applied during the year to the Boeing B-47 jet bomber to reduce landing speed and permit steeper angle of approach. It will be standard equipment on all future B-47's. The new drag parachute attachment is for use in the air for landing approaches, and does not replace the 32-foot diameter deceleration parachute which has been standard equipment on B-47's for several years.

ARDC in September took the wraps off a new airborne radar, in development several years with Sperry Gyroscope, which weighs only 150 pounds, has a single 5-inch screen, but combines the functions of search and surveillance, accurate navigation aid, distant storm detection, and anti-collision warning up to an altitude of 50,000 feet. In the same field, ARDC disclosed its development, in cooperation with General Electric, of a new radar height-finder which concentrates the radar energy in a narrow beam and nearly trebles the search range. It is intended for use in combination
DEPARTMENT OF DEFENSE

with search radar to determine distance, altitude and flight direction of detected aircraft.

After thousands of tests, ARDC in October approved for production the air traffic control system called Volscan, for installation at Air Force bases. First announced in December 1953, Volscan is an almost completely automatic electronic device for the control of incoming planes at busy airfields. It does not replace Ground Control Approach or Instrument Landing System, but takes long-range control of approaching aircraft, guiding them to the final runway approach. It can bring planes in at intervals of 30 seconds, and virtually eliminates the problem of "stacking up." Developed during the last five years by ARDC's Cambridge Research Center, Volscan won the Thurman H. Bane Award of the Institute of Aeronautical Sciences for Ben Greene, project scientist. A contract for production of Volscan has been awarded the Crosley Division of AVCO Manufacturing Company, with the first three units due for delivery in the autumn of 1955.

The Air Force appropriation for Fiscal '55—the 12 months beginning July 1, 1954— included $5,750,000 to build the first unit of a laboratory in which Pratt & Whitney will conduct studies of nuclear propulsion of aircraft. Equipment to be installed by the Air Force will probably run the cost to about $10,000,000. As the year 1954 ended, a search was in progress for a site within a 50-mile radius of the present Pratt & Whitney plant at Hartford, Conn.

On its own, Fairchild Engine & Aircraft began in 1954 flight-testing an experimental turbojet installation to give its C-82 packet—and perhaps its C-119 Flying Boxcars also—more take-off power, to increase take-off loads and rate of climb. Using the small J-44 engine designed by Fairchild for powering target drones and guided missiles, the company hopes to boost take-off load maximum by as much as two or three tons.

The first jet plane specifically designed as a trainer to be developed for the Air Force, the Cessna XT-37, made its first test flight at Wichita in mid-October. Development order for the lightweight, twin-jet plane was placed in December 1952.

In May, the activation of the first USAF Airborne Early Warning and Control Division was announced. Specially modified Lockheed Star Work Constellations, completely equipped with electronic, communications and navigational equipment, will be based on both east and west coasts, and maintain 24-hour, 7-days-a-week patrol far out over the Atlantic and Pacific Oceans.

During the year, two pilotless bomber squadrons of the Tactical Air Command, equipped with the Martin B-61 Matador, were transferred to Germany and added to the NATO forces defending Western Europe. A third squadron equipped with the Matador was activated during the summer.

A new kind of "first" was announced in the spring. The Republic of Colombia became the first Latin American nation to buy U. S. jet aircraft, paying the Air Force $1,162,000 for six Lockheed T-33 trainers. The T-33 is a two-seat trainer version of the Lockheed F-80 Shooting Star.
Training programs were marked in March by "Exercise Check Point," in which the U. S. and Royal Canadian Air Forces carried out their largest joint air defense maneuvers to date. The number of Strategic Air Command wings rotated to Europe and North Africa for extended training missions was increased, and both fighter-bomber and troop carrier units of Tactical Air Command were deployed to Europe on training assignments for the first time. For the first time also, the rotation of heavy bombers to the Far East for extended training duty sent a wing of B-36's in October non-stop from Spokane to Guam for 90 days of rotational training.

The Air Force and the entire military establishment were saddened in the spring by the death of Gen. Hoyt S. Vandenberg, who had retired as USAF Chief of Staff on June 30, 1953.

The senior Air Force officer and commander of Tactical Air Command, General John K. Cannon, retired March 31 after 37 years' active military service.

In June, Secretary Talbott announced the selection of a site eight miles north of Colorado Springs as the permanent location of a new $125-million Air Force Academy, which will begin classes in the fall of 1955 in its temporary quarters at Lowry AFB. Lt. Gen. Hubert R. Harmon, USAF-Ret., was named Superintendent of the Academy, Brig. Gen. Don Z. Zimmerman, Dean of the Faculty, and Col. Robert M. Stillman, Commandant of Cadets.

The Air National Guard reached a strength just under 50,000 men in early summer, the highest in its eight-year history. The total of 5,622 officers and 43,445 airmen did not include the 3,500 Air Force ROTC graduates who accepted appointment in June as second lieutenants in the Air National Guard. Approximately 40 of the Guard's 87 tactical squadrons were equipped with jet aircraft by the time their summer training encampments began.

The year's most notable recognition of civilian services by the Air Force was the award of the Exceptional Service Award, highest honor the Air Force can confer on a civilian, to Edward A. Link, inventor and manufacturer of the Link trainer and other flight simulators.

Naval Aviation

Easily the biggest news in Naval aviation during 1954 was the disclosure that two new aircraft designed for vertical take-off and landing had been successfully test-flown.

The announcement that the Convair XFY-1 and the Lockheed XFV-1 had reached the point of engine and pre-flight tests was made by the Navy in March.

Under construction for nearly three years, both planes are designed to rest on the ground in vertical position, to take off and land vertically, to assume normal horizontal flight position after getting into the air. They have specially designed propellers powered by turbo-jet engines.

The first free vertical take-off in history was achieved by the Convair XFY-1 at Moffett Field, Calif., on Sunday, August 1, when J. F. "Skeets" Coleman, engineering test pilot, lifted the new turboprop plane 20 feet into
the air at 9:30 a.m. On flights during the next two days, Coleman climbed to 150 feet before backing down to a landing. And on November 2, at Brown Naval Auxiliary Air Station near San Diego, Coleman lifted the XFV-1 to 175 feet, at that altitude made the transition to horizontal flying position, picked up flying speed quickly, flew back across the field, pointed the nose skyward, and backed down to a vertical landing. The flight lasted 21 minutes.

The Lockheed XFV-1 had made eight successful horizontal take-off flights by the time its rival was flown, but was still being readied for its first vertical take-off when Coleman lifted the XFV-1 into the air on August 1. The Lockheed horizontal test flights were made at Edwards Air Force Base.

In June, the Navy unveiled its "midget" carrier-based bomber, the Douglas A4D Skyhawk, built in the record time of 18 months from the beginning of design to prototype delivery. A single-place, low-wing monoplane, the hambam bomber is designed to out-perform many current jet fighters twice its size. So small it was designed without the traditional folding wings of carrier aircraft, it still is capable of carrying any weapons or missiles of an attack plane, including atomic bombs. The Skyhawk is powered with a Curtiss-Wright J65 turbojet engine. Deliveries to fleet squadrons are expected to start in June 1955.

The Navy's newest jet fighter, the Grumman F9F-9 Tiger, was flown successfully in August. Designed for supersonic speeds in level flight, the plane has a "coke bottle" fuselage configuration developed by Grumman engineers for optimum drag characteristics at sonic speeds. It is powered by a J65 Sapphire axial-flow turbojet with afterburner, produced by Curtiss-Wright under license from Armstrong-Siddeley Motors Ltd.

The first production model of the McDonnell F3H-1N Demon, an all-weather carrier fighter, was announced by the Navy early in January. More than 59 feet long, it has a wingspan of 35 feet 4 inches, and stands 14 feet high. Present production models are powered by a single Westinghouse J-40 turbojet engine with afterburner. Later models will have a more powerful Allison J-71 powerplant.

The new Martin P5M-2 Marlin, an improved version of the earlier P5M-1 models already in patrol service in both the Atlantic and Pacific Fleets, started its active duty in October. The first production models were delivered to the Navy in June, and after serviceability tests at the Patuxent River Naval Air Test Center, were assigned to Patrol Squadron Forty-Seven at Alameda, Calif. The new version of the big, gull-wing, anti-submarine seaplane features a high "T" tail designed to give better control during slow air speeds and in water maneuvers. The P5M-2 is powered by two Wright turbo-compound engines rated at 3450 horsepower each.

The Beech T-34 Trainer was adopted during the summer by Naval Air Training Command as its primary trainer, with only slight changes in the Air Force version necessary to meet Navy requirements. The Navy's present basic trainer, the North American T-28B, will be used in the future for the second stage of flying training. The T-34, a two-place tandem trainer,
The AIRCRAFT YEAR BOOK

is powered by a Continental 225 hp engine, and has a top speed of about 180 mph.

Called the world's fastest propeller-driven plane, a new turbo-prop super-Constellation built for the Navy flew for the first time September 1 at the Lockheed terminal at Burbank, Calif. Designated the R7V-2, the transport is powered by four Pratt & Whitney T-34 engines rated at 5500 hp each, and cruises at 440 mph.

In October, the Navy ordered additional production of Pratt & Whitney J-48 turbojet engines. The J-48 Turbo-Wasp powers the Navy's Grumman F9F-5, F9F-6 and F9F-8 fighters, and—with an afterburner—the J-48 is also the powerplant for the Air Force Lockheed F94-C Starfire interceptor.

Production of the engine had been scheduled to end in the autumn, but its high performance led to the new order, on which deliveries will begin early in 1955. Three Navy Grumman F9F-6 Cougars, powered by the J-48, set transcontinental speed marks in 1954, all three crossing non-stop from San Diego to New York in less than four hours.

A new system of boundary layer control was perfected during the year by John S. Attinello, an engineer in the Navy Bureau of Aeronautics. By bleeding air from the jet engine through holes in the duct and forcing it out over the trailing edge of the wing, Mr. Attinello's system increased the lift capacity of a Grumman F9F-4 Panther by 3,000 pounds, and allowed a landing speed 20 knots slower than normal. After thorough tests at Patuxent River Naval Air Test Center, the modified plane was sent to the USS Bennington for carrier tests.

Successful tests of two new developments employing rocket motors on undersized helicopters were announced by the Navy in midsummer 1954. In one of the research projects, Gilbert Magill, president of Rotor-Craft Corp., Glendale, Calif., developed the first U. S. rocket-powered helicopter, the RH-1. The midget, one-man craft is propelled by two thumb-size motors at the tips of the helicopter blades. As project "Pinwheel," the RH-1 has been under development nearly four years, and first flew in tethered tests the summer of 1953. The other research project, under development by Kellett Aircraft at Camden, N. J., incorporates gyro-stabilizing controls designed to give helicopters greater stability in the air. Tests show that it also cuts vibration considerably. The Kellett KH-15 also is rocket powered. Engines for both craft were built by Reaction Motors Inc., Rockaway, N. J.

In the late spring of 1954, the Navy began receiving scheduled deliveries of a new air-to-air guided missile, the supersonic Sperry Sparrow I, rocket-powered and fully maneuverable at supersonic speeds. The performance characteristics and the guidance system were not disclosed, but the Navy said the missile was light and compact enough to be carried in multiple units and launched from fighter-type jet aircraft. More than 100 prototype missiles were constructed and test-flown before the Navy settled on the production model, which is being manufactured by Sperry Farragut Corporation at Bristol, Tenn.

The Navy also announced in October the development of the first high-altitude target for guided missiles. It is a rocket-carried parachute, auto-
DEPARTMENT OF DEFENSE

matically opened at predetermined altitude. Developed for the Bureau of Ordnance by the Physical Science Laboratory of the New Mexico College of Agriculture and Mechanical Arts, the target is a silk parachute, 20 feet in diameter, and coated with a thin layer of metallic silver which makes it resemble an airplane on the radar scope at high altitudes.

A demonstration of new Naval aviation developments for correspondents at San Diego, Calif., in November, primarily to show them the vertical take-off planes, ended in tragedy when a Sea Dart, the delta-wing Navy jet fighter which incorporates the revolutionary hydro-ski for water takeoffs, exploded during a routine flight over the water. The Convair YF2Y-1, second model of the plane, had exceeded the speed of sound in a shallow dive at 34,000 feet on August 3, with Convair’s engineering test pilot, C. E. Richbourg, at the controls. The first Sea Dart, the XF2Y-1, made its first flight at San Diego in April 1953.

Delays in major component deliveries, including propulsion equipment, put off the launching of the USS Forrestal, the Navy's new 60,000 ton carrier, until late in the year. She is being completed at Newport News, Va. A second carrier of the same class, the USS Saratoga, is under construction, and a contract for a third, to be named the Ranger, was awarded to the Newport News Shipbuilding and Drydock Company in February. A fourth carrier of the same class also is scheduled for building in the Navy's current fleet construction program.

Army Aviation

Intensifying its studies of air transportability of combat troops and airborne equipment, the Army conducted two major field exercises in the spring, one employing only Army aircraft, the other using planes of Tactical Air Command in a joint maneuver.

Exercise Sky Drop II, held at Fort Bragg in March, was a series of fixed-wing and rotary wing comparative exercises to determine the number of each type of aircraft required under combat conditions for a field army.

Exercise Flash Burn, carried out in the Fort Bragg-Camp Mackall area of North Carolina in April, was a training exercise, using air drops and airdropping of troops. Army airplanes participated, and Army helicopters were used for deployment of combat troops, supply missions, and medical evacuation. Tactical air support, aerial resupply, and troop carrier missions were carried out by units of Tactical Air Command.

In June, the Army split off the Communications and Electronics, and Airborne Service Test, Divisions from Army Field Forces Board No. 1, and made them the nucleus of the new Army Field Forces Board No. 5, organized at Fort Bragg to work closely with XVIII Airborne Corps and 82d Airborne Division on airborne materiel development and test projects.

The training of Army aviation personnel has reached such proportions that the Army Aviation School had to be moved in the summer from Fort Sill, Okla., where it was interfering with operation of the Field Artillery School, to Camp Rucker, Ala. Camp Rucker, vacated by the move of an
infantry division to Fort Benning, has three large runways and ample facilities to support aviation training, which has been given a high priority by the Army. The Army Aviation Section, 11th Airborne Division, has set up an Instrument Flying School in compliance with an Army directive requiring all Army pilots to check out on instruments.

An Army aviator, Warrant Officer Billy I. Wester, set a new unofficial altitude record for helicopters on October 17 at Bridgeport, Conn., flying a new Sikorsky XH-39 to an altitude of 24,500 feet. Mr. Wester also holds the unofficial helicopter world speed record of 156.005 mph, which he established at Windsor Locks, Conn., on August 26.

In October, the Army awarded a contract of approximately $64-million to Sikorsky for production of cargo helicopters.

In March, delivery of helicopters to Army units of the National Guard was started, with 88 scheduled for Guard units in the first 12 months of the program, and an eventual total of 272 to be delivered. Guard units in First, Second and Third Army areas will get Bell H-13’s, those in Fourth, Fifth and Sixth Army areas Hiller H-23’s.

Marine Corps Aviation

New developments in Marine Corps aviation during 1954 were concerned exclusively with helicopters. This did not mean that Marine aviation was in a decline—far from it; but the Marine Corps relies on the Navy for its research and development work, and most of the technical developments of interest to the Marines were included in the Navy’s program.

In September, however, the Marines disclosed their ROR—rocket on rotor—development, designed by Research Motors, Inc., in cooperation with Sikorsky to give Marine helicopters greater lift. Small liquid-propellant rocket engines, mounted at the tip of each rotor blade of an HRS-2 helicopter, gave the aircraft an appreciably greater load-lift at takeoff, notably at altitudes of 5,000 feet or higher. The Marine Corps announced also that ROR improves glide performance and control in case of main engine failure, and greatly improved rate of climb and hovering ceiling at any fixed gross weight. The tiny rocket engines, weighing about one pound each, are powered by hydrogen peroxide. A small, dome-shaped tank mounted on the rotor hub contains fuel for about seven minutes’ operation—deemed more than ample for routine operations, since the ’copter needs ROR only in take-off, hovering, or autorotation conditions.

Also during 1954, the Marines demonstrated for the first time their XHR2S helicopter, the development of which by Sikorsky to Marine Corps specifications had been announced earlier. The largest ’copter now in production, the XHR2S is a transport aircraft which is believed also to be the first helicopter with retractable landing gear, contributing to its top speed in excess of 150mph. It is a twin-engine, single-rotor craft, comparable in size to the Douglas DC-3 transport, powered with two Pratt & Whitney R2800 engines. It is equipped with automatic pilot and de-icing equipment, and will carry two combat assault squads—26 men, fully equipped.
CHAPTER THREE

Guided Missiles

URING 1954, GUIDED MISSILES and pilotless planes, cloaked for more than a decade in security, began for the first time to figure substantially in the news. Glimpses of things to come had been released from time to time previously. In '54, the Department of Defense revealed some outstanding examples of the work being done and indicated more clearly than ever before the major role that guided missiles are destined to have in the nation's defense program.

Two missiles made headlines by going on active duty, each built by leading companies in the field. The Glenn L. Martin Matador, Air Force B-61 pilotless bomber, was transferred on Jan. 15, 1954, to the Tactical Air Command to be made combat-ready. On March 9, the First Pilotless Bomber Squadron, Matador-equipped, departed for Germany — the first overseas deployment of this type of unit. The second Matador squadron, the 69th, reached Germany in Sept. 1954. On May 12, Sperry Gyroscope Company's Sparrow I, an air-to-air guided missile system designed for the Navy, was announced as being readied for combat.

A third made a record. The Martin Viking, a high altitude research unit, on May 24 set a new world's altitude record for single-stage rockets of 158 miles. (A two-stage WAC Corporal, boosted by a V-2, holds the all-time altitude record of 250 miles and the all-time speed record for any man-made object—5,000 miles per hour.)

Also figuring in the news during the year was the Chance Vought Regulus, designed for launching from submarines, surface ships and shore bases, and already in mass production.

Information on the more than thirty missile projects now under way was otherwise officially brief or totally blanketed by security.
The Douglas Aircraft Company's Nike, two-stage, supersonic, surface-to-air rocket, went into mass production following nearly a decade of research and development, and large-scale production continued on the Douglas surface-to-surface, free-flight Honest John, designed for use by the Army field forces.

Ryan Aeronautical Company's Firebee, already a production success as a drone, was evaluated as a target missile for anti-aircraft, air-to-air and guided missile gunnery.

In April, Firestone Tire and Rubber Company was authorized by the Army to announce the Corporal guided missile as a new weapon for use in support of ground troops, and the Chrysler Corporation announced its Redstone, a ballistic rocket designed for the Air Force.

For the most part, other companies active in the multi-billion-dollar missile field were authorized officially to say just that and no more, although a few were permitted to be specific about the name of a project.

Very little on any of Bell Aircraft Corporation's missile projects has been released by the military except the fact that they are building a pilotless bomber for the Air Force—the XB-63 Rascal.

Bell, among the first companies in the rocket propulsion field, also was continuing research in development in high-thrust rocket engines and was delivering production versions of one of its rocket products to another aircraft manufacturer for guided missile use. Announcement also was made that an extremely accurate electronic remote control system, designed, developed and produced by Bell, was being used in the flight test program of the Chance Vought Regulus missile, permitting undamaged recovery which cut millions of dollars from the overall cost of the program.

Convair's guided missile projects, big enough to rate a division of the company at Pomona, Calif., continued to operate under a tight security lid, as did extensive activities at Bendix Aviation Corporation. General Electric, whose Guided Missiles Department celebrated its tenth birthday anniversary on November 15, released a number of facts, including data on the Hermes A-1, a surface-to-surface test vehicle.

North American Aviation reported continued research and development in all major phases of guided missiles. Republic Aviation Corporation also was active. North American revealed that they are working on a missile called the Navajo, and Northrop announced continued progress on developing its Snark, another pilotless bomber.

While security still sheltered the majority of the projects, a number were also revealed in some detail.

Typical was the Douglas Nike, a pencil-shaped missile named for the famous Winged Victory of Greek mythology, and capable of intercepting and destroying enemy aircraft regardless of evasive action.

The Nike began as a project in 1945 for assignment to anti-aircraft battalions. It was developed by a service-industry team composed of engineers of the Army Ordnance Corps, Western Electric Company, Bell Telephone Laboratories and Douglas Aircraft Company.

Mass production of the control equipment is largely done by Western
GUANED MISSILES

Allison J33-A37 Matador power plant (left), and J33-A35, latest in J33 series (right)

Electric, while rockets and components of the associated ground-handling equipment are produced by Douglas.

Nike is a two-stage rocket classified as a surface-to-air weapon. It is a dart-like rocket with sharply swept cruciform fins near the nose and similar fins near the after end. It is about 20 feet long and one foot in diameter.

The missile is attached to a booster section which also has stabilizing fins at the base. After a period of initial thrust which attains supersonic speed, this booster portion drops off and a sustaining rocket motor takes over.

An explosive warhead and electronic guidance equipment also are carried in the body of the basic missile. As a safety measure, the warhead is designed to explode only when in flight.

The rocket is an integral part of a complex spotting and guidance system which electronically picks up and tracks a target plane and automatically launches a rocket at the proper moment to intercept the aircraft.

Essentially a defensive weapon, the Nike system provides strategic areas of the United States with a far greater degree of anti-aircraft protection than was possible with the more limited ranges and altitudes reached by conventional anti-aircraft guns.

The missile operates effectively regardless of weather conditions or visibility.

Nike may be employed either from fixed or mobile battery installations.
All of its units, except steel launching racks, are housed in all-weather van-type trailers, also designed by Douglas. The entire system is designed to be transportable by air.

Should enemy aircraft approach a strategic area defended by the Nike system, this would be the sequence of events:

1. A Nike battery receives information that hostile aircraft are approaching, and radar follows the target automatically.
2. Nike missiles are readied in vertical position on their launching racks.
3. Radar provides a running account of the target's changing position.
4. When the target crosses Nike's distant and invisible deadline, the missile is fired.
5. Within seconds, it closes in on the airplane.
6. When it reaches the target, the warhead explodes and destroys the plane.

The Nike project was initiated when Army Ordnance asked Bell Telephone Laboratories to undertake a study of the problems involved in the construction of a new anti-aircraft system. As a result of their recommendations, the Army authorized a development contract.

Douglas became a full partner in the enterprise and was assigned responsibility for about half the development effort, including design of the missile and the launching equipment.

Nearly five years were required to solve the new and complex technical problem posed by the Nike system. During this time, test firings to improve launcher and booster designs were made at the White Sands Proving Ground in New Mexico. Meanwhile, development of the guidance equipment proceeded at Bell Laboratories.

The Army has made public still and motion picture photographs demonstrating the interception and destruction of a pilotless “drone” bomber by a Nike missile.

Douglas also released considerable material on its Honest John, surface-to-surface, free-flight long-range artillery rocket capable of carrying atomic warheads for use tactically to give close fire support to ground troops. A free-flight weapon is not a guided missile, but this one developed as part of the Douglas program in that field.

Approaching the accuracy of standard artillery weapons, and having no electronic controls, Honest John is simple in design and simple to operate. Normal crew training and standard fire control techniques are employed. Range is equivalent to that of medium-to-long range artillery. The weapon has considerably more battlefield mobility than conventional artillery and one high explosive round can deliver on a target the same demolition effect of hundreds of artillery shells.

Honest John consists of a rocket weighing several tons and a highly mobile, self-propelled launcher. The rocket itself comprises a forward compartment which houses the warhead; a motor at the center, in which the rocket propellant is fitted; and a fin assembly at the rear.
GUIDED MISSILES

Major parts of the Honest John rocket—such as the head compartment, pedestal and motor, and fin assemblies—are assembled at the factory or arsenal. Final assembly of the explosive warhead and fins to the rocket occurs at a point close to the firing site. Once assembled, the rocket is moved rapidly forward on a self-propelled launcher. On site, the rocket is aimed much the same as a gun is laid on its target, and fired.

By January, 1953, further successful tests with improved rockets manufactured by Douglas and fired from self-propelled launchers, developed by Army Ordnance, resulted in contracts for large-scale production of the present type rocket. Delivery is being made to troop units.

Besides releasing data on its Hermes A-1, General Electric during 1954 announced that it had flight tested a new and considerably advanced guided missile, had developed a new guidance system, and conducted research in high-performance fuels and propulsion system refinements.

The Company entered the missile business during World War II, when it signed a contract with the Army Ordnance Corps for a program of investigation in all fields of guided missile research, development, and manufacture. Code name for the program was Project Hermes after the figure of Greek mythology who was messenger for the gods.

In 1945, the Ordnance Corps also assigned G-E the task of firing a number of captured German V-2 rockets. It was during this program that the two-stage WAC-V-2 reached a velocity of 5000 mph and a height of 250 miles, the fastest and highest a man-made object has ever gone.

Another operation for the Navy launched a V-2 from the deck of the aircraft carrier Midway.

In addition to conducting the V-2 tests, G-E engineers were also designing and developing new missiles. In 1950 the first of these G-E designed missiles was launched at White Sands. Given the designation Hermes A-1, it was smaller than the V-2 and was designed as an anti-aircraft missile. A series of these missiles were launched during the following year. Later the A-1 was modified for use as a surface-to-surface test vehicle rather than surface-to-air.

Other G-E rockets were being designed during this period, too. Missiles given the designations Hermes A-2, A-3, B, and C-1 were undergoing development programs. While all of these were not produced, lessons learned from them were incorporated in other missile designs.

The missiles own by G-E since 1951 have resulted in many new contributions to missile guidance and propulsion systems.

Research and development achievements of “Project Hermes” include the first launching of a large rocket in this hemisphere; design, construction, and operation of the first large rocket static test facilities in this country; the development of an engine with the highest specific impulse ever
achieved in rocket flight; the first command control of a missile in flight in this country; the first large-scale high supersonic ramjet work; the conception and development of two basically new guidance systems for surface-to-surface guided missiles, and the flight testing of the largest solid propellant rocket ever built.

Highlight of Sperry Gyroscope Company's 1954 missile history came with the May 12 announcement of the advanced status of the supersonic Sparrow I. Training of ship and shore personnel immediately got underway for operational use of this weapon by carrier-based jet aircraft of both Atlantic and Pacific fleets.

Present readiness activities brought only partial disclosure of the "Sparrow" missile, after more than seven years' development by the Navy Bureau of Aeronautics and the Sperry Gyroscope Company. Announcement of the missile was withheld until after the start of production from another special Navy facility, the Sperry Farragut Company at Bristol, Tenn.

More than 100 prototype missiles were constructed and critically test-flown from 1948 to 1951, including air launchings from Navy aircraft since 1949. These were evolutionary models, marking planned steps in the scheduled development of new combinations and improvements in robot flight controls and automatic guidance systems.

Defense and Navy officials decline to specify details of the missile types selected for first and second phase production runs, other than stating that these are systems capable of accurate control when the missile is fired from a speeding jet plane.

The Sperry Sparrow is rocket powered and fully maneuverable at supersonic speeds, yet light and compact enough to be carried in multiple units by fighter-type jet aircraft. Exact weight, range, type of warhead and performance data are still classified.

Prime responsibility for development and manufacture of the complete system was assigned to Sperry Gyroscope Company by the Bureau of Aeronautics in 1947. Evolutionary work included studies of tactical requirements and basic design criteria; engineering and design of telemetering equipment for unusually exhaustive tests; development and manufacture of control systems and airborne guidance of optional types; operational and maintenance training of Navy instructor personnel, as well as production of the Sparrow I missile itself.

As a factor in high performance of this operational weapon, Sperry Gyroscope Company made special acknowledgment of valuable cooperation by Douglas Aircraft Co. in the design and production of airframe elements. Similar tribute was extended to many other subcontract firms who supply essential component parts from their factories in many areas of the United States, in some cases without knowing what the parts were intended for.

Sperry Gyroscope is engaged in a number of other missile projects, particularly in guidance and stabilization. However, aside from Sparrow I, only its stabilization of Regulus has so far been announced.

First details were released in April by the Air Force and Sperry on a robot system used to control the Lockheed QF-80 pilotless jet aircraft,
which participated in the nuclear tests at Nevada Proving Grounds during the spring. The QF-80 drone, a pilotless version of the standard F-80 jet bomber, collected data on radiological hazards within an atomic cloud.

The Sperry system enables “NULLO” flight by the QF-80 (No Live Operator Aboard), under direction by radio and radar from the beep-box control signals of two ground stations, worked by specially trained “beeper pilots,” or from a nearby “director” aircraft.

The pilotless jet takes off and lands itself, and firmly holds any compass course, altitude or speed. While airborne it maneuvers easily, from take-off speed to Mach limit, and from sea level to 40,000 feet.

The QF-80 corrects itself for any unwanted deflections and holds constant airspeeds, even while automatically adjusting for nose-up or nose-down angles of flight. Accurate control is maintained up to full capacity of the aircraft, through take-offs and climbs, dives, level flights, flat turns and bank turns.

Chance Vought Regulus Guided Missile

Designed and produced by Sperry, the system was top secret for more than six years. Working with the Air Materiel Command and the Air Development Command, Sperry has equipped and delivered to the Air Force since 1949 numbers of these modified jet robots and jet “directors,” and is now engaged on more advanced, improved designs.

A vital element of the QF-80 system is the Sperry E-4 precision autopilot, similar to the one which automatically flies long-range jet bombers on precision courses. The present QF-80 drone system is a further development of the wartime control of U. S. bombers over target, and an Air Force 1947 automatic flight across the Atlantic and back without pilots touching the controls. The automatic pilot is considered the key feature in such operations.

The remote control system of the QF-80 provides a degree of exact, automatic control of jet airspeeds not attainable before. Such stabilized airspeed is a critical matter in landings and precision maneuvers. The use
of drones in atomic tests in Nevada demonstrated the progress made in "mating" radio, radar, gyros and servomechanisms into integrated systems of flight control.

The Chance Vought Regulus, designed for launching from submarines, surface ships and shore bases, made news on active duty. The submarine Tunny was recommissioned on the West Coast March 6th, specifically modified to launch the Regulus. The Tunny is a converted World War II submarine that has been modernized by the addition of the snorkel and stream lining of the hull and conning tower. While in the shipyard a tank for stowing a guided missile and a launching rack was installed.

Although the assault missile, and certain other configurations, will employ a drone version of Regulus, tactical employment will also include those techniques and guidance systems associated with the operation of all-weather, distantly controlled guided missiles. Such plans make it possible to use the missile in various ways without the expense and effort of designing and procuring a separate missile for each function.

The test and training versions of the Regulus missile are equipped with tricycle landing gear so that it may be recovered upon completion of its flight. This recovery feature is important because the missile is not lost after each flight. A flight test vehicle, during the early stages of development, approximates the cost of a jet fighter. To evaluate a jet fighter, approximately 100 hours of flight time are required. To obtain the same flight test information on a non-recoverable missile comparable to the Regulus, around 200 missiles would have to be used if each were expended. The recovery feature permits the number to come down to about 30.

In addition, much important test data, which might be lost if the missile were destroyed, are recovered and used to good advantage in subsequent flights. Several test missiles now in use have been flown many times at subsonic and supersonic speeds and have been recovered without damage.

The Navy states that as many as 15 flights have been made with a single vehicle, cutting to one-tenth the cost of a comparable operation involving loss of a vehicle or missile for each test.

The tactical missile has no landing gear but carries a warhead.

In appearance, Regulus resembles a conventional swept-wing jet fighter. It is about 30 feet in length.

In production since 1953 at Chance Vought's Dallas, Texas, plant, the missile was initially developed in 1948, and first flown at Edwards Air Force Base in 1950.

During 1954, Republic Aviation Corporation's Guided Missiles Division progressed into the research and development phase of operations, necessitating relocation of the Division at Hicksville, N. Y., near the company's main plant.

Republic's Guided Missiles Division was established in 1952 to consolidate and increase efforts in the field. During the first two years of operation the nucleus of a sound engineering organization was formed and several major feasibility studies were carried out for the armed forces.

For the research and development phase Republic has set up at Hicks-
GUIDED MISSILES

ville a Guided Missiles Engineering Department, electronics and servo laboratory, computer installation and experimental shop.

Republic's Guided Missiles Division is presently engaged in the development of a new air-to-surface guidance system as well as work in the special weapons field for the armed services.

Within its Missile and Control Equipment operation (MACE) at Downey, Calif., North American Aviation is carrying on one of the most inclusive programs in guided missile history.

Under the direction of company Vice-President L. L. Waite and Administrative Director H. R. Raynor, the Missile and Control Equipment operations are made up of three major technical departments: Aerophysics, headed by J. G. Beerer; Electro-Mechanical Engineering, directed by Dr. N. E. Edlefsen, and the Rocket Engine Facility, managed by S. K. Hoffman.

MACE’S 5,000 scientists, engineers, and technicians — some of the world’s leading scientific brains—are creating missile configurations to withstand blistering heat at tremendous speeds. They are creating electro-mechanical brains to pilot missiles to distant targets with incredible accuracy—as well as related electro-mechanical products. They are designing and developing rocket engines for propulsion.

The company’s Aerophysics department is in advanced stages of aerodynamics, aerothermodynamics, and stress and structures work for missile designs.

In the constant effort to reduce weight of missile structural parts, North American Aviation’s Downey plant has developed a chemical milling process which has met with immediate success. With this process, called Chem-Mill, the Aerophysics department’s Materials Research and Process Development Group produces lighter aircraft and missile parts to accuracies of .002 of an inch. Through Chem-Mill, it is possible to etch formed parts that cannot be handled by conventional milling methods. Entirely new designs are possible through chemical milling.

Important in the electro-mechanical engineering program is reducing size and weight of electronic components through sub-miniaturization. Some components are potted (hermetically sealed in a viscous plastic material) to make them better able to stand shock, humidity and extremes of temperature.

Another major MACE operation is the Rocket Engine Facility in East Los Angeles, where advanced work in rocket propulsion is being conducted. Not long ago, the company announced a 50,000 pound thrust, liquid propellant rocket engine capable of powering a test sled on rails at speeds above 1,500 miles per hour, reaching that speed from a dead stop in 4.5 seconds.

The Rocket Engine Facility is presently doing research and development work toward producing larger rocket engines. Thrust ratings are classified.

Firings of the company’s rocket engines are conducted at the Rocket Engine Field Laboratory in the Santa Susana mountains northwest of Los Angeles.
Ryan Aeronautical Co., whose Firebee is in mass production, reported continued progress in three facets of missile science, aerodynamics, power plant and electronics. Since 1946, when Ryan designed and built the Air Force's first air-to-air missile—The Firebird—the company has conducted work in the field of electronics for guidance systems.

Today Ryan is building the rocket engines for the Army's newest atomic weapon—the Corporal Guided Missile. Ryan is also building jet type power plants for other missiles which cannot be revealed.

A top missile production story came from the Firestone Tire and Rubber Company, which during the year began construction on a new plant in Los Angeles to be employed exclusively for production of the Corporal guided missile.

Equipped with either an atomic or conventional type warhead, the Corporal is a surface-to-surface vehicle capable of engaging tactical targets far beyond the ranges of artillery. The weapon gives the field commander far greater firepower on the battlefield and enables him to strike selected targets deep in the enemy rear areas.

The Corporal follows a ballistic trajectory in its flight to the target. Weather and visibility conditions place no restriction on the use of the weapon. Motive power is supplied by a powerful rocket motor. The missile travels through space at several times the speed of sound.

Essential components of the weapon's system include the missile, a mobile launcher and guidance equipment. The launcher is a comparatively simple device consisting of a light metal take-off pedestal. A self-propelled, hydraulically operated erector places the missile in firing position on the take-off pedestal.

Almost concurrent with the announcement of the deployment of Martin B-61 Matador missiles to the Air Force's first pilotless jet bomber squadron in Bitburg, Germany, near the Iron Curtain, was the revelation of Allison as the Matador engine manufacturer.

The B-61 engine, designated the Allison J33-A-37, is based on the proven Allison J33 centrifugal flow jet engine which has accumulated more than 2,500,000 hours of flight in such piloted aircraft as Lockheed's F-80 Shooting Star, T-33 trainer, F-94 Night Fighter and in Grumman F9F Panthers and Cougars.

In the development of the missile power plant it was necessary for Allison to design a J33 model incorporating reduced material, manufacturing and testing costs and still maintain a 100 percent reliable engine for a short but exacting flight life. This program resulted in major changes to the piloted version of the J33 engine and a total cost reduction of 30 percent. The J33 also powers Chance Vought's Regulus, a surface-to-surface missile. A third missile is also powered by an Allison turbo-jet, details of which cannot yet be released.
CHAPTER FOUR

Government and Aviation

Civil Aeronautics Administration

DURING 1954, THE Civil Aeronautics Administration completed a general reorganization and streamlining of its functions, reduced its costs of operation, returned to the field of federal aid to airports, and assisted the aviation industry in continuing its long practice of breaking safety records year after year.

It was a good year for almost every segment of aviation. The scheduled airlines ran ahead of all forecasts of their growth; the non-scheduled operators had a record of 16 months of operation without a fatality; executive fliers increased in numbers and in utilization of their aircraft; aviation manufacture became the nation's leading industry in number employed; and industrial flying, including agricultural flying, continued its steady growth. Pleasure flying, difficult to isolate in statistics because many plane owners combine business and pleasure flying in the same plane, did not increase during the year, the only segment of the industry that failed to gain.

In the all-important matter of air carrier safety, the scheduled airlines came up with a record—estimated near the year's end—of .09 passenger fatalities per 100,000,000 passenger miles. In September, the non-schedule airlines completed a full year of operation without a passenger fatality, and they appeared headed for the end of the year with the same good record.
International scheduled lines produced an estimated record of NO passenger fatalities per 100,000,000 passenger miles.

A new policy of safety enforcement was adopted during the year. CAA Aviation Safety Agents in the field specialized in working directly with responsible management officials to encourage industry to undertake company-wide safety improvements on their own initiative and to assume more responsibility for detailed procedures and practices. Agents stopped arbitrary inspections of air operators, and concentrated their efforts where they would yield the greatest safety results.

Throughout the year the CAA worked with the non-scheduled airlines to prevent accidents, and especially in a program to raise the operational safety level of the C-46. The CAA's Aeronautical Training Center at Oklahoma City cooperated with the Aircraft Engineering Foundation in a special education program for chief pilots of member companies using this aircraft. These companies had no fatal accidents with this type of plane since the beginning of the program.

The non-scheduled lines had piled up a fatality-free record of 16 months at year's end, and were shooting at the all-time fatality-free period record of 17 months made by the scheduled airlines in 1938-1939.

Three new-type aircraft were certificated during the year, bringing opportunity for highly important studies by the CAA. They were the turbine-compound powered transports, the Douglas DC-7 and the Lockheed Super Constellation, and the Hiller ram-jet helicopter. CAA engineering specialists worked with industry engineers in devising safety standards for testing and refining these modern aircraft.

A comprehensive report on turbine-powered transports was completed early in the year, resulting from a year of study, discussion and travel by CAA safety specialists. The book will serve as an aid to the CAA and industry in establishing regulations for turbine-powered transports. At the year end, the CAA was working with Capital Airlines and Vickers-Armstrongs, Limited, which manufactures the Viscount, turbo-powered transport. When certificated in the U. S. the Viscount is to be put into service on Capital's lines.

To develop medical knowledge essential to aircraft design and operation, the Medical Division of the CAA established the Civil Aeronautics Medical Research Laboratories at Ohio State University at Columbus. The program there includes instruction of civilian physicians and others in aviation medicine.

For pilots, the CAA produced a new type examination for commercial pilot certificates, which includes a realistic, true-to-life flight situation to be worked out by the applicant. Manual 20 "Pilot Certificates" was prepared to improve the quality of pilot training and produce uniformity in flight tests. Continuous work was under way for improvement of examinations and tests that will insure pilot ability and improve safety.

The CAA took over in 1954 the investigation of accidents occurring to planes in the under-12,500 pound class, while the Civil Aeronautics Board retains its duty of determining probable cause of accidents to larger planes.
THE GOVERNMENT AND AVIATION

A $22-million Federal Aid to Airport Program was in operation shortly after mid-year, the result of a supplementary appropriation by Congress. The airport program had been discontinued for a year by the Department of Commerce while a special study of the whole practice of federal aid was completed. This study resulted in recommendations for continuing this practice, but recommended that federal money be used only in preparation of the landing area and the acquisition of ground outside the airport needed for clear approaches. No buildings will be built with federal aid, and airports may have federal aid under new criteria: if they have 3,000 airline passengers enplaning during the year, or if they have 30 aircraft permanently based. By the end of the year action was under way on 164 grants for airport construction or improvement, involving $15-million for projects within the United States, $750,000 for projects in Alaska, Puerto Rico, Hawaii and the Virgin Islands, $1.25-million for administration and $5-million designated as a discretionary fund for distribution by the Administrator. An additional $1.5-million was available, carried over from the 1953 program.

Airport pavement for handling heavier transport planes was the subject of a new booklet prepared by the CAA, and the lighted taxi guidance signs developed by the CAA were installed at New York International, Greater Pittsburgh and Newark airports.

Airways progress continued. At the end of the year the VHF airways were an estimated 95 percent complete as far as VOR ranges were concerned, and all Distance Measuring Equipments planned but four were installed and ready to be turned on. Air Carrier fleets estimated to be 80 percent equipped for use of the ranges, but very few, perhaps less than 1 percent of their planes, were ready to use DME.

New problems in traffic control kept the CAA studying and planning, and resulted during the year in an Airways Operations Evaluation Center at the CAA’s Technical Development and Evaluation Center at Indianapolis. Tests of new ideas were under way in the field, with the CAA and the Military cooperating in opening the first Radar Approach Control Center (RAPCON) at MacDill Air Force Base in Florida, and 18 other such centers being planned. Defense planning activity was continuous throughout the year with the CAA and the military cooperating in matters of communication, identification and establishment of flight corridors in defense zone areas.

CAA’s International Region continued to increase its services abroad, piling up an impressive set of statistics. The Region had certificate responsibility for 55 air carriers operating over 215,512 miles of unduplicated routes, using 657 airports, 1,742 pilots, 291 navigators, 662 flight engineers, 233 dispatchers, 5,205 mechanics and 136 radio operators. CAA Safety Agents abroad serviced 14 major maintenance bases, 12 sub-bases, 7 repair stations and 19 foreign repair stations. Some 68 aviation safety technicians handled this work and the 960 aircraft engaged in international transportation.
Important developments in the CAA’s foreign operations were the assignment of a mission to Spain for modernizing the airway system there and train Spanish Nationals to operate it; assistance to India in planning and installing navigational aids; establishment of a training center for airways operators in Formosa; and some 10 other technical missions operating abroad in addition to the foreign visitors being given training in the United States.

To keep CAA agents current in the rapidly-developing fields in which they work for safety, the Aeronautical Training Center at Oklahoma City began operating its Dehmel trainer simulating the Boeing Stratocruiser during the year, and planned another simulator for training in the operation of jet-powered aircraft. Some 421 persons took the Center’s Aviation Safety courses during the year, of whom 17 were foreign nationals and 13 airline personnel from large non-scheds. More than 500 received training at the Center in major subjects of airways operations, and of these, 239 were Air Force personnel and 37 foreign nationals.

The Technical Development and Evaluation Center of the CAA at Indianapolis received an award in 1954 from the Flight Safety Foundation for its work in detection and extinguishing of aircraft fires in flight. Results of the work of this group were appearing more and more on aircraft operation. The Center’s dynamic traffic control simulator was at work throughout the year, studying improvements applicable to complex air traffic problems throughout the country.

The Center worked during 1954 with a contractor in developing a fantastic magnetic drum for processing and storing messages for airway operation, looking toward a time when increasing traffic will require greater volume and faster action than possible by human beings.

Requirements for establishing and operating airway aids resulted in many continuous planning activities during the year. A booklet on “The Air Commerce Traffic Pattern,” valuable for planning by the industry and the CAA, was printed covering calendar year 1953, and will be issued semi-annually hereafter. The industry has found many uses for another CAA publication, “The Airplane at Work for Business and Industry” in 1952 provides a comprehensive review of all phases of general flying.

Concerned by the lagging interest of young people in aeronautics and aeronautical activities, the CAA originated the Aviation Incentive Movement in 1954. The aim was to carry out Senate Resolution No. 292 which said that “the CAA is requested and directed” to take steps to “capture and hold the interest of youth in aviation careers” and to develop incentives to achieve that end. Organization of a national committee and obtaining the cooperation of the industry were first steps in the campaign.

Washington National Airport, the only civil airport owned and operated by the CAA, finished the year in the black again, and with an estimated 3,065,000 passengers enplaned and deplaned on commercial air carriers, a new record. Discussion waxed during the year on establishing a second airport for Washington to meet the steadily-increasing growth of air commerce in and out of the Capital.
Civil Aeronautics Board

No major changes in organization or policy were experienced by the Civil Aeronautics Board during 1954. The five-member group marked its 16th year by noting several significant developments in U. S. civil aviation.

Passenger helicopter service, inaugurated in 1953 with flights by New York Airways between LaGuardia and Newark airports, expanded into inter-city operations with the initiation of scheduled passenger helicopter flights by National and Mohawk airlines using seven- and eight-passenger Sikorskys.

The experiment initiated late in '53 to carry first-class and other preferential mail (other than air mail and air parcel post) by air on a space-available basis and at a nonpriority rate was expanded to include mail shipments between numerous points on the routes of seven domestic trunk lines and 14 local service air carriers.

CAB reported that passenger traffic also continued to expand in 1954. Revenue passenger-miles of scheduled domestic operations for the year ended June 30th increased 13 percent.

Federal subsidy of the airlines for the year ended June 30th was approximately $80.4-million. Under Reorganization Plan No. 10 (reported in the 1953 Aircraft Year Book), the Board performs the function of paying to the air carriers that portion of compensation under provisions of the Civil Aeronautics Act representing subsidy.

An important decision affecting subsidy payments to air carriers was made by the Supreme Court early in 1954 when it ruled that any excess earnings of an airline's domestic operations must be offset against the subsidy need of its international operations. Prior to this decision, domestic and international operations had been considered separately by the CAB for mail rate purposes.

National Advisory Committee for Aeronautics

The researches of the National Advisory Committee for Aeronautics in 1954 were largely concentrated upon problems requiring solution to enable design and construction of airplanes and missiles with performance substantially improved over the best of today's production. In recent years great advances have been made in aeronautics, and yet there is no sign that the end of the period of spectacular accomplishment is near.

Results of research conducted over a ten-year period on the problems of developing aircraft which would possess both the vertical rising capabilities of the helicopter and the high speeds of conventional airplanes were reflected in 1954 in the successful full-scale VTO prototypes constructed by Lockheed and Convair under Navy contract. Much of the basic research by NACA has been focused on stability and control problems which are most serious during hovering and transition flight of VTO aircraft.

Because of the very large amounts of thrust required to reach higher supersonic flight speeds and provide greater range, the need for improved power plants has become critical. For its part, the NACA's Lewis Flight
The AIRCRAFT YEAR BOOK

Propulsion Laboratory has been investigating the potentialities of various engine types, with greatest effort being focused on the jet engine. As a result, break-throughs have appeared at several points, and new and more powerful means of increasing greatly the performance of military aircraft have been uncovered. Some of the improvements represented forward steps in the progress of supersonic aircraft which are revolutionary rather than evolutionary.

The speed required to propel an airplane at supersonic speeds is very large, as much as five times that needed to sustain the same airplane at subsonic speeds. It has become increasingly apparent that if supersonic aircraft are to possess the long-range capabilities required a way must be found to breach the fundamental limits inherent in engines using chemical fuels.

One obvious way to extend the range of supersonic aircraft would be to utilize nuclear energy for propulsion. Fission of a single pound of uranium would produce as much heat as burning 2,000,000 pounds of gasoline. Stated another way, the total energy which can be obtained from the "burn-up" of a single pound of uranium equals the energy in 3,500,000 pounds of coal, yet the uranium would be a 1½-inch cube against 32 railroad cars of coal.

There are many ways in which the heat generated in a nuclear reactor can be converted into power or thrust. One of the simplest is to use the reactor to do the air-heating job in a turbojet engine in place of the usual combustion chambers where chemical fuel is burned. Unfortunately, the rate of heat-transfer to air is relatively low, and the amount of power required for supersonic flight forces use of larger and heavier reactors. Shielding problems for a small reactor in an airplane themselves are serious; they are greatly intensified by the need to utilize a larger reactor.

Both experimental and analytical investigations of the many problems of nuclear aircraft engines are necessary. Often problems are so complex as to require development of novel facilities which can be used to split them into their several parts for piecemeal study and solution.

The performance capabilities to be realized from harnessing nuclear energy for aircraft propulsion would be nonstop supersonic flight to any point on the face of the earth, and return. With so large a gain the goal, industry, the Atomic Energy Commission, the Military Services, and the NACA are participating in vigorous, sustained attacks on the formidable problems that must be solved.

In the search for ways to provide improved power plants for supersonic missiles, the ram-jet and rocket engines offer much promise. The ram-jet has no moving air compressor and has been called a flying stovepipe. It depends upon forward velocity to compress, or ram, air into the engine. Heat is added to the compressed air by burning fuel in a combustion chamber, and the heated air discharges from the exit nozzle in a steady, high velocity stream, giving thrust. The ram-jet must be traveling at high speed to produce useful thrust, but its simplicity encourages further development.

In its research work with ram-jet engines, the NACA has used several techniques. Some models tested are ground-launched, with booster rockets
being used to attain initial speed. Other models are launched from an airplane at high altitudes. Sometimes, the two techniques have been combined, and models incorporating booster rockets have been air launched. In these latter cases, the booster accelerates the model to a Mach number of about 2.2, after which it drops off, and the ram-jet engines take over. Both gasoline and experimental fuels have been studied for use in ram-jets. The speed range of ram-jet engines being investigated under flight conditions has been extended from subsonic, in 1946, to a Mach number of about 3.5 (2310 mph) at the present time.

Continuing research is bringing a realization that, at even the relatively low supersonic speeds contemplated for tomorrow’s airplanes, the effects of aerodynamic heating will profoundly aggravate already difficult design problems. The high temperatures reached by the airplane parts reduce their strength and stiffness. The rapidity with which the temperature rises is perhaps as important as the temperature level; thermal stresses may develop which can cause structural difficulties, like buckling, or aero-elastic troubles, like flutter, of great severity.

At the extremely high speeds considered for some long-range missiles (above a Mach number of 10, or 6000 mph) the temperatures reached would be enough to melt any presently-known materials. A missile of this type would follow a ballistic trajectory, climbing rapidly above the earth’s atmosphere. Aerodynamic heating would not be too troublesome during the climb or level flight. But when it made its descending re-entry into the atmosphere, heat would be poured into the missile at an extremely high
rate, with temperatures being reached sufficient to vaporize diamonds.

Preliminary studies have been conducted at the NACA's Langley Aeronautical Laboratory with small models made of low-melting-point metal. By this means, it has been possible to observe the probable behavior of full-scale missiles at high supersonic speeds. The model tests showed clearly that the structural material of the model will melt unless means are employed to prevent this from occurring. Various expedients to preserve the structure from disintegrating have been suggested, such as the use of high-melting-point ceramic and metallic materials, water cooling, and insulation.

On November 20, 1953, the NACA's Scott Crossfield became the first man ever to exceed a Mach number of 2 (in the Douglas D-558-II Skyrocket); two weeks later, Major Charles E. Yeager, USAF, flew the Bell X-1-A to a Mach number of 2.5. But because these speeds were held for only a matter of seconds on both flights, aerodynamic heating did not become serious. If, however, Yeager's speed had been maintained, even for a few minutes, surface temperature of the airplane would have been close to 400°F. If a fighter airplane cruising in the stratosphere at high subsonic speed were to accelerate to a Mach number of 3 (1980 mph), heat would be developed at a rate sufficient to melt a ton of ice per minute. Sustained speed at a Mach number of 4 would increase the temperature to 1000°F.

Analytical comparisons made at the NACA's Ames and Langley Laboratories have been made of materials available for use in the skins of aircraft structures designed to operate in various speed ranges. They show that aluminum is superior as a plate material up to a Mach number of about 2; that titanium is best for the Mach number range between 2 and 3, while steel is best for still higher speeds.

In experimental studies of heating rates, it has been necessary to employ radiant-heat sources, which can provide large quantities of heat very quickly. Temperatures above 4000°F. have been reached within seconds. In addition to such means of simulating aerodynamic heat, supersonic jets are used to produce actual aerodynamic heating comparable to that which would be experienced in actual flight.

Stopping a high-speed turbojet airplane, during landing, within the runway limits of today's airports has become a problem of increasing concern as the size and landing speed of such aircraft have continued to grow. Providing wheel brakes of sufficient size to do the job alone imposes too great a weight penalty. Other devices, such as parachute brakes, have been used but their high cost and other disadvantages have served to spur the search for a better way of obtaining the rate of deceleration desired.

Both in this country and in Europe the idea of obtaining the necessary braking power by turning the rearward turbojet blast to a forward direction has been explored. Much work has been done on the problem, and several ways of obtaining satisfactory thrust reversal have been studied.

Basic requirements for a practicable thrust-reversal device, in addition to effectiveness and reliability, include light weight and minimum penalty on flight performance. Also, the jet stream must be reversed in such fashion
that it will not strike parts of the airplane which would be damaged by intense heat.

Thrust-reversal devices which have been investigated most thoroughly fall into three general categories. Perhaps most intensively developed to date has been the so-called target type, which obtains flow reversal by positioning a cup or dish squarely across the path of the rearward jet. When not in use, the cup elements are retracted into the engine nacelle or other airplane structure. The cup must be large enough to cause sufficient flow reversal; it cannot on the other hand be so large as to impose an excessive weight or drag penalty when not in use. It must be located close enough to the tailpipe to obtain good thrust reversal, but not so close as to reduce jet flow.

A second type employs a series of thin metal rings which, when not in use, are retracted into the engine tailpipe. To obtain thrust reversal, the jet stream is deflected against the rings by an upstream air blast piped from the engine’s compressor, or by action of the jet stream on adjustable swirl vanes attached to the tailcone. As the amount of the air blast or the angular setting of the vanes is increased, more of the jet stream moves outward against the rings, which are so curved in cross section as to cause flow reversal. In this type, “cost” must be measured in terms of thrust losses during flight, caused by presence of the swirl vanes or of the blast tube in the jet stream.

In a third type, which the NACA has been studying, a double set of blades located inside the tailpipe causes thrust reversal. When not in use, the blades are closed in such fashion as to impose minimum drag. Although these blades impose some thrust loss during flight, this type is of interest because of its relative simplicity and also because it is possible to direct the reversed jet flow so as to avoid hitting airplane parts.

Aeromedical research has established that man can withstand very high impact loads providing their duration is short. Analysis of non-fire, crash-landing airplane accidents showed the lowest percentage of severe and fatal accidents among personnel who remained seated. This information suggested the possibility of learning how to reduce the frequency and severity of injuries in this type of accident.

By installing special instrumentation in the aircraft used in the crash-fire program which the Lewis Laboratory has been conducting, detailed information was gained about the forces transmitted through the airplane structure to that part of the fuselage where passengers would be located. In one test it was found that loads exceeding 12 g’s (1 g equals the force of gravity) were imposed. Under these conditions a 200-pound passenger would exert a force of more than 2400 pounds on his seat belt. Such loads might tear the passenger from his seat or the seat from the airplane structure. In either event the passenger would be likely to suffer serious injury as he was hurled about the cabin.

Other tests were conducted, using light airplanes and dummies supplied by the Military Services. The dummies are constructed in such fashion that bone stiffness, joint action and tissue texture like man’s are simulated.

213
In these tests, slow-motion picture records of the dummy's reactions during a crash, together with information about the loads imposed during a crash, were obtained.

Findings from this research program led to formulation of design requirements for an aircraft passenger seat which could absorb safely loads imposed during a crash landing. Among the seat specifications were the following: (1) It should be strong enough to hold the passenger in place; (2) it should be capable of enough elastic deformation to absorb the shock of peak loads, but with considerable frictional damping to prevent elastic rebound; (3) it should be able to withstand shocks from any direction, since a crash-landed airplane may swing around and hit objects while moving sideways or rearward, and (4) it should be constructed of such materials that if breakage occurs, no sharp or pointed objects will endanger the passenger.

To determine whether such space requirements could be met within the space and weight limitations present in aircraft construction, an experimental seat was built for study under crash conditions. Unsuitable for commercial production, the seat incorporates construction features necessary for research, that interfere with passenger comfort.

The seat back, side arms, and seat pan are air-inflated members without metal parts. A body or head striking these parts would be well cushioned. Rubber linkages between the structural members afford necessary elasticity and ability to support a blow from any direction, while friction surfaces prevent elastic rebound.

Air Coordinating Committee

The Air Coordinating Committee, established in 1946, Executive Order 9781 of the President to coordinate Federal policy in the field of aviation, is composed of members from the ten Government Departments or Agencies having an important interest in aviation. The members of the Committee are as follows: Robert B. Murray, Jr., Under Secretary of Commerce for Transportation, Chairman; Chan Gurney, Chairman of the Civil Aeronautics Board, Vice Chairman; Samuel C. Waugh, Assistant Secretary of State for Economic Affairs; George H. Roderick, Assistant Secretary of the Army; James H. Smith, Jr., Assistant Secretary of the Navy for Air; Roger Lewis, Assistant Secretary of the Air Force; H. Chapman Rose, Assistant Secretary of the Treasury; E. George Siedle, Assistant Postmaster General; J. Weldon Jones, Economic Advisor, Bureau of the Budget (non-voting); and Col. Alvin B. Barber, Consultant for Transportation, Office of Defense Mobilization (non-voting). The Executive Secretary is Lee Moore.

The Committee completed and transmitted to the President a comprehensive survey of Civil Aviation Policy. This report was accepted as a guide for the Administration and was released for information of the public on May 26, 1954.

In the economic field the Committee has completed a report covering the development (civil-military potential) of convertible aircraft. The re-
port concludes that the convertiplane appears to have a significant potential utility for military, civil defense and commercial operations. Among other things, it recommends that activities of the military services and other organizations in developing technical experience with the convertiplane be accelerated to the extent practicable; that civil agencies be given maximum possible access to the results of military development programs; and that transport convertiplanes developed by the military services, unless required to perform special military missions, be designed to meet basic civil airworthiness standards. It points out, however, that basic responsibility for development of commercial convertiplane design rests with the private aircraft manufacturing industry. The Committee has continued to advise the Export-Import Bank regarding proposals for financing by the Bank of foreign air services and the export of aeronautical equipment. Internationally, and through ICAO, it has continued work toward greater facilitation of passenger and cargo movements in international traffic; on international airport charges; toward a multilateral agreement for the exchange of commercial rights in international air transport; on joint financing of air navigation facilities and services, and the elimination of important deficiencies in such facilities and services. The United States has also reconsidered its position regarding the need for the North Atlantic ocean weather stations and agreed that it would participate in a modified ICAO program, effective July 1, 1954. In the legal field, the Committee’s work has included preparation of the U. S. position for the Tenth Session of the ICAO Legal Committee, which was devoted primarily to the drafting of a Convention on aerial collisions.

The Committee approved and promulgated national standards for aeronautical beacons, lead-in lights, obstruction lighting and marking and runway marking. U. S. proposals for the revision of the international airworthiness code (Annex 8), and the international phonetic alphabet are being submitted for consideration by ICAO. The Committee prepared U. S. positions for nine (9) international technical conferences, including those for Divisional meetings on Communications and Meteorology, as well as one each for the Fourth North Atlantic Ocean Station Conference and the Third North Atlantic Regional Air Navigation Meeting. An over-all national plan for the coordination of all search and rescue facilities has been drafted. Based upon requirements developed within the Committee, high-speed jet navigation charts for the continental United States are being produced.

A high-level operational policy group established by the Air Traffic Control & Navigation Panel and known as Special Working Group No. 13 (SWG-13) is engaged in a complete review of the Common Civil/Military System of Air Traffic Control and Navigation, with particular emphasis on extension of radar’s use. This group consists of the best operational and technical people from both government and industry, and expects to recommend major improvements to the system. Another NAV Panel working group, under the chairmanship of the Coast Guard, is developing a new implementation program in regard to the world-wide long distance naviva-
The AIRCRAFT YEAR BOOK

ation system. Complete operational requirements for a domestic short distance navigation system, which encompasses the needs of all aircraft operations, has been developed and transmitted to the Air Navigation Development Board for their future guidance, particularly in relationship to the Board's evaluation of the VOR/DME system and military TACAN system. The Air Coordinating Committee is also studying pilot education recommendations involving flight operations in areas of high density air traffic. A study is also going forward, which is expected to bring up-to-date mobilization recommendations as they relate to the Federal Airways System. ACC has coordinated criteria covering the installation of Federal aids to navigation and traffic control, e.g., radar, ILS, control towers, etc. A similar criteria has also been produced which relates to the operation of non-federal navigation aids. Inauguration of a one year trial of special VFR procedures for high density air traffic zones where mid-air collisions are a hazard is planned for the Washington, D.C. area. At the request of the Under Secretary of the Air Force, the ACC is considering evaluation of the VOLSCAN approach computer system for use in the Common System.

The Committee approved the revision of the terms of reference for the Airport Use Panel, with chairmanship contributed by the Department of Commerce; also, a provision is made for a separate non-government advisory committee to consist of industry representatives who will meet periodically with the members of the Panel. Of particular importance, the revised terms of reference assure that the airport use and construction programs of the various member agencies of the Panel will be brought before the Panel for coordination before presentation to the Bureau of the Budget and the Congress. This procedure is designed to avoid conflicts between the users of the nation's airports before they become public controversies.

The Committee continued to effect the coordination required between all users of the airspace, settling about 2,000 cases per year. Radio and Television broadcasters' proposals to construct tall antenna towers have quite frequently presented the aviation interests with serious problems, but proposed tower heights have been lowered or alternate sites selected to decrease these hazards to an acceptable degree. There are approximately 460 restricted areas in the country, used by the military for practice firing and bombing. There are more than 165,000 miles of civil airways in existence today and these two opposing types of activities must be continually coordinated within the Committee.

Agricultural Research Service

Agricultural Research Service's Aircraft and Special Equipment Center was moved during 1954 from Oklahoma City, Okla., to USDA's Agricultural Research Center at Beltsville, Md. This move integrated more closely aerial research within the Service and the Department. As commercial operators become better equipped to handle agricultural aircraft work, the trend in ARS is to contract for as many of its services as possible, using its own planes for experimental, survey, supervisory and reconnais-
sance work. As a result, ARS’ Plant Pest Control Branch, which in 1950 owned 26 planes, now owns 5. These planes flew 1,173 hours in 34 States during 1954, largely in supervising 53 commercial aircraft engaged in insect control work.

The second Agriculture Department-sponsored Agricultural Aviation Research Conference was held December 3-4 in Chicago.

During 1954, airplanes were used to spray 825,000 acres of land in 6 States to control grasshoppers, 156,500 acres in 5 States to control Mormon crickets, and 1,371,000 acres of forests in 6 States to control gypsy moths.

The new and growing use of aircraft to disperse seed, pelleted fertilizers and granular insecticides is prompting research into better ways of distributing heavier-than-dust dry material. Granular insecticides are less affected by wind than are dust or spray, and penetrate foliage to soil insects, or marsh grasses to sandfly or mosquito larvae. Some 900 acres in the Southeast were treated by plane with granular materials, mostly dieldrin, to control white-fringed beetles. Ordinary dusting equipment was used with agitator tied off. Last spring airplanes followed plows along some 1,500 acres of Illinois land dispersing granular dieldrin and obtained excellent control of Japanese beetles in an isolated infestation.

A metering device and distributor for granular material was developed to the flight study stage in Ohio; a series of flight tests were made in Texas in developing another distributor for such material. Spray dispersal equipment was modified on two of ARS’ Aircraft and Special Equipment Center planes so that they can now apply both granulated materials and sprays.

ARS’ Entomology Research Branch has developed an automatic insect-riddance system in which a time clock triggers automatic aerosol valves that spray an entire plane with insecticides at one time. The Navy is further testing this system, particularly on its hospital ships.

A fluidizer for dry bulk materials that makes them behave like liquids was developed and is being improved by ARS agricultural engineers.

The Ohio Project, planned in 1951 and first flown this past February, is an applicator plane designed around the configuration of an existing light plane fuselage and wings. Research results from ARS’ Toledo laboratory and the Ohio Agricultural Experiment Station, as well as data from other sources, on distribution equipment were used in its distributor designs. Developers want to make plans available so that any qualified mechanic can modify existing planes in the average agricultural engineering shop.

The steadily mounting number of planes arriving in this country from abroad presents a growing danger of entry of foreign plant diseases and insect pests. In 1954 ARS’ plant quarantine personnel examined nearly 76,000 planes arriving in this country from abroad; a third of these carried prohibited or restricted plant materials.
Federal Communications Commission

During fiscal 1954 the Federal Communications Commission met with various coordinating and policy groups, both on a domestic and international scale, to solve the many new problems which occurred as a result of telecommunications developments. The most important of these groups were the Air Coordinating Committee (ACC), The Radio Technical Commission for Aeronautics (RTCA), and the International Civil Aviation Organization (ICAO).

The latest statistics for aviation radio stations (as of Sept. 30, 1954) show a total of 39,900, divided as follows: carrier aircraft 2,314; private aircraft 25,186; public service aircraft 273; aeronautical and fixed stations 1,397; Civil Air Patrol 9,704; airdrome control 467; aeronautical navigational 276; flight test 134; flying school 12; and aeronautical utility mobile 137.

Aeronautical and fixed stations furnish a non-Government radio communication service necessary for the safe, expeditious, and economical operation of aircraft. Aeronautical land stations are used to communicate with aircraft, whereas aeronautical fixed stations are employed for point-to-point communications.

Civil Air Patrol stations are used in connection with Civil Air Patrol activities and emergencies pertaining to the protection of life and property. Air shows, missing aircraft search missions, training missions, and communication systems at encampments; bases and meetings are examples of their services.

Airdrome Central stations are used for transmitting necessary control instructions to aircraft arriving at and departing from airports. Such control is necessary so as to maintain safe separation of aircraft to prevent collision and to govern the flow of air traffic into and out of airports.

Fish and Wildlife Service

The Fish and Wildlife Service, in carrying out certain phases of its conservation programs, owned and operated 54 aircraft during fiscal year 1954. The fleet was composed of: 25 Pipers (Supercubs, Pacers, J 3 C's and J 5 C's); 10 Grumman Geese; 8 Grumman Widgeons; 4 Boeing Y L 15 observation planes; 2 Stinson V 77's; 2 Cessna 170's; 1 Flying Station Wagon; 1 Aeronca Chief; and 1 Twin Beechcraft.

These aircraft were used in a variety of field activities, such as surveying waterfowl, planting waterfowl feed, controlling noxious vegetation, protecting agricultural crops from depredation, hunting predatory animals, conducting wildlife censuses, and patrolling in connection with the enforcement of game and fishery laws.

Fifty-six personnel held letters of flight authority during the fiscal year. These pilots flew more than 12,000 hours and the territory covered included Alaska, Canada, Mexico, Cuba, Puerto Rico, Haiti and the Dominican Republic, as well as the United States.

The maintenance and repair of Service aircraft operating in the United States are handled through commercial shops. In the Territory of Alaska,
however, where 37 Service aircraft were used during the fiscal year, the Service maintains overhaul and repair shops of its own.

Forest Service

A new Forest Service Aerial Fire Depot was completed and placed in operation at Missoula, Montana, in 1954. President Eisenhower spoke at the dedication program September 22, declaring that he had “long wanted to join in a salute to the Forest Service and particularly the ‘Smokejumpers,’ who have saved priceless assets of the Nation.” The new $700,000 depot was constructed under a special authorization from Congress.

The Forest Service uses aircraft in connection with the protection and management of 150 National Forests, located in 40 States and Alaska. Chief uses include the transportation of men and supplies during forest fire emergencies, fire detection and aerial reconnaissance of going fires, supplying remote and inaccessible stations, aerial survey, reseeding or revegetation of burned-over and denuded areas, surveying and spraying for insect control, and search and rescue. In 1954, the Forest Service owned and operated 21 fixed-wing aircraft. These included 13 single-engine airplanes previously owned, and 3 single engine and 5 twin-engine planes acquired for replacement of worn-out planes during the year by transfer from other governmental agencies. These planes have all been equipped for transporting personnel, cargo parachuting, and smokejumper work. Some single-engine planes and one DC-3 are equipped for seeding and spraying.

Use of fixed-wing aircraft by the Forest Service in 1953 totaled 16,839 hours. This included 2,675 flights, totaling 3,711 hours, by Forest Service airplanes; 7,079 flights, 12,827 hours, by commercial planes under charter contract; and 152 flights for 301 hours by aircraft of the Armed Services. Use of helicopters (commercially operated under contract) amounted to 2,368 flights for 978 hours. (Not included in the above figures is certain contract flying for aerial photography and insect contract work.)

A total of 23,371 fire-fighters and other passengers were transported during 1953. Cargo transported totaled 1,400,600 pounds, of which 408,219 was air freight (delivered at nearest airport), and 1,013,031 pounds was para-cargo dropped by parachute.

The Forest Service’s “smokejumper” corps of parachute-jumping firefighters, maintained during the fire season for service in National Forests of the western States, totaled 269. During the year, the smokejumpers made 1,754 jumps to 489 fires. They worked a total of 6,563 man-days on fires. Estimated savings due to smoke-jumper use amounted to $972,155.

In the fiscal year ended June 30, 1954, aerial photography for national forest mapping and resource inventory covered 4,411 square miles. Most of this was done under contract.

Effective January 1, 1954, the research and control work on forest insects and diseases formerly conducted by the Agricultural Research Administration was assigned to the Forest Service, as part of a reorganization of the Department of Agriculture ordered by the Secretary. Field programs of the transferred units, including aerial surveys of forest insect conditions
and aerial spraying projects, were integrated with other Forest Service activities. During the year, some 200,000 acres of valuable ponderosa pine timber in Idaho was sprayed from the air to control an outbreak of pine butterfly, an insect causing rapid defoliation of infested trees. All told, the Forest Service used planes for the aerial spraying of more than 325,000 acres of forest to combat insect infestations during the year. Almost 1,500 hours of flying time was devoted to surveys of insect conditions in forest areas in various parts of the country. The insect surveys covered an estimated 50,000 square miles of forested land.

Over 250 hours were flown in surveying a forested area of about 10,000 square miles for detection of oak wilt disease. This survey covered parts of northern Arkansas, Tennessee, and Kentucky, and the Appalachian section of western North Carolina and Virginia. Most of this insect and disease survey work was carried out under contract, and was in addition to that tabulated above.

Research looking to improvement of aerial surveys and of aerial spraying methods for the control of forest insects require about 200 hours of flying time annually.

The year 1955 will mark the Fiftieth Anniversary of the establishment of the Forest Service in the U. S. Department of Agriculture.

National Air Museum

The 50th anniversary of powered flight greatly increased the Museum's activities through the anniversary year. Having custody of the Kitty Hawk, Wright 1909 military airplane, Wright EX VIn Fiz, components of original Wright aircraft, and an extensive collection of data and photographs pertinent to the Wright Brothers, the Museum was called upon constantly to supply material for numerous programs and projects. Much of the material had been gathered in the previous year in anticipation of the anniversary activities. The Museum was thus in a position to supply photographs, transcripts, and monographs to correspondents and visitors. This work became one of the chief functions of the Museum as the nation marked the half century of powered flight.

A commemorative exhibit was installed under the wings of the Kitty Hawk featuring the Wright Brothers' accomplishments. The exhibit consisted of 16 scale models of aircraft, including gliders, produced by the Wright Brothers and the Wright Company, 3 Wright engines, portrait busts of Orville and Wilbur Wright, a model of the Wright Memorial at Kitty Hawk, N. C., a reproduction of the Wright wind tunnel, and enlarged photographs of their aircraft. This exhibit remained on display during the month of December.

Progress was made on the preliminary plans for the proposed National Air Museum building, to exhibit the national aeronautical collection. Most of the effort was concentrated on the selection of a suitable site and architectural studies. Storage facilities in the Washington area were improved and expanded to preserve the collection in the interim period.

A bequest was received from George H. Stephenson several years ago to provide for a statue of the renowned air leader General William Mitchell.
Mr. Bruce Moore, sculptor, was commissioned and started his initial studies. A grant was received from the Link Foundation to be used for a booklet describing 12 of the Famous aircraft in the national collection. This booklet, *Masters of the Air*, will be used by the Museum for informational purposes.

Aggressive action was taken throughout the year to complete the ready reference library of major aviation magazines. This library contributed to two major research projects, conducted by the staff, on the Kettering Aerial Torpedo of 1918 and a pictorial history of the Wright Brothers. Both projects resulted in new and authentic material for the collection. More than 3,000 photographs have been assembled on the Wright Brothers.

Three hundred sixty new specimens from forty-eight sources were received and recorded by the Museum. Outstanding among them was the Boeing 247-D transport airplane, Adaptable Annie, flown by Roscoe Turner and Clyde Pangborn in the MacRobertson Race, 1934. America's first jet-propelled bomber, the Douglas XB-43, was flown to the Washington area for storage. A German rotary wing kite, piloted, for use with submarines during the World War II, was received along with the Prewitt Rotorchute, an interesting development used for dropping equipment under extreme conditions. The Museum received an early Link Trainer, 1929, embodying the initial developments of Edward Link for simulating flight conditions. Excellent models, which came from Douglas Aircraft Company and North American Aviation, Inc., were placed on display. The supercharger and automatic pilot for Wiley Post's Winnie Mae along with a parachute which was made in 1917 and used by Post in 1924, when he made exhibition jumps, were placed in the collection.

Post Office Department

The fiscal year ending June 30, 1954, showed a continued increase in the use of air services. Over 1,451,000,000 pieces of domestic letter mail, including free air mail letters from armed forces overseas, were transported, an increase of approximately 39,000,000 pieces, while there were over 19,500,000 pieces of air parcel post carried, an increase of approximately 1,600,000 pieces.

The total net weight of air mail including air parcel post was approximately 81,700,000 pounds, an increase of about 4,800,000 pounds over the previous year.

During the fiscal year 1954, a total of over 9,500,000 pounds of United States mail, including about 2,300,000 pounds of air parcel post and other articles, was transported by air to foreign countries, showing an increase of over 600,000 pounds. These figures do not include the mail exchanged with U. S. possessions and military installations overseas.

Foreign air parcel post service and air service for other articles, that is, prints, samples, newspapers, etc., is now available to over one hundred countries.

Weather Bureau

The first phase of the Weather Bureau's in-service pilot briefing training program for its aviation personnel was completed in 1954 with more
than 700 employees successfully completing the course. Phase two, which consists of extending this training to all employees entering into this type of work, continued.

Weather Bureau reports and forecasts received wider and faster distribution as a result of CAA’s action during the year to speed up its teletypewriter communications systems from 60 to 75 words per minute.

A new book, intended especially to help pilots with their weather problems, was completed and submitted to CAA for publication as one of their technical series. Entitled Pilots’ Weather Handbook, the new book replaces the earlier Manual No. 25, Meteorology for Pilots, and is available from the Government Printing Office.

An experimental continuous broadcast of recorded weather and Notices to Airmen information was begun as a joint Weather Bureau and CAA project. The broadcasts, made over CAA’s L/MF air navigation air at Arcola, Virginia, contain a summary of the present and forecast weather conditions within approximately 250 miles of Washington, plus radar weather reports, pilots’ reports of in-flight conditions, and hourly surface reports.

A total of 28 weather detection radar sets have now been commissioned, mostly in the central United States and along the Gulf and Atlantic coasts. GMD-1 radio direction finding sets are in operation at 13 stations for determining wind directions and speeds of stratospheric levels. Completion of a fully automatic weather reporting station was realized in 1954 and two of these stations are now in continuous, unattended operation at field locations, automatically entering their reports on the teletypewriter circuits. Work is progressing on the development of supplemental equipment that will permit the automatic stations to report regularly cloud height and visibility conditions in addition to pressure, temperature, relative humidity and wind, which are currently being reported.

Following development of practical remote reading equipment for automatically measuring cloud height and visibility conditions in the approach path to the instrument runway and testing of the equipment at Washington National Airport (reported in 1954 YEAR BOOK) the Weather Bureau has completed installation of automatic end-of-runway observation equipment at New York (La Guardia and Idlewild airports), and at Newark, New Jersey, during 1954. Installation of similar equipment is in progress at 13 other major airports in the United States and is scheduled for completion in 1955.

One phase of a research program conducted by the Weather Bureau and the Sperry Gyroscope Company for the Air Navigation Development Board dealing with problems connected with reporting weather during periods of low ceiling and visibility was completed. Plans were being made for a field test of the results of the research program.

The Weather Bureau continued its program of in-flight and on-station checking of the aviation weather service and is using a Cessna 190 in this work.
CHAPTER FIVE

The Airlines

During 1954, the Scheduled Airlines continued their efforts to bring the best possible service to the public with four notable achievements:

Implementing the Post Office Department's experiment of flying non-local first-class mail between certain major U. S. cities, the airlines enabled (and are enabling) hundreds of millions of letters to reach destination an average of 11½ hours sooner than if they had moved by surface means. During the first year of the experiment, ending October 1, 1954, the scheduled airlines cooperating in the program flew 9,600,000 ton miles of first-class mail, thereby saving letter writers nearly ten billion hours. For this service the Post Office Department received from the public $29,500,000. The Department paid the airlines $1,830,000 for flying the mail. Thus, the Post Office Department was able to retain $27,670,000 or 94 percent for its own services.

The original tests are still being conducted between New York and Chicago; Washington and Chicago; New York and Jacksonville-Tampa-Miami; and between Chicago and those Florida points. On November 22 the experiment was expanded to include 19 West Coast cities.

Today, certificated helicopter carriers are bringing expedited passenger, mail and cargo service to 34 points in the Chicago area, 23 points in the New York area and 22 points in the Los Angeles area. In addition, the Civil Aeronautics Board, during 1954, authorized one of the local carriers in New York State to operate a segment of its route system with helicopter equipment and granted one of the scheduled air carriers the authority to supplement its trunk line operation in Florida with helicopter service.

The year 1954 saw plans crystallize for the introduction of turboprop aircraft into the scheduled airlines route system. The time table for beginning U. S. scheduled service with this type of aircraft is the early spring of 1955, when one of the domestic trunk carriers will take delivery on three of a total order of 60 turboprop aircraft. Turboprops promise to bring increased comfort and speed between certain pairs of cities to the flying public. For example, the type of turboprop which will enter the service of the U. S. public in 1955 will cut the average flying time from New York to Cleveland from approximately two hours to about 1 hour 30 minutes.
The major U. S. scheduled airlines accelerated their cargo (express and freight) sales merchandising programs during 1954. At the present time, there are 56 aircraft certificated for "cargo only" in service, three of which are DC-6A's. The others are C-54's and C-46's. However, two of the larger trunk lines are planning to add 12 DC-6A's to their all-cargo fleet in the near future. These planes have total cargo space equivalent to two railway boxcars.

Realizing the business that can be developed through lower packaging costs, the scheduled airlines, through their Air Traffic Conference, have established a subcommittee to explore thoroughly this subject. Apropos of this, Brigadier General John P. Doyle, Director of Transportation for the Air Force, has said that the time has come for planes to be designed specifically to carry cargo packed in modern low-cost containers susceptible to the most modern material-handling methods.

There follows a comparative table showing traffic and revenue statistics for the U. S. scheduled airlines during 1953 and 1954 (partially estimated):

U. S. DOMESTIC TRUNK LINE STATISTICS

<table>
<thead>
<tr>
<th></th>
<th>1953</th>
<th>1954</th>
<th>Percent Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revenue Passengers</td>
<td>26,135,794</td>
<td>28,869,000</td>
<td>+10.56</td>
</tr>
<tr>
<td>Revenue Passenger Miles (000)</td>
<td>14,297,909</td>
<td>15,950,000</td>
<td>+11.55</td>
</tr>
<tr>
<td>Mail Ton-Miles</td>
<td>71,725,595</td>
<td>81,300,000</td>
<td>+13.35</td>
</tr>
<tr>
<td>Express Ton-Miles</td>
<td>42,526,761</td>
<td>38,750,000</td>
<td>-8.88</td>
</tr>
<tr>
<td>Freight Ton-Miles</td>
<td>131,779,675</td>
<td>142,000,000</td>
<td>+7.76</td>
</tr>
<tr>
<td>Total Operating Expenses</td>
<td>791,416,000</td>
<td>885,000,000</td>
<td>+11.82</td>
</tr>
</tbody>
</table>

LOCAL SERVICE

<table>
<thead>
<tr>
<th></th>
<th>1953</th>
<th>1954</th>
<th>Percent Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revenue Passengers</td>
<td>2,031,508</td>
<td>2,450,000</td>
<td>+20.60</td>
</tr>
<tr>
<td>Revenue Passenger Miles</td>
<td>390,854,000</td>
<td>453,000,000</td>
<td>+15.90</td>
</tr>
<tr>
<td>Mail Ton-Miles</td>
<td>1,000,758</td>
<td>1,220,000</td>
<td>+21.91</td>
</tr>
<tr>
<td>Express Ton-Miles</td>
<td>955,128</td>
<td>1,100,000</td>
<td>+15.17</td>
</tr>
<tr>
<td>Freight Ton-Miles</td>
<td>1,178,793</td>
<td>1,175,000</td>
<td>-0.32</td>
</tr>
<tr>
<td>Totals</td>
<td>49,358,000</td>
<td>54,000,000</td>
<td></td>
</tr>
</tbody>
</table>

INTERNATIONAL

<table>
<thead>
<tr>
<th></th>
<th>1953</th>
<th>1954</th>
<th>Percent Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revenue Passengers</td>
<td>2,682,219</td>
<td>2,812,000</td>
<td>+4.84</td>
</tr>
<tr>
<td>Revenue Passenger Miles (000)</td>
<td>3,381,124</td>
<td>3,700,000</td>
<td>+9.43</td>
</tr>
<tr>
<td>Mail Ton-Miles</td>
<td>30,838,373</td>
<td>40,833,000</td>
<td></td>
</tr>
<tr>
<td>Cargo Ton-Miles (Express and Freight)</td>
<td>74,643,683</td>
<td>82,300,000</td>
<td>+10.26</td>
</tr>
<tr>
<td>Operating Revenues</td>
<td>337,286,000</td>
<td>358,789,000</td>
<td>+6.38</td>
</tr>
</tbody>
</table>

Sources: For 1953 from CAB recurrent reports. For 1954 monthly traffic reports for 10 months of 1954. For revenues and expenses, three quarterly reports for the first three quarters of 1954—last quarter estimated.
Allegheny Airlines

The outstanding events during 1954 for Allegheny Airlines was the 35 percent increase in business over 1953 and inauguration of first class mail services by Allegheny and other local service airlines.

During the 12 month period ending September 30, 1954, Allegheny carried 207,435 passengers for an increase of 13 percent over the corresponding period the previous year. In August, Allegheny boarded its millionth passenger since the inauguration of passenger service in 1949.

During the year the airline increased its passenger miles flown approximately 35 percent over last year. In 1953 Allegheny again received the National Safety Council’s Aviation Safety Award and maintained an unbroken safety record in its passenger operations.

At year-end, Allegheny reported its equipment modification program under way which will expand the seating capacity from 24 to 27 passengers and will permit carry-on baggage by passengers. The modification will increase the tail weight capacity of the airplane and reduce the over-all gross.

Because of the weather problem characteristic of the Middle Atlantic Area during the winter, Allegheny developed a passenger advisory system which gained favorable customer reaction. The program is predicated on a forecast system beginning approximately three hours before flight time enabling Allegheny to contact passengers at home or in their offices prior to leaving for the airport advising them of the status of their flight and whether or not it will operate in a routine manner.

American Airlines

American Airlines held two birthday parties in 1954—both of them milestones in the history of commercial air transportation.

On November 29, American celebrated the first anniversary of its history-making non-stop transcontinental flights in both directions. Using the 365 mile-an-hour Douglas DC-7, American pioneered non-stop service between New York and Los Angeles with a single round-trip flight, adding two more round-trips during 1954.

A record on the non-stop was made one day, broken unofficially the next. On Monday, March 29, 1954, a DC-7 carrying 60 passengers and a crew of five flew from Los Angeles to Idlewild Airport in 6 hours and 10 minutes, breaking the previous official record by ten minutes. But the very next day, on the same flight, 54 passengers and five crewmen made it unofficially—in five hours and 51 minutes.

American took delivery on the last of its 25 DC-7's in the summer of this year, bringing its total Flagship fleet of Convairs, DC-6's, DC-6B's, DC-6A Air-freighters to 188.

The second birthday observance was the tenth anniversary of regularly scheduled airfreight, introduced to the air transportation industry by American on October 15, 1944.

Counting 1945 as the first full year of operation, American carried a little under 2-million ton miles of airfreight in 1945, 36 and a half million
ton miles five years later, 54,660,000 ton miles last year, and nearly 28,-
000,000 ton miles in the first six months of 1954.

Revenue from airfreight showed a similar increase, rising from $827,000
gross of 1945, to $7,241,000 in 1950, $11,658,000 in 1953, and $6,055,000
for the first six months of 1954. Last year’s airfreight revenue represented
12% of all of American’s revenue. This year’s six-month airfreight revenue
represented almost a 17% increase over revenue for the same period a
year ago.

The tenth anniversary of airfreight coincided with American’s an-
nounced decision to buy seven more DC-6A Airfreighters from Douglas
Aircraft at a total cost of $10.4-million including spare parts.

For the first nine months of 1954, meanwhile, American reported a net
profit, after taxes, of $5,465,000. Totals on passenger service for the first
nine months were 4,258,000 passengers carried 2,517,000,000 passenger
miles.

In May and June this year, American broke and set industry records
for airline passenger traffic with 325,065,000 passenger revenue miles flown
in May and 366,640,000 passenger miles in June.

In July, a new service for America’s passengers was introduced. Apply-
ing the techniques of low-cost installment-plan buying to air travel, Ameri-
can developed a new type of “Go-Now, Pay-Later” credit plan, featuring no
down payment, up to 24 months to pay, and the lowest local interest rates
available for any travel loan.

In May, American announced that it will build an $8-million main-
tenance base at New York International Airport, with construction ex-
pected to be completed by the early summer of 1956.

Braniff Airways

The year 1954, for Braniff Airways, was one of changes and progress
under new administration. When the airline’s founder and president
Thomas E. Braniff, was killed in a private airplane accident on January
10, management was turned over to his veteran associates.

Fred Jones of Oklahoma City, a director of Braniff Airways for more
than ten years was elected Chairman of the Board of Directors. Charles E.
Beard, an officer in the company since 1935, and executive vice-president
since January, 1947, became president.

During 1954, Braniff completed one of its most successful years in both
domestic and international operations, flying 26,500,000 revenue miles,
carrying 1,640,000 passengers.

Combination DC-6 tourist and first-class service over the airline’s South
American routes between Miami and Buenos Aires proved very successful.

Experiments were begun in April with airborne radar equipment in
co-operation with the U. S. Navy. Braniff was the first commercial air
carrier using airborne radar equipment in scheduled passenger flights to
South America.

On October 14, 1954, the Civil Aeronautics Board approved the opera-
tion by Braniff and TWA of through interchange service between Houston
THE AIRLINES

and San Francisco via Dallas-Fort Worth, Amarillo and Los Angeles.
In November, the company introduced a "Time-Payment Travel Plan" for both domestic and Latin American services.
During July, of the 123,193 revenue passengers carried by Braniff, 112,845 were carried to their destination on time (within 15 minutes of published schedule time).

Capital Airlines

One of the most significant aircraft purchases occurred on June 3, 1954 when J. H. Carmichael, president of Capital Airlines announced that his company had bought from Vickers-Armstrong three Viscount airliners powered by Rolls-Royce turbo propeller engines. At the same time he announced that Capital had taken an option on thirty-seven additional Viscounts. This option was exercised on August 11 and a further option was taken on twenty more Viscounts. Thus, Capital's purchase totaled forty airplanes and involved $45-million.

Capital's exercise of its option on the additional thirty-seven aircraft tended to speed up delivery of the Viscounts thus enabling the company to inaugurate service with the new turboprop planes early in 1955. Delivery date for the last of the forty airplanes was set for August, 1956. Should the option on the additional twenty planes be taken up, bringing Capital's Viscount fleet to sixty, delivery on the balance will be completed between September, 1956 and February, 1957.

In the first nine months of 1954 Capital carried 1,813,518 passengers as compared to 1,699,548 passengers in the same period in 1953. Not only did Capital carry most of the major league baseball teams last year but they also signed an exclusive contract with the Pittsburgh Pirates to carry the team to all its "away" games. It was the first time a major league baseball team depended solely on air transportation to fulfill its yearly schedule.

Early in January Capital broke at least four records when it chalked up the biggest single day of travel in its 26-year history. Total revenue for the day of January 3 was $206,944 when approximately 10,871 passengers flew 3,426,759 revenue passenger miles. Capitaliners flew 100,286 miles for another new all-time record. It was the first time the company topped the $200,000 mark for one day's revenue.

Again last year Capital Airlines received an award for its contribution to safe air transportation from the National Safety Council. Up to November, 1954 the airline had flown over three billion passenger miles without a single passenger or crew fatality.

Capital's mail revenue and poundage dipped slightly during 1954 as compared to the previous year. In the first nine months of 1954, 8,337,632 pounds of mail were flown 1,544,904 ton miles for a revenue of $711,695. While in the first nine months of 1953, 8,922,222 pounds were flown 1,658,172 ton miles for a $778,585 revenue.

Due to an air express strike early in the year the shipping of express by air was somewhat less in the first nine months of 1954 than in the first nine months of 1953. The figures show that 10,612,343 pounds were flown 1,717,473 ton miles for a revenue of $682,153 at the three-quarter
mark this year while for the same period last year 13,794,898 pounds were flown 2,124,358 ton miles with a resulting revenue of $886,872.

Air freight poundage and revenue was up for the first nine months of 1954 over the like period in 1953. As of September 30, 1954 Capital had flown 12,949,173 pounds of air freight 3,141,237 ton miles. Revenue was $851,828. For the first nine months of 1953, 11,454,923 pounds were flown 3,141,237 ton miles for a revenue of $693,901. In mid-summer Capital established an express air cargo service at lower air freight rates to virtually every major city area in the world from the 77 Capital-served cities in the United States.

Capital was the first company to adopt radiant heat for precise pre-heating of engine cylinders on a conveyorized basis. Two mechanics designed an infra-red oven to pre-heat the cylinders. Previously the cylinders were heated by a gas torch method but with the new infra-red treatment there is a 30 percent increase in assembly production, a saving of 25 man-hours a week and cleaner, cooler working conditions.

On October 1 Capital marked the first year of its income retirement plan when Captain Harry Smith, 63 years old, announced his retirement. On his last flight from Minneapolis/St. Paul in a Lockheed Constellation his son, Harry, Jr. flew co-pilot on this sentimental journey. Captain Smith is the first commercial pilot to turn the controls of his airplane over to his son.

Capital reported a net profit for the first nine months of 1954 of $1,010,647 and an operating profit of $1,504,639. The total operating revenue amounted to $35,901,275. Earnings per share of common stock for the nine-month period were $1.28.

Continental Air Lines

Continental Airlines engaged in an all-out long range program to strengthen and increase its interchange service in 1954. The newly inaugurated air coach with American Airlines to the West Coast began on September 26 and showed marked increases in passengers and revenue.

Envisioned for the future by Continental is the first direct service between the Pacific Northwest and Florida with interchange agreements linking United’s Seattle to Denver route, Continental’s Denver to Kansas City mileage and Delta-Chicago and Southern’s Kansas City to Miami routes into a unified, one plane service.

It was announced in November by Continental’s president that the spring of 1955 will bring the introduction of airborne C-Band radar equipment to the airline’s fleet. Plans for the installation of several hundred thousand dollars of radar equipment were completed and by the fall of 1955 the entire fleet of the company’s planes will be equipped. Continental was the second major air carrier in the country to announce a C-Band radar program, an additional step towards assuring continued safety in operation and comfort in passenger travel.

The view of the radar screen permits the pilot to avoid turbulent areas by circumventing the known, but visible storm condition, to evade portions
of the flying route which are known to harbor icing conditions dangerous to safety, and to maintain adequate clearance of mountainous terrain areas in flight.

In its twenty years of operation, Continental has had a fatality-free record. This is attributed to careful pilot and crew instruction, favorable working conditions, and a thorough inspection of all equipment before departure and during lay-overs.

Program entitled “Design for Executive Development” was announced at the annual sales traffic, flight service and station managers meetings held in Denver in October.

The new program is a step towards instituting an over-all plan to provide opportunities for greater promotion with the company and establishing analyses and specifications for all job categories.

The airline had carried 303,065 passengers through September. A successful advertising campaign, “12 cents a mile car-6 cents a mile air” was carried out to aid passenger revenue. The campaign pointed out the difference in air and automobile travel, which helped convert motorists miles to air miles.

Mail, too, showed a 13.8 percent increase over the same period the previous year, and express and freight showed a 19 percent increase.

Delta-C. & S. Air Lines

Delta-C&S Air Lines, which celebrated the first anniversary of the merger of Delta and Chicago & Southern Air Lines on May 1, was seeking in 1954 to provide competitive service from 26 cities of the South and Southwest to Washington, Baltimore, Philadelphia, and New York, and to close gaps in the company’s present routes between Birmingham and Memphis and between New Orleans and Houston. A decision was not expected until the latter part of 1955.

Certification of this extension would create a new airline route for 29 cities with a total population of 26,116,411.

The airline presently serves 58 cities, 16 states, and 7 countries, with a total route system of 9,508 miles.

August was the heaviest month in the history of the company with 176,273 revenue passengers carried and 74,227,944 revenue passenger miles flown.

For the eighth straight summer Delta-C&S offered all-expense packaged vacations to Miami Beach, with the package period opening April 25 and continuing through December 15. Also, for the first time this year Delta-C&S offered a week’s holiday family package at Fort Lauderdale, Florida.

The airline also offered low-cost packaged Aircruises to Havana and Varadero Beach, Cuba; Kingston, Montego Bay, and resorts on the north shore of Jamaica; Port au Prince, Haiti; Ciudad Trujillo, The Dominican Republic; and San Juan, Puerto Rico.

Summer excursion fares and low-cost air coach rates boosted Florida travel among those not buying packaged vacations.

What to see and do in South Florida and the Caribbean, 1954 version, was described in the fourth edition of Delta-C&S’s illustrated guide to
Greater Miami entitled "Planning Your Holiday in Miami and Miami Beach."

Delta-C&S operated more air coach service in 1954 than ever before, featuring service from Chicago-Houston, Chicago-New Orleans, Detroit-Dallas, Atlanta-Dallas, and Chicago-Miami.

For the third summer, Delta-C&S continued its non-stop air coach Chicago-Miami service during the summer months, and it operated with an average of 78-80 percent of its seats occupied.

The Delta-C&S DC-6 fleet is now undergoing a modification program which, when completed, will provide the number of seats necessary to meet CAB requirements for daylight DC-6 coach operation. Day coach service was estimated to start by December 1 on the Chicago-Miami route. Also, transcontinental day coach service was scheduled to start on the same date on the American-Delta-C&S-National interchange flights between Los Angeles and Miami.

Delta-C&S's first DC-7 was christened at the Douglas factory in California on February 22. The giant plane, carrying 50 passengers and piloted by Charles H. Dolson, vice president of operations, and T. P. Ball, superintendent of flight operations, flew from Santa Monica to Jacksonville on February 24 in six hours at an average speed of 371 miles per hour. This plane represents the first in a fleet of ten of these luxury planes which Delta-C&S has ordered at a total cost of $17.5-million. Six more were scheduled for delivery before the end of the year.

Scheduled DC-7 service was inaugurated April 1 between Chicago and Miami, and the luxury planes now serve Chicago, St. Louis, Houston, Cincinnati, Atlanta, and Miami.

Delta-C&S has designated its DC-7's the Golden Crown Fleet and decorated the distinctive giant tail of each of the 69-passenger aircraft with a crown, symbol of supremacy. The flights are named The Royal Biscayne, The Royal Poinciana, The Royal Ranger, and the Royala Merchant.

Delta-C&S has supplemented visual inspection of aircraft parts with a portable X-Ray machine to examine interior structures. Delta-C&S is the first airline to buy such equipment, which is resulting in greater safety and efficiency of operation and eliminates costly inspection disassemblies now necessary for routine checks of concealed parts.

Delta-C&S is installing Bendix Ignition Analyzers on the DC-7's for use in flight by the flight engineer and for Maintenance's use on the ground. Purpose of the ignition analyzer is to detect, locate, and identify any ignition malfunction occurring during engine operation, and information obtained from the analyzer during flight is reported to maintenance to aid mechanics in locating and correcting the trouble many times faster than the previous methods.

At the annual meeting of directors, Delta-C&S reported an operating income of $732,000 for the quarter ended September 30, and a net profit after taxes of $171,000—equivalent to 29 cents a share.

In a report to the annual stockholders meeting which preceded the directors' meeting, C. E. Woolman, president and general manager, listed
THE AIRLINES

operating revenues of $13,158,000 and operating expenses of $12,526,000 for the quarter.

Eastern Air Lines

In March of 1954, Eastern Air Lines completed the semi-final stage of its $155-million reequipment program when it received its 16th and final turbine-compound powered Super-C Constellation. This fleet represented a total cost of $25-million, including spare parts.

The final stage in the airline's re-equipment program leading up to the commercial jet era, will be the delivery of 12 Douglas DC-7B airliners in the spring of 1955. Representing still another $25-million investment, more than $2-million per airplane, these aircraft will be equipped with long-range wings new high-performance flaps and engines still more powerful than the 13,000 horsepower turbine-compounds now in service.

In May, Captain Eddie Rickenbacker, Chairman of the Eastern Air Lines Board, announced that Eastern Air Lines would convert more than 50 percent of its trunkline services into lower fare Aircoach operations.

With its new service, Eastern is able to provide a capacity for approximately 1.5-million Aircoach passengers annually. (This compares with a total of about 3.5-million Aircoach passengers carried by the entire industry in 1953.)

The sweeping change in policy means that Eastern, one of the so-called big four domestic trunkline carriers, is able to provide daily Aircoach capacity for 4,072 (plus extra sections), with 5.25-million Aircoach seat miles scheduled every twenty-four hours.

Eastern reported a record breaking 1,497,299 passengers boarded during the months of June, July and August, representing a 9 percent increase over the 1,373,373 passengers flown during the first quarter of 1954.

In October Eastern announced plans to double its passenger facilities at its Miami terminal by constructing two new wings that now makes it the largest air terminal in the world. The terminal has a capacity to handle 2-million passengers annually.

The airline has added two new 550 foot wings on the 36th Street side of the airport which now provides over one-half mile of passenger-handling facilities, and allowing the enlarged terminal to load and unload 19 of Eastern's huge 88-passenger Super Constellations at one time.

Eastern Air Lines reported a net profit, after taxes and all charges, of $1,789,824 or 72¢ a share for the first nine months of 1954 as compared with $2,795,911 or $1.13 a share for the same period of 1953.

The reduction in net earnings compared with a year ago, is largely accounted for by a 39 percent increase in depreciation charges on the company's two new fleets of aircraft. these charges for the current nine months totaling $18,482,430, an increase of $5,220,435 over the $13,252,995 for depreciation in the first three quarters of 1953.

Gross operating revenues totaled $127,915,987, a gain of 16 percent over the $110,633,221 reported a year ago.

Total operating expenses, including the increase in depreciation, were $116,755,000 or 18 percent higher than the $98,819,000 for the same months
last year. Compared with a nine months’ operating ratio of 89.3 in 1953, the ratio of expense to revenue, including depreciation, but before taxes, was 91.3 for the same period this year.

With 16 new 88-passenger Super-C turbine-compound Constellations added to the fleet, seat miles operated were increased 27 percent 3,185 million in 1953 to 4,052 million this year. Revenue passengers carried totaled 4,306,768, a 19 percent gain over the 3,604,797 for the first nine months of last year and revenue passenger miles were up 20 percent from 1,973 million in the comparable period of 1953 to 2,370 million this year. The greatly increased carrying capacity of the new fleet is also reflected in the load factor of 58.49 percent so far this year compared with 61.95 percent a year ago before the new Super-C Constellations were put into service.

Hawaiian Airlines

On November 11, Hawaiian Airlines celebrated its 25th Anniversary of scheduled flight in Hawaii. The airline continued to hold America’s all-time Safety Record of no passenger or crew fatality in its history.

Hawaiian Airlines serves all ten of the Territory’s commercial airports: Lihue, island of Kauai; Honolulu, island of Oahu; Lanai City, Lanai; Kahului and Hana, island of Maui; Hoolehua, island of Molokai; Upolu, Kamuela, Kona and Hilo, island of Hawaii, over 402 unduplicated route miles.

The line’s flight equipment includes: five 44-passenger Convair 340’s, seven 24-passenger Douglas DC-3’s, and three Douglas DC-3 cargoliner.

National Airlines

Revenue passenger miles flown over routes of National Airlines during the fiscal year, ended June 30, 1954, increased more than 20 percent over the previous year. Much of this increase can be attributed to addition of four Douglas DC-7 aircraft to National’s fleet, and 12 new Convair 340 aircraft, plus increased sales effort on National’s all-expense summer package vacations to Florida.

Also during the fiscal year installation of radar on NAL’s trunk fleet was begun, a selling point which should prove to be as attractive as the speed advantage and comfort-of-the DC-7 aircraft fleet.

The sales department at National also was streamlined. During the fiscal year the department was reorganized into two categories—sales and customer service. The direct sales approaches have been separated from the service functions.

On November 22nd, 1953 National’s first DC-7 set an official transcontinental speed record between Santa Monica, California and Miami in non-stop time of 5 hours, 50 minutes and 12 seconds. This flight of 2300 miles was accomplished at an average speed of 407 miles per hour.

Also during the fiscal year a Sikorsky S-55 seven-passenger helicopter was purchased and integrated into National’s fleet. The Civil Aeronautics Board extended a temporary one-year extension to operate this aircraft in
passenger service within a 150-mile radius of Miami International airport. On February 1, 1954, National placed the seven-passenger helicopter in service between Miami and West Palm Beach, Fla. Five other communities between these two cities are now connected on NAL’s helicopter schedules. In inaugurating this operation National became the first scheduled domestic airline to begin a regular helicopter operation.

During the fiscal year NAL reported operating revenues of $39-million. This was an increase of 18 percent over operating revenues reported during the previous year. Net earnings for the fiscal year totaled $4,465,000, or $4.42 per share.

A $25-million re-equipment and expansion program was completed during fiscal 1954 with the addition of 12 Convair 340 and four Douglas DC-7’s (as previously mentioned) to National’s aircraft fleet. A new multimillion dollar engine overhaul base was placed in operation in October 1953 and a new six-bay hangar at New York Idlewild airport was also opened.

On February 22, 1954 NAL was selected by the United States Post Office to carry the first 3¢ mail by air between Washington and Miami. This important service continues between New York, Washington and Florida.

On October 15, 1954 National celebrated its 20th anniversary. National’s routes now cover 3000 unduplicated miles, serving 33 cities. Employees total nearly 3000 and the aircraft fleet numbers 35, with 80 percent of the trunk line fleet in service less than two years.

Northeast Airlines

Northeast Airlines had its biggest year in 1954 and consistently each month broke previous passenger records. In August Northeast carried 80,926 passengers, an increase of nearly 21 percent above August 1953. The number of passengers carried in July and August exceeded the total of passengers for the first 12 years of service for this 21 year old carrier.

Northeast operated a unique Merry-Go-Round service during the peak holiday week-ends of July 4th and Labor Day to accommodate the unprecedented demand. On July 2nd 45 extra flights were flown over and above the regular schedule—which was a new high with a total of 19 aircraft.

In August, the Civil Aeronautics Board set the prehearing date for the New York-Florida Proceedings which got underway on September 24th.

Passenger handling procedures were streamlined to eliminate unnecessary waits by the passenger both at the ticket counter and in the aircraft while still at the gate. Excess baggage collections were modified to certain points to assist passenger to save time and render the process more painless.

Northeast overhauled or converted every aircraft it owned during the past year. The twelve DC-3’s, aside from the above, have had the latest type seat, new flood boards, new heating systems and new electrical systems installed. All instrument panels have been standardized.
Northwest Orient Airlines

Donald W. Nyrop, attorney and former government aviation official, became president of Northwest Orient Airlines October 16, 1954.

For the second year in succession, the airline broke the million-passenger mark on its domestic system. The total was 1,094,000, an increase of 7.4 percent over the 1,018,707 during 1953, the first year in the carrier’s history that it passed the million-passenger mark. Revenue passenger miles flown totaled 745,135,000, an increase of 3.6 percent over 1953’s total of 719,510,061.

On the plus side, also was the total of freight ton miles, 4,080,000, up 10.2 percent over the previous year’s 3,701,009. Small decreases during 1954 were recorded in mail ton miles, 3,253,486, a drop of 2.6 percent from the previous year’s 3,341,012; and in express ton miles, 1,683,000, a drop of 2.6 percent from the 1953 total, 1,728,952.

On its international system—which extends through Alaska, Tokyo, Pusan, Seoul, Okinawa and Taipei to Manila (also including service to Hong Kong in conjunction with Hong Kong Airways)—Northwest carried 85,400 passengers, compared with 79,986 the previous year, an increase of 6.8 percent.

The revenue passenger miles flown on the international route were 155,010,000 compared with 131,664,693, an increase of 17.7 percent.

Freight ton miles were 5,858,000, compared with 7,611,158, down 23 percent; mail ton miles, 3,049,000, compared with 1,661,593, up 81 percent; express ton miles, 169,900, compared with 185,457, down 8.4 percent.

(The 1954 figures are estimates, based on actual figures up to September, projected to the end of the year. The 1954 ratios used in the estimates are the same as those which proved out in 1953 and other years. The 1953 figures are complete audited figures.)

During the year, Northwest inaugurated tourist service to Honolulu through the northwest gateway of Seattle-Tacoma-Portland, using Douglas DC-6B aircraft. Tourist service was inaugurated, also, to Alaska and the Orient.

Northwest adopted a “Fly Now—Pay Later” plan, offering the public a wide choice of air travel on a credit basis. The plan covered domestic and international flights, both on-line and off-line.

The airline started overnight daily cargo service between the Atlantic seaboard and the midwest, with both westbound and eastbound flights between New York and Minneapolis-St. Paul via Milwaukee.

An aircraft interchange arrangement was worked out with Eastern Air Lines, Seattle-Chicago-Miami.

The National Safety Council awarded Northwest the Award of Honor, for its outstanding employee safety record in the line maintenance and base repair units. The Council also presented the airline with the Award of Merit, for its flight crew safety record.

Most dramatic among the year’s flights was one on June 30, the morning the sun went into total eclipse. Aboard a Northwest Stratocruiser was a group of noted scientists who were making a special study of the phenome-
non. Their attention was centered in the Minneapolis-St. Paul area, from which the flight took off, because this was directly in the path of the eclipse. Data gathered in the Minnesota field were sent by short-wave to Stockholm, where Swedish scientists were waiting to view the eclipse.

The half-fare family plan continued to prove popular throughout the year. Of the 745,135,000 revenue passenger miles flown, on the domestic system, 32,262,400 were credited to the family plan.

Several all-time records for the airline were set during August. During the month, 127,542 passengers were carried 101,320,000 revenue passenger miles.

Various speed records, both domestic and international, were set during the year.

Pacific Northern Airlines

The outstanding event for Pacific Northern Airlines in 1954 was the recommendation of the Bureau Council and the Chief Examiner of the Civil Aeronautics Board that PNA retain its present routes between the States and points in Alaska. These recommendations are now before the CAB and a decision was expected early in 1955.

Passenger traffic in the first eight months of 1954 was 5.5 percent over that of 1953. During these months PNA carried 46,162 passengers between the U. S. and Alaska and within the Territory of Alaska.

PNA again received the National Safety Council Award, marking 23 years of service without a passenger fatality.

There was an increase of 12 percent in mail carried in 1954 over 1953 and a 14.6 percent increase in cargo carried in the first eight months of 1954 as compared to 1953.

Pan American Grace Airways

As Panagra marked its 26th anniversary of service on September 13, company operations were at an all-time high along a 8,800 mile network extending through the countries of Panama, Colombia, Ecuador, Peru, Bolivia, Chile and Argentina. It appeared certain by the year's end that 1953's record figure of 137,619,000 revenue passenger miles would be greatly exceeded.

In February a DC-6 El Interamericano logged the airline's 20,000th crossing of the high Andes mountains between Chile and Argentina. Panagra has been flying this route on its regular transcontinental run between Santiago, Chile and Buenos Aires since it inaugurated service between these two points in 1929 with tri-motored Fords.

Early in 1954 Panagra carried out the installation of tourist information booths in key cities along its route.

Panagra continued its interest in the field of education by offering travel fellowships to students of Latin America interested in pursuing graduate studies at universities in the United States. The airline joined with Pan American World Airways in flying to this country about 50 students recommended by the Institute of International Education and approved by the State Department.
The company in March added another tourist flight between Panama, Colombia, Ecuador and Peru to handle the increase in passenger and cargo traffic to these countries. The new flight, serving Panama City, Cali, Quito, Guayaquil, Talara, Chiclayo and Lima, brought to five the number of tourist flights operated over this route per week.

During the same month a new tourist service to Argentina was inaugurated, whereby the flight time between Miami and Buenos Aires was cut to 22 hours and 40 minutes by means of a non-stop operation from La Paz to the Argentine capital.

In April, Panagra became a pioneer in the commercial use of airborne radar by placing a Bendix Radio unit aboard a DC-6B for regularly scheduled operations from Miami to Buenos Aires. The radar, installed in a special plastic nose, went on trial in a test of its effectiveness in detecting storm centers and areas of turbulence under actual weather conditions.

The first six months of operations in 1954 showed an increase of approximately 7 percent in traffic over the same period the previous year. As of June 30, the airline had flown 72,063,000 revenue passenger miles and carried 65,308 passengers, as compared to 67,416,000 revenue passenger miles flown and 61,606 passengers carried during the first six months of 1953.

In a major decision announced in August Panagra ordered airborne radar to be placed aboard its DC-7 equipment, scheduled for delivery in the spring of 1955. Five DC-7's were slated to be equipped with an RDR-1 unit of Bendix Radio, which is a lighter, more practical set than the radar used so successfully by the military.

Pan American World Airways

Pan American World Airways made two important advances in the engineering field during 1954, the Boeing Stratocruiser conversion program and the installation of radar for evaluation on DC-6Bs.

The Stratocruiser program included modification of the General Electric turbo-superchargers on the Pratt & Whitney engines and installation of six extra gas tanks at the ends of the wings to hold an additional 410 gallons of fuel. This improvement will insure non-stop transatlantic operation of the B-377 under any but the most adverse weather conditions.

Radar was installed in one of Pan American’s DC-6Bs for a round-the-world evaluation program which permitted testing of the Bendix RDR-1 under all weather conditions. The set will enable the pilot to see the weather 150 miles ahead through the radar scope mounted on the flight deck. Thus he will be able to find holes in cloud formations far ahead of the plane and use smoother lanes.

In the field of passenger traffic the greatest advance was the introduction of the Pan Am Pay Later Plan. This plan made possible installment plan paying for air travel.

For the first eight months of 1954, Pan American had flown 1,219,281 passengers on its worldwide routes, an increase of 5.6 percent over the
1,155,003 passengers that had been carried for the same period of 1953. One notable development in the passenger field was the increase in longhaul traffic as indicated by the fact that passenger miles for the first eight months of 1954 increased from 1,355,719,000 to 1,511,689,000, a gain of 11.5 percent as compared with the overall gain in passengers carried of 5.6 percent.

Although the Pay Later Plan was in effect only since May, it has already brought in two million dollars in new business, almost all of it from people who would not have travelled had the plan not been in effect.

To increase passenger comfort Pan American has introduced on daily transatlantic flights staterooms styled by Henry Dreyfus. The President Staterooms, as they are called were introduced in response to a demand for complete privacy by celebrities, businessmen who use travel time for conferences and families travelling with children.

During 1954, Pan American was awarded from the National Safety Council, an Aviation Safety Award for 1953 in recognition of having flown 2,889,332,000 passenger miles without passenger or crew fatality. The award was given by the National Safety Council.

Also in 1954 Pan American received the Frye Airline Performance Trophy for 1953 for pioneering in the use of the upper air “jet stream” in regularly scheduled commercial flight.

Cargo as well as passenger business increased during 1954 with Pan American having flown 37,017,000 ton miles in the first eight months of the year as compared with 31,561,000 ton miles in the same period of 1953, or an increase of 17.3 percent.

Addition of two DC-6A Clippers to the all cargo fleet meant a considerable increase in transatlantic cargo since the DC-6As are pressurized and for this reason better adapted to carrying livestock and perishable goods.

Besides the DC-6As which joined the fleet in 1954 Pan American completed its fleet of DC-6Bs making a total of 45 of this type of aircraft. Orders were also placed for seven DC-7Bs for delivery in 1955 and for 15 DC-7Cs to be delivered early in 1956. The DC-7Cs will enable Pan American to fly to Pacific non-stop in both directions. Also on order are three Comet III type jet airliners.

In addition to the Stratocruiser conversion program and the weather radar project Pan American introduced a new method of qualifying pilots into airports into which they have never flown before by means of a wide-angle film.

In the Spring Pan American extended its services for the first time into the midwestern United States, opening operations between Chicago and Detroit and Europe. Direct service between Berlin and the United States was also inaugurated.

One flight on the new service from the midwest set a record of 11 hours and seven minutes from Detroit to Prestwick, Scotland on October 5.

Other records made during the year were Mexico City to Caracas, 2,400 miles in seven hours, 54 minutes by Captain Armin Elsaesser in a Constellation on February 27; Mexico City to Miami, 1,332 miles in three
hours and 49 minutes by Captain David G. Desmond in a DC-6B on February 28; Miami to San Juan, 1,060 miles in three hours, eight minutes by Captain Marius Lodessen in a DC-6B on January 28; New York to Caracas, 2,250 miles in six hours, 58 minutes by Captain Robert T. Born in a DC-6B on April 13; New York to San Juan, 1,612 miles, in four hours and 52 minutes by Captain Fred E. Muhl in a DC-6B on April 13.

Piedmont Airlines

During the month of June, 1954 Piedmont Airlines carried 30,173 passengers; the passenger miles were 6,047,679. This is the largest number of passengers and passenger miles flown by Piedmont in the history of the company and the largest ever achieved by a local service carrier.

In April, Piedmont carried its one-millionth passenger. Through June 30, Piedmont had flown 244,376,000 passenger miles without passenger or crew fatality, thus establishing the record having had no fatalities since the beginning of operations.

During this year, Piedmont has introduced an air travel discount plan know as PEP (Piedmont Economy Plan) which offers to the public a discount of 75 percent or more on return fares. This Plan is applicable to certain segments of Piedmont’s system and does not apply to segments which would cause competition to other air carriers. To make use of this discount, it is necessary that the return portion of the trip is made within 48 hours of the origination of the flight and has been found to be most beneficial to businessmen and shoppers.

Riddle Airlines

Riddle Airlines, which operates an all-cargo route between New York, Miami and Puerto Rico, in 1954 elected a new president and a new board of directors. John Paul Riddle, aviation pioneer who founded the airline in 1945, is again president of the company.

Riddle Airlines during the year continued to contribute to the agricultural and industrial growth of Florida and Puerto Rico. The company flies the raw material to the island for such industries as the needle work trade and the fountain pen business. Skilled, abundant labor is used to assemble the pens and hand-sewn handkerchiefs, scarves and lingerie, and the finished products are flown to New York for distribution.

Air freight also provided the answer to getting Florida’s fruits, garden vegetables and flowers in bloom directly to the northern markets while they were still fresh from the fields.

For the comparative 12 months through Oct. 1, Riddle was running 3,463,528 pounds ahead of the same period the previous year.

The company is now operating eight C-46s. During the first nine months of 1954 they flew 11,535 hours, covering 2,203,275 miles.

Riddle is modifying its C-46 engines to the R-2800-51 MI configuration developed by Air Carrier Engine Service, Inc. Changes include later type cam and valve mechanism; larger capacity oil pump; modification of blower section for more even mixture distribution, and use of forged aluminum cylinder heads. The modifications have produced reductions in cylinder head
and oil temperatures, and made it possible to secure METD power for prolonged periods on single engine operation.

Grimes rim lights have been installed on all flight instruments. The planes have omni-range, ILS, dual ADF and RTAI-B high frequency transceiver for long range communications and a 50-channel ARC-I receiver.

Riddle's net operating profit (before military operations) during the fiscal year ended June 30, 1954, was $132,847.

Southern Airways

Southern Airways, Inc. has just completed the celebration of its fifth anniversary of scheduled airline service to the Southeast.

The year 1954 was the best in the history of the airline, with an estimated 133,000 passengers flown. This record was 18 percent above that of 1953. Record passenger day was July 2, 1954, when 605 passengers boarded Southern flights.

Since beginning operations, Southern has flown more than 95-million passenger miles without passenger or crew fatality, and has been awarded the National Safety Council Safety Award four years in succession.

Southern Airways was the first scheduled airline to install rotating safety beacon lights on the tail of all DC-3 aircraft in its fleet. Also, in 1954, passenger service was improved with the installation of Janitrol heating equipment with summer blowers in all aircraft.

As of September 30, 1954, the company had shown a profit of $57,000, compared to a profit of only $12,000 for the entire of 1953. Commercial revenues had increased by 14 percent over the like period of the preceding year.

Also, in 1954, Southern Airways was one of the local service carriers to participate in the First Class Mail by Air experiment, speeding mail service to thousands of residents of the Southeast at regular first class mail rates.

Trans-Canada Air Lines

The most outstanding highlight for Trans Canada in 1954 was the introduction of two-class Super Constellation service on its North Atlantic route. This service began on May 14th, and marked the first time that a North American carrier offered both first class and tourist service in the same aircraft.

On August 26th the Company announced the purchase of three more Vickers Viscount aircraft, the first propeller-turbine aircraft to make its appearance on North American routes. These aircraft will go into service in mid-February, and the order for three more was added to a previous order of fifteen and a Letter of Intent to purchase an additional four was announced.

The National Safety Council Award for safety of operation of ground personnel was presented to the Company on October 26th.

On October 18th an unofficial speed record between Montreal and
Prestwick was established on a regular Super Constellation flight, when the distance was covered in eight hours and eight minutes.

Trans World Airlines

The year 1954 was marked with significant new strides and progress in almost every phase of Trans World Airlines' global operations, and the airline looked ahead to 1955, the year which will highlight TWA's thirty years of public service.

Record increases in air traffic well beyond the best of 1953 were recorded in all TWA departments.

An estimated total of three billion, 162 million passenger miles were flown over TWA's United States and international routes—an increase of 9.8 percent over 1953.

In the United States, TWA's coast-to-coast routes accounted for almost two billion, six hundred million passenger miles—9.4 percent above the 1953 figure. International passenger miles flown were estimated at 570 million—an increase of 11.8 percent over last year.

Striking increases were recorded in TWA's low-cost Sky Tourist type of service. Preliminary figures showed a 44.3 percent increase in the number of passenger miles flown in this type of service on TWA's trans-Atlantic routes to Europe and the Middle East over 1953 figures. Domestic Sky Tourist service gained 31.6 percent for the same period.

All other phases of the airline's operations showed healthy gains during the year. Mail ton miles were up an estimated 21.5 percent over 1953; express and freight ton miles, 5.8 percent.

TWA inaugurated on August 1 a new service, the Time Pay Plan, which can be applied to all-inclusive tour travel, providing TWA's one-carrier service on routes serving both the U. S. and overseas points. Credit can also be applied for travel over routes of connecting carriers as well. As the year ended, TWA's Time Pay Plan program was extended to U. S. citizens residing abroad for travel in the U. S. and overseas.

Still another milestone in TWA's development and encouragement of low-cost air travel were the TWA Thrift-Season Travel Bargains, inaugurated in November.

Strides in airline technology were taken in 1954 as well. Highlight in this field was the breaking of ground for the new $20-million overhaul base at Kansas City. TWA will dedicate the first unit of the base in mid-1955.

TWA and Lockheed Aircraft Corporation announced aerodynamic refinements in the engineering of TWA's twenty upcoming Model 1049G Super Constellations, which will increase the speed and long-range reliability of this aircraft.

Powered by turbo-compound engines and equipped with the most advanced devices including Sperry engine analyzers and weather surveillance radar, the new aircraft will be placed in TWA's transcontinental luxury service in 1955.

In October, TWA's meteorology department revealed a new weather
forecasting concept related to daily changes in the sun's corona. Already proven useful in the airline's daily flight forecasting, the concept is expected to prove of great value to agriculture and other fields dependent upon weather.

Several honors came to TWA during 1954. The National Safety Council in June, announced its list of aviation safety awards in which TWA led 39 U. S. airlines with a record 8 billion safe passengers miles flown over its 33,000 miles of air routes.

In September, special honors of the Italian government were bestowed upon Warren Lee Pierson, Board Chairman of TWA, when he received the decoration of Grand Officer of the Order of the Republic from the Prime Minister of Italy, in recognition for his contribution to the rebirth of civil aviation in Italy.

Dr. John H. Furbay, TWA's director of Air World Education, received the Brewer Trophy as "Aviation's Man of the Year for Aviation Education". The award was made at the annual Wright Brothers Memorial Dinner, December 17, in Washington, D. C., by the National Aeronautics Association.

United Air Lines

Record-breaking passenger and cargo volumes, together with technological advances highlighted 1954 for United Air Lines.

According to company estimates, United will have flown 3.3-billion revenue passenger miles in the year, an increase of 21 percent from 1953, and carried some 4,735,000 passengers, an all-time record and a gain of 20 percent from the previous year. In carrying such traffic the company's fleet of almost 200 twin-engined and four-engined aircraft will have chalked up approximately 100-million revenue airplane miles.

Estimates on cargo volume show that in 1954, as compared with 1953, United will have flown 23,300,000 mail ton miles, up 111/2 percent, and 44,200,000 cargo ton miles, an increase of about 14 percent.

In September, United sold $20-million in 20-year 31/4% Series C debentures to two insurance companies. At the same time, the $45-million stand-by credit available from a group of 38 banks was reduced to $30-million, and the period of availability extended one year.

During the first nine months of the year, the company's gross operating revenue rose to a record $148,166,395, as compared to $131,141,489 in the first nine months of 1953. Net earnings, after taxes, for the first three quarters of 1954 totaled $8,433,683 as compared with $8,024,115 in the year earlier period.

In August the company's Board of Directors authorized installation of airborne radar in the company's fleet.

During the year, United received almost all its initial order for 25 Douglas DC-7s, as well as the last of its order for 55 twin-engined Mainliner Convairs. Use of the new planes enabled United to begin non-stop coast-to-coast flights and expand its schedules to the greatest level in its history. By the end of the year, 365-mile-an-hour DC-7 service had been inaugurated at New York, Newark, Boston, Hartford-Springfield, Phila-
delphia, Washington, Cleveland, Detroit, Chicago, Denver, Los Angeles, San Francisco and Seattle-Tacoma; Mainliner Convair service had been expanded to 65 cities and four-engined air coach service to 22 communities on the company's coast-to-coast, Pacific Coast and California-to-Hawaii system.

To meet future demands, the Board of Directors in August authorized purchase of an additional 17 aircraft, costing $22.3-million. The planes, which will be delivered during the first eight months of 1956, include two 58-passenger DC-7s, ten 58-passenger DC-6Bs and five four-engined all cargo DC-6As. The 15-ton-capacity DC-6s are the first 300-mile-a-hour aircraft to join the company's growing all-cargo fleet.

Late 1954 the company sold its six Boeing Stratocruisers to British Overseas Airways Corporation.

During the year United became the first domestic airline to use electronic flight simulators. Four Curtiss Wright Dehmel simulators, purchased by United for more than $3-million, electronically duplicate the performance of aircraft without leaving the ground. In addition to standard types of pilot training such as upgrading and transition, they permit training of crews as a coordinated unit and enable instructors to set up flight problems rarely undertaken in actual aircraft. DC-6B and Convair 340 simulators were installed in the company's Chicago Flight Training Center, while similar units were placed in operation at Denver.

Other technological advances made by the company in the year included installation of PB-10A autopilot couplers on 64 DC-6s. These devices automatically place aircraft "on the beam" during an ILS approach. Automatic telephone answering devices were put in service at smaller stations. The equipment handles incoming reservations and information calls while personnel are busy on the ramp or during periods when the station is closed for the night.

The company also announced plans to install Selcal on its Mainliner fleet. Selcal enables ground radio operators to communicate with en route flights on a selective basis. United's order for 286 Bendix glide slope receivers was placed in July as largest of its kind in the air transport industry. The receivers are used in instrument landing operations.

In 1954 United's new DC-7s set many new commercial speed records including the mark of 16 hours, 51 minutes on a special one-stop Dawn-to-Dusk press flight from New York to Honolulu.

Western Airlines

Western Airlines in 1954 completed 28 years of continuous operation, and was serving 44 cities in 12 states and Canada on its 5,525-mile system. In September, it was announced that non-stop service between Los Angeles and Seattle would be operated by Western with a $5-million additional fleet of Douglas DS-6B airliners. The new flight augmented the airline's existing DC-6B schedules and aircoach services to all major Pacific Coast cities.

Western Airlines is based at Los Angeles.
CHAPTER SIX
Utility Airplanes and Helicopters

Not since the boom-or-bust days of 1946-1947 has general aviation revealed in such comfortable optimism as it did during 1954. The sharp difference lay in the fact that the '54 boom was substantial and real, based on a healthy economic growth of the utility of the aircraft. Business and industry claimed the aircraft as its own, with private, pleasure or sport flying practically non-existent.

The aircraft has taken its place in agriculture as a farm tool; in industry, as a tool for cargo hauling, patrolling and surveying; and in the business world as a convenient and non-expendable means of transportation. The company-owned airplane has put the fixed-base operator, the overhaul/maintenance base, the equipment manufacturer, and the airport back into business. And from all indications back into business to stay.

Predictions that the end of the excess profits tax would be the end of the company-owned and operated fleets proved untrue. Instead of dumping the planes, companies increased their utility. Where at the beginning the aircraft were executive in practice as well as name, they are now business planes, no longer reserved for the top cream of industry.

The plane is credited to a great extent with the growing trend toward decentralization of industry. Companies no longer are restricted to plant and office sites near commercial transportation.
In 1954, the approximately 6000 companies operating aircraft spent close to a half billion dollars on equipment, accessories, and services. Aircraft Industries Association reported a fleet of 21,500 aircraft in the corporate fleet in 1953. Of the total 2437 were multi-engine and 19,063 were single engine lightplanes. This compares to the estimated 17,500 planes under company ownership in 1952 of which 1750 were multi-engine. The business aircraft fleet is estimated to be 17 times larger than the domestic airlines.

Although the oil industry is by far the greatest user of the business aircraft, all forms of business have adopted it as a business necessity—retail firms, banks, lumber companies, paper mills, chemical firms, and publishing houses, among others.

The least regulated of the air transportation field, business flying is proud of its safety record. In 1954 the overall average was estimated at 0.04% fatality per million plane miles. The National Business Aircraft Association, which represents a group of the larger business fleet operators, awarded safety certificates to 21 member companies for flying a total of 37,927,538 miles without accident or injury. Sixty-eight company pilots were granted safety awards for flying 500,000 accident and injury free miles individually.

The airlines, which at first viewed the growth of business flying with a jaundiced eye, are now claiming that this medium actually increases airline travel. Robert Ramspeck, vice president of Eastern Air Lines, told the 1954 NBAA convention that business flying forces the use of airlines. Competitors who do not operate aircraft must use the airlines to compete with companies that do. Fleet operators, completely accustomed to air transportation, send their employees off on airlines when it is not economically sound to use their own planes.

The growing utility of the aircraft has seen the decline in production of two-place aircraft and the growth of four- to six-place equipment. The major lightplane manufacturers were expected to ship between 3500 to 4000 aircraft of under 12,500 airframe weight by the end of 1954. While the actual number of shipments is comparable to other years, the dollar value of $50 million is higher because of the larger, more complex equipment being manufactured to meet the needs of the business world.

The big equipment news for 1954 in the utility field was the production of the small twin-engine transport. Joining Aero Design & Engineering Co., which introduced the twin Aero Commander six-place business liner first in 1950, was Piper with its four-place twin-engine Apache; Cessna with its clean-line Model 310; and Beech with its Twin Bonanza. The four new twins provide customers with a price range of from $32,000 to $70,000, depending on speed and range. The small twins satisfied a long need for twin-engine reliability so needed in long range coast-to-coast flights, which are a feature of the new business flying needs.

More powerful engines have been added to single-engine planes to meet the needs of the business user who can fulfill his aircraft needs in small ranges, but still desires speed within economic bounds.

Helicopters are being prepared for the business group to meet the needs
of short range plant hopping. Bell Aircraft announced plans for 1955 production on two models. One a three-place passenger ship fitted with a custom interior, the other a four-place utility copter that can be quickly converted from passenger to cargo carrying, expected to be within the $40,000 price category.

The biggest business, however, lies in the large multi-engine types. The users of these airline-type aircraft feel the need for a plane designed for their own needs. Long dependent on surplus and used aircraft such as the DC-3, Lodestar, A-26 and other World War II bomber types converted to executive transports, members of NBAA spearheaded a drive in 1952 to encourage manufacturers to design a 300 mph, pressurized, twin-engine, eight to ten passenger plane designed to their specifications.

Not until two years later did Cessna Aircraft take the first plunge. It announced the design of the Model 620—four engines, eight to ten place, pressurized, with a possible price of under $300,000. A prototype was expected to fly in the spring of 1955.

But even with accelerated progress, full production is still two years away. The corporate group must continue to depend on the old workhorses. Biggest problem is expensive operation and shortage of spares on out of

New Taylorcraft model features fibreglas reinforced plastic exterior

production aircraft. Expense seems to be secondary. In order to get the increased speed and range companies are going as far as to buy Convair 340's. Approximately 17 were pressed into business service during 1954. Aircraft converted to executive interiors and requirements are going for as high as $800,000.

To date, overhaul and conversion bases throughout the country have cornered the big executive market. With competition stiff, the conversion designs are elaborate. DC-3's and Lodestars are brought up to modern standards with more powerful engines. Interiors are designed for maximum comfort, beauty and utility.

Prices on these conversions with engines and navigation aids range from $200,000 to $500,000 and sometimes higher. It is often the sole or major project of the base.

Lear, Incorporated, has set up a subsidiary to produce the Learstar,
Lodestar conversion designed by William P. Lear. The old “clunker” has been redesigned beyond recognition. Speeded up to near 300 mph, it is an example of what is being done to keep business flying until the manufacturers come forth with an original design.

Navigation and radio equipment manufacturers are also reaping the harvest of business flying. With safety a prime factor among the business users and operators, every new, proven navigation aid is a must. The new Distance Measuring Equipment so far is found only on business planes, both large and small. Omni has come to be standard equipment as much on the single-engine planes as on the larger transport types. One company alone reports more than 500 Omni receivers sold in one year’s time.

The advent of clean, light, fast planes resulted in a rash of weather accidents caused by pilots getting into situations in an airplane a little too hot to handle. To prevent the deadly spiral dive, designers turned their attention to creating automatic stabilizers. Lear in 1954 marketed the Arcon stabilizer based on magnetic amplifiers; Javelin Aviation of Wichita designed a simpler, cheaper single-axis autopilot; and Summers Gyroscope attempted to build stabilization into the faster planes. All these products are aimed at the utility aircraft.

Automatic pilot manufacturers found a new outlet for their product with the majority of the larger transport types so equipped.

Aircraft Owners and Pilots Association, which represents the lightplane pilot, took the lead in the life saving campaign by commissioning the University of Illinois to work out a simple instrument training curriculum for the single engine plane owner. Called the 180 degree turn rating, it provides the pilot with sufficient training to get out of weather before he gets into trouble.

Single-engine equipment was not neglected by the manufacturer during the year. Developments in light single planes ranged from an all-Fiberglas design by Taylorcraft to a trend toward fast (200 mph) all-metal tricycle gear equipment. Piper announced it was discontinuing production on its tail-wheel geared Pacer. No demand. The end of the fabric covered plane is approaching. Piper is reportedly readying an all-metal design. Beech and Cessna modernized, souped-up their single-engine models.

The special needs of the aerial dusters and sprayers were being met by the design of farm machinery. A company in Yakima, Wash., Lamson Aircraft, announced it was going back 20 years in the design of its Air Tractor—a slow, maneuverable, stable biplane.

With business-flying taking its place with the military and airline segments of the industry, its prosperity is rubbing off on the airports and fixed base operators. An estimated $150-million is spent annually for fuel, maintenance, tie-down, landing fees, hangaring and other services.

The airports in most cases leave the responsibility of servicing the group to the fixed base operators at the field, under lease arrangements which usually carry a percentage of fuel sales reverting back to the airport and city. Very much aware of this revenue potential, municipalities are expanding airports and providing more airports to grab off the trade.
Fast, long-range, twin-engine Learstar

New airports are being planned to provide comparable facilities for the business fliers to that of the airlines. In congested airport areas, cities are planning new airports for the new business. Need for secondary airports in large population areas is felt.

The aggressive fixed-base operators have been brought back to life. Those that can provide the service demanded by the group are in good financial condition. For the first time in history, more than fifteen FBO’s reported sales in excess of $1-million each with about half of them nearing the $5-million market.

Greatest source of income is in the sale of accessories; second is fuel and oil. Maintenance and overhaul is sandwiched in between. Those that have aircraft and accessory distributorships and provide modern salesmanship methods are in excellent condition.

Recognition of this vast fleet’s value to the nation is reflected in civil defense mobilization plans. Single engine aircraft figure strongly in state defense planning. The Defense Air Transport Administration in Washington is working with the large multi-engine aircraft owners in developing a secondary emergency fleet, somewhat similar to the CRAF plan for the airlines.

Helicopters

Military procurement continued to dominate the helicopter industry during 1954, although the civil world was getting down to business in planning for future helicopter transport activities. The Army appeared to be the largest customer for helicopters and expected to spend $1-billion over the next five years for rotocraft. Long-range Army plans reportedly called for operating more than 1000 helicopters, including cargo, utility, ambulance, liaison and training models.

At the beginning of 1954, 84 communities were being served by the three certified helicopter airlines in Los Angeles, New York and Chicago with the Civil Aeronautics Board having approved service to an additional 46 communities within the three areas. In addition, Mohawk Airlines
undertook the experimental helicopter operation during the summer months along some of its routes and National Airlines has been testing helicopter shuttle service in the Miami area.

With analyses made during the year pointing to mass use of helicopters in scheduled service five to ten years off, efforts of the air carriers and manufacturers were directed toward organized planning for that time. The Air Transport Association's Rotorcraft Committee began an intensive study of direct operating cost and preparation of a detailed list of design recommendations for transport helicopter types. It was generally agreed that twin engine rotorcraft were essential for public transportation.

The Air Coordinating Committee's Air Policy Review set the pace for government participation. It stated that the U. S. should continue encouraging and supporting development and use of commercial helicopters and support a program of rotary wing research through the National Advisory Committee for Aeronautics, which is spending about a million dollars a year on rotary wing research. The Government should also encourage use of copters experimentally, with CAA and CAB forming basic civil air regulations for helicopters quickly. CAA should also speed up development of heliport design criteria, while the Air Navigation Development Board and Radio Technical Commission for Aeronautics programs on helicopter airway aids should also be pushed. CAB should view requests for helicopter subsidies by airlines sympathetically.

Favorable reaction was evidenced toward an Army proposal that Army helicopters be flown over air routes under airline supervision. The Army expressed willingness to turn over 15 rotorcraft for this purpose. The Sikorsky S-55 was the first to be used, if the plan was approved, followed by later types such as the Piasecki H-21, Sikorsky S-58 and S-56. Only CAA certified helicopters were to be involved. CAB, CAA, ATA, AIA, and the Army are trying to accelerate the development of Civil Air Regulations for transport category helicopters in order that the Army may utilize civil requirements in its purchasing plan. Recommendations were made during the annual airworthiness review.

The local service airlines were most interested in acceleration of civil helicopter potential. The short-haul market, it is generally agreed, is where the helicopter has the most important job to do. Authorities almost unanimously stated that the helicopter is the most logical replacement for the DC-3.

Heliport planning was stressed. Several heliport studies caution against municipalities beginning construction of heliports at once. It recommends that careful traffic analyses and potentials be first determined; that sites be selected and land optioned. Investigation of eventual heliport requirements should be made. Particular attention should be given to local legislation to take into consideration helicopter flight characteristics, zoning requirements, building regulations, etc.

Major attention should be focused on centrally-located downtown sites for development as needs, located close to traffic sources in order for the helicopter to perform the most useful public service. Ground-level heli-
ports are generally preferable to structural types on economic grounds. Heliports at airports with large traffic volume should be structurally incorporated to perform the most useful public service.

Although CAA has issued no regulations as yet, clear approaches have been expressed as mandatory on inter-city helicopter operations.

While the air transport industry made its plans, the helicopter manufacturers concentrated on improving the product. Gas turbine powered helicopters came under test by several manufacturers, with at least three making first flights during 1954. Two companies rolled out the first multi-engine 30 to 40 passenger designs—slated for the military first.

Two major problems plague the industry—high maintenance and high operating costs. Two Hiller engineers stated before a Helicopter Society meeting that minimum direct costs would result from a hypothetical 35-passenger design with higher utilization driving costs down rapidly. Costs would be lower, they said, when operated at design ranges.

It was generally felt that increased experience with helicopters will bring down maintenance times and costs. Los Angeles Airways has reported reductions in direct maintenance costs for 1954 to be well under the $30.79 per S-55 flight hour experienced in 1953.

While the air transport industry concentrated on getting its helicopter services lined up, the military was sponsoring competitions for (1) a one-man helicopter for the Marine Corps for combat work and (2) a cargo helicopter for the Army. It appeared that the military would absorb the attention of the rotary wing aircraft for at least two more years. Although nine helicopter types carry CAA certificates, only four are currently being turned out for civil use.

Outside of transport uses, the helicopter is finding use in general aviation for patrol, surveying and agricultural purposes. Small helicopter models are available for these civil uses.

The helicopter manufacturers are trying to get engine manufacturers to design an engine specifically for helicopter use. Greater reliability and engine life, they believe, can be insured by an engine designed for the

Fairchild enters helicopter market with former American helicopter design
The AIRCRAFT YEAR BOOK

helicopter's particular flight characteristics. Although speed is not considered an essential of helicopter performance, gas turbines are expected to provide greater reliability along with increased speeds.

AIA's Helicopter Council is considering recommendations for a 50,000 pound vehicle, although one similar to the 35,000 pound Sikorsky S-56 may prove adequate. Biggest problem to the largest machine is that it would require between 4000 and 5000 hp., which means four engines producing more horsepower than any other powerplant currently being developed.
CHAPTER SEVEN

Planes in Production

AIRCRAFT PRODUCTION continued to make history (See Outstanding Events) and at the same time pointed sharply toward future trends, especially in the jet field, during 1954.

First of the American jet transports, the Boeing 707, with a cruising speed of 550, figured in the news throughout the year under its Air Force tanker designation, KC-135. With a service ceiling of over 42,000 feet, it performed up to or beyond expectations during test flights following its maiden trial on July 15, 1954. Tanker versions went into production on September 1.

Jet production burgeoned in the defense field, notably the North American F-100 Super Sabre, first of the supersonics to go into mass production (in 1953), and the Douglas carrier-based F4D. In 1953, both planes set world speed records, still standing as this edition goes to press.

Both the Douglas DC-7 and the Lockheed Super Constellation continued on heavy production schedules in the reciprocal field.

Notable also was increased production in executive-type lightplanes, which reached a post-war high.

Complete details of all planes coming off the lines during the year appear on the following pages.
The new Aero Commander Model 560

TYPE • Six place

DESIGNATION • Model 560

SPECIFICATIONS • Span 44 ft.; Length 34 ft. 2½ in.; Height 14 ft. 9 in.; Empty Weight 3900 lb.; Gross Weight 6000 lb.; Wing Loading 24.6 lb. per sq. ft.; Power Loading 11.10 lb. per bhp; Engine (2) Lycoming GO-480-B, 520 hp normal rated; Fuel Capacity 150 gal.; Propeller Hartzell 3 blade; Main Tire 850x10; Nose Tire 600x6.

PERFORMANCE • Maximum Speed 179 kn 540 hp at 3400 rpm at S. L.; Cruise Speed 171 kn at 378 hp at 2800 rpm at 10,000 ft.; Landing Speed 52 kn; Rate of Climb 1400 fpm at S. L.; Service Ceiling 20,000 ft.; Absolute Ceiling 22,000 ft.; Range with Maximum Payload 910 nmi.; Range with Maximum Fuel Load 910 nmi.

REMARKS
This new twin-engine model was announced in June and superseded the first production model, the 520. 150 of the 520 models came off the assembly line before the start of production of the 560 model.
BEECH AIRCRAFT CORP.
Wichita, Kans.

Beechcraft Super 18

TYPE • Eight place

DESIGNATION • Super 18 (Model E18S)

SPECIFICATIONS • Span 49 ft. 8 in.; Length 35 ft. 2½ in.; Height 9 ft. 6 in.; Empty Weight 5970 lb.; Gross Weight 9300 lb.; Wing Loading 25.76 lb. per sq. ft.; Power Loading 10.33 lb. per bhp; Engines (2) Pratt and Whitney 450 hp at 2300 rpm takeoff; Fuel Capacity 286 gal.; Propeller Hamilton Standard hydromatic; Gear conventional; Wing Area 361 sq. ft.; Aileron Area 17.48 sq. ft.; Flap Area 28.12 sq. ft.; Fin Area 20.08 sq. ft.; Rudder Area 13.50 sq. ft.; Stabilizer Area 49.58 sq. ft.; Elevator Area 22 sq. ft.

PERFORMANCE • Maximum Speed 233 mph at 450 hp at 2300 rpm at 3300 ft.; Cruise Speed 216 mph at 337 hp at 2000 rpm at 10,000 ft.; Landing Speed 86 mph; Rate of Climb 1490 fpm at S. L. at 8750 lb. gross; Range with Maximum Payload 1461 mi. at 10,000 ft., 50 percent power, 45 min. reserve.

REMARKS

The Super 18 is a bigger version of the standard Model 18 which has been a commercial and military model since it was first put on the market in 1937. Over 7000 of the military version were built as transports and trainers. The current model features external drag reduction plus many interior improvements.
Beechcraft Model B50 Twin Bonanza

TYPE • Six place

DESIGNATION • B50

SPECIFICATIONS • Span 45 ft. 3¾ in.; Length 31 ft. 6½ in.; Height 11 ft. 4 in.; Empty Weight 3940 lb.; Gross Weight 6000 lb.; Wing Loading 21.66 lb. per sq. ft.; Power Loading 12.25 lb. per bhp; Engine (2) Lycoming GO-435-C2, 245 hp at 3100 rpm at S. L.; Fuel Capacity 134 gal.; Propeller Beech full electrical feathering, hydraulically controlled, continuously variable pitch; Gear tricycle; Wing Area 277.06 sq. ft.; Aileron Area 13.89 sq. ft.; Flap Area 37.80 sq. ft.; Fin Area 14.25 sq. ft.; Rudder Area 12.77 sq. ft.; Stabilizer Area 47.25 sq. ft.; Elevator Area 17.49 sq. ft.

PERFORMANCE • Maximum Speed 205 mph at 245 hp at 3100 rpm at 2500 ft.; Cruise Speed 193 mph at 159 hp at 2800 rpm at 10,000 ft.; Landing Speed 69 mph; Rate of Climb 1450 fpm at S. L.; Service Ceiling 20,000 ft.; Range with Maximum Payload 1087 mi.

REMARKS

First flown on Nov. 15, 1949, the B50 executive transport is the commercial version of the U. S. Army L-23. Engineering reports show the structural and operational standards to which the Twin-Bonanza has been tested are far in excess of those required by governmental agencies.
Beechcraft E35 Bonanza

TYPE • Four place

DESIGNATION • E35

SPECIFICATIONS • Span 32 ft. 10 in.; Length 25 ft. 2 in.; Height 6 ft. 6½ in.; Empty Weight 1675 lb.; Gross Weight 2725 lb.; Wing Loading 15.34 lb. per sq. ft.; Power Loading 14.73 lb. per bhp; Engine (standard) Continental E-185-11, 205 hp takeoff — (optional) Continental E-225-8, 225 hp takeoff; Fuel Capacity 39 gal. (39 gal. with auxiliary tank); Propeller Beech electrically controlled; Gear tricycle; Wing Area 177.6 sq. ft.; Fin-Stabilizer Area 23.3 sq. ft.; Rudder-Elevator Area 12 sq. ft.

PERFORMANCE • Maximum Speed (standard engine) 190 mph at 185 hp at 2300 rpm at S. L.— (optional engine) 194 mph at 185 hp at 2300 rpm at 3000 ft.; Cruise Speed (standard engine) 179 mph at 139 hp at 2150 rpm at 6000 ft.— (optional engine) 184 mph at 146 hp at 2300 rpm at 8000 ft.; Landing Speed 55 mph; Rate of Climb (standard engine) 1100 fpm at S. L.— (optional engine) 1300 fpm at S. L.; Service Ceiling (standard engine) 18,000 ft.— (optional engine) 19,000 ft.; Range with Maximum Payload 1179 mi. at 10,000 ft. at 165 mph.

REMARKS
The Bonanza was first flown Dec. 22, 1945. It holds the lightplane non-stop world’s distance record of 4,957.240 mi. (see RECORDS). Popular with the business executive, the Bonanza has also had a successful feederline operational history. By the 1954 year-end, 4000 had been manufactured.
Bell Model 47H

TYPE • Three place

DESIGNATION • 47H

SPECIFICATIONS • Main Rotor Diameter 35 ft. 1½ in.; Anti-Torque Rotor Diameter 5 ft. 8 in.; Length 31 ft. 4 in.; Height 9 ft. 3 in.; Empty Weight 1480 lb.; Gross Weight 2350 lb.; Engine Franklin 6V-4200-C32, 200 hp; Fuel Capacity 435 gal.

PERFORMANCE • Cruise Speed 100 mph; Rate of Climb 900 fpm at S. L.; Range over 265 mi.

REMARKS
Streamlined fuselage including semi-mono-coque tail boom, arched skid gear, faired gas tanks and other refinements give this new model a substantial range and cruise advantage over previous models. Cockpit comfort has been increased through wider automotive type seat (60 in.) and sound-proofing.
New Cessna Model 180

TYPE • Four place

DESIGNATION • 180

SPECIFICATIONS • Span 36 ft.; Length 26 ft.; Height 7 ft. 6 in.; Empty Weight 1480 lb.; Gross Weight 2550 lb.; Wing Loading 14.6 lb. per sq. ft.; Power Loading 11.3 lb. per bhp; Engine Continental 0470, 225 hp at 2600 rpm; Fuel Capacity 60 gal.; Propeller Hartzell constant speed; Wing Area 175 sq. ft.

PERFORMANCE • Maximum Speed 165 mph; Cruise Speed 150 mph; Stalling Speed 64 mph; Rate of Climb 1150 ft. at S. L.; Service Ceiling 19,300 ft.

REMARKS

New model 180 features added sound proofing and engine changes reducing noise, new outside baggage compartment, adjustable horizontal stabilizer and numerous internal refinements. This model first introduced in 1953, is equipped with para flaps positioned at 20-30-40 deg. Trim operates full horizontal stabilizer. This model has been popular as a float plane.
Cessna Model 170

TYPE • Four place

DESIGNATION • 170

SPECIFICATIONS • Span 36 ft.; Length 25 ft.; Height 6 ft. 7 in.; Empty Weight 1205 lb.; Gross Weight 2200 lb.; Wing Loading 12.6 lb. per sq. ft.; Power Loading 15.2 lb. per bhp; Engine Continental C-145, 145 hp at 2700 rpm at takeoff; Fuel Capacity 42 gal.; Propeller Sensenich fixed pitch; Wing Area 175 sq. ft.

PERFORMANCE • Maximum Speed 140 mph; Cruise Speed 120 mph; Stalling Speed 53 mph; Rate of Climb 690 ft at S. L.; Service Ceiling 15,500 ft.; Range 640 mi.

REMARKS

Current model features three position (20-30-40 deg.) para flaps. Rear seat is easily removed for converting space to cargo. There is a wide range of optional equipment including skis, floats, cross wind gear, stretcher racks for ambulance use, blind flying hood, spraying equipment and provisions for vertical or oblique aerial photography and mapping.
Cessna all-metal Model 195

TYPE • Five place

DESIGNATION • 195

SPECIFICATIONS • Span 36 ft. 2 in.; Length 27 ft. 4 in.; Height 8 ft.; Empty Weight 2030 lb.; Gross Weight 3350 lb.; Wing Loading 15.3 lb. per sq. ft.; Power Loading 12.2 lb. per hp; Engine Jacobs R-755Az, 300 hp at 2200 rpm; Fuel Capacity 80 gal.; Propeller Hamilton Standard constant speed.

PERFORMANCE • Maximum Speed 180 mph; Cruise Speed 165 mph; Rate of Climb 1200 fpm; Service Ceiling 18,300 ft.

REMARKS

The 195 is the only five-place all-metal airplane offered by an American manufacturer. The Armed Services counterpart is designated the LC-126. The civil model is certificated for floats and skis and is equipped with hinged engine mount and throw-over control. Model 195 seats two in front and either two or three in the rear seat. The rear seats are removed by four bolts to provide an 85 cu. ft. cargo space.
Cessna Model 310

TYPE • Five place

DESIGNATION • 310

SPECIFICATIONS • Span 36 ft.; Length 27 ft.; Height 10.5 ft.; Empty Weight 2850 lb.; Gross Weight 4600 lb.; Wing Loading 26.2 lb. per sq. ft.; Power Loading 9.6 lb. per bhp; Engine (2) Continental O-470-B, 240 hp normal rated at 2600 rpm; Fuel Capacity 100 gal.; Propeller constant speed full feathering; Gear tricycle; Wing Area 175 sq. ft.

PERFORMANCE • Maximum Speed 220 mph; Cruise Speed 205 mph; Rate of Climb 1700 fpm; Service Ceiling 20,000 ft.; Range with Maximum Payload 875 mi.

REMARKS
New twin Cessna features wing tip tanks, exhaust augmenter tubes, fully-enclosed retractable gear and completely internal antennae.
TYPE • Passenger

DESIGNATION • DC-6B

SPECIFICATIONS • Span 117 ft. 6 in.; Length 106 ft. 6 in.; Height 28 ft. 8 in.; Empty Weight 58,340 lb.; Gross Weight 107,000 lb.; Wing Loading 73.1 lb. per sq. ft.; Power Loading 10.7 lb. per bhp; Engine (4) Pratt and Whitney R-2800-CB17, 2500 hp normal rated; Fuel Capacity 5512 gal.; Propeller Hamilton Standard full feathering reversible pitch; Gear tricycle, two sets of dual-type main wheels; Wing Area 1463 sq. ft.; Aileron Area 89 sq. ft.; Flap Area 229.4 sq. ft.; Fin Area 93.4 sq. ft.; Rudder Area 49 sq. ft.; Stabilizer Area 210.9 sq. ft.; Elevator Area 108.9 sq. ft.

PERFORMANCE • Maximum Speed 360 mph at 1750 hp at 2300 rpm at 18,700 ft.; Cruise Speed 315 mph at 1200 hp at 2300 rpm at 22,400 ft.; Landing Speed 106 mph; Rate of Climb 1100 fpm at S. L.; Service Ceiling 21,900 ft.; Range with Maximum Payload 3393 mi.; Range with Maximum Fuel Load 4968 mi.

REMARKS
The DC-6A and DC-6B transports are enlarged versions of the DC-6s which first flew Feb. 15, 1946. First step in the evolution was the DC-6A Liftmaster first flown on Sept. 29, 1949. This was followed by the DC-6B, first flown Feb. 10, 1951. Twenty-three of the world's leading airlines have purchased 202 airplanes of the DC-6B configuration and ten commercial airlines have ordered more than 40 of the DC-6A cargo carriers. Commercial sales of the DC-6 are past the 500 mark. The military has ordered the DC-6A series, designated C-118 by the Air Force and R6D-1 by the Navy. These can be converted to troop transports or hospital planes, 54 to 89 passengers.
TYPE • Passenger

DESIGNATION • DC-7

SPECIFICATIONS • Span 117 ft. 6 in.; Length 108 ft. 11 in.; Height 28 ft. 7 in.; Gross Weight 126,000 lb.; Wing Loading 86.2 lb. per sq. ft.; Power Loading 9.7 lb. per bhp; Engine (4) Wright R-3350 turbo compound, 3250 hp at takeoff; Fuel Capacity 6490 gal.; Propeller Hamilton Standard, eight blade; Gear tricycle, two sets of dual main wheels; Wing Area 1463 sq. ft.; Aileron Area 85 sq. ft.; Flap Area 229 sq. ft.; Fin Area 101 sq. ft.; Rudder Area 67 sq. ft.; Stabilizer Area 156 sq. ft.; Elevator Area 155 sq. ft.

PERFORMANCE • Maximum Speed 405 mph at 2450 hp at 2600 rpm at 22,700 ft.; Cruise Speed 359 mph at 1800 hp at 2400 rpm at 24,300 ft.; Landing Speed 122 mph; Rate of Climb 1673 fpm at S.L.; Service Ceiling 28,400 ft.; Absolute Ceiling 29,400 ft.; Range with Maximum Payload 3565 mi.; Range with Maximum Fuel Load 5164 mi.

REMARKS
The DC-7 is a development of the DC-6 series. The DC-7 is eight feet longer and has several technical improvements. First DC-7 flight was on May 18, 1953. It entered airline service six months later and made possible non-stop transcontinental flights. The DC-7B is equipped with saddle tanks for greater range. Third model is the DC-7C with a ten ft. greater wing span, 40 in. longer fuselage. Added fuel carried in the extended wing root increases operating range to 5000 mi. with reserves. Engine modifications provide a total of 400 greater climb hp. Carries 64 to 95 passengers.
TYPE • Transport

DESIGNATION • DC-7C

SPECIFICATIONS • Span 127 ft. 6 in.; Length 112 ft. 3 in.; Height 30 ft. 9 in.; Wing area including aileron 1637 sq. ft. Empty weight 72,150 lb.; Gross weight 140,000 lb.; Wheel base 39 ft. 6 in. Powerplant Wright R-3350 compound-type EAI; Takeoff 3400 BHP each; Propeller Hamilton Standard 4-bladed.

PERFORMANCE • Maximum speed 406 mph with rated power; Cruise speed 359 mph; Landing speed 99 mph at S.L.; Rate of Climb 845 fpm at 20,000 ft.; Service ceiling 28,000 ft.

REMARKS

Success of earlier DC-7 models in domestic U.S. operations led to development of a larger version especially designed for long-range, intercontinental airline service. This version is capable of flying non-stop between most cities of Europe and the U.S. Production of the newest Douglas commercial transport is concurrent with preceding DC-7 models and airliners of the DC-6 series.
LOCKHEED AIRCRAFT CORP.
Burbank, Calif.

Lockheed 1049G Super Constellation

TYPE • Transport

DESIGNATION • 1049G

SPECIFICATIONS • Span 123 ft.; Length 113.7 ft.; Height 24.7 ft.; Empty Weight 73,016 lb.; Gross Weight 137,500 lb.; Wing Loading 83 lb. per sq. ft.; Power Loading 10.56 lb. per bhp; Engine (4) Wright 3250 hp (DA3) turbo-compound, 3250 hp takeoff; Fuel Capacity 7750 gal. with provisions for two 600 gal. tip tanks; Propellers Hamilton Standard three blade; Gear tricycle; Wing Area 1654 sq. ft.; Aileron Area 99.6 sq. ft.; Flap Area 295.4 sq. ft.; Fin Area 211.6 sq. ft.; Rudder Area 91.2 sq. ft.; Stabilizer Area 356.8 sq. ft.; Elevator Area 106.8 sq. ft.

PERFORMANCE • Maximum Speed 370 mph; Cruise Speed 335 mph; Landing Speed 106 mph; Rate of Climb 1600 fpm; Service Ceiling 30,100 ft.; Absolute Ceiling 31,200 ft.; Range with Maximum Payload 4630 mi.; Range with Maximum Fuel Load (absolute) 5840 mi.

REMARKS
Introduced in the fall of 1954, the Super Constellation 1049G is the first transport to use Wright turbo-compound engines. Military versions of the new model will carry 106 passengers and a crew of four. Model 1049D Constellations are freight models with a trans-Atlantic load capacity of 18 tons. The main cargo compartment is 83 ft. long and the aircraft's total cargo volume is 5568 cu. ft. It has a double door aft and a single door forward for loading. The 1049Gs have provisions for surveillance radar. 47 to 99 passengers.
PLANEs IN PRODUCTION —Civil

MOONENy AIRCRAFT, INC.
Kerrville, Tex.

Mooney Mite M-18L

TYPE • Single seat

DESIGNATION • M-18L

SPECIFICATIONS • Span 26 ft. 10½ in.; Length 17 ft. 8 in.; Height 6 ft. 3¼ in.; Empty Weight 540 lb.; Gross Weight 850 lb.; Wing Loading 8.9 lb. per sq. ft.; Power Loading 13.1 lb. per bhp; Engine Continental A65-B, 65 hp; Fuel Capacity 16 gal.; Propeller Flottorp; Wing Area 95.05 sq. ft.; Aileron Area 6.62 sq. ft.; Flap Area 10.54 sq. ft.; Fin Area 4.87 sq. ft.; Rudder Area 2.26 sq. ft.; Stabilizer Area 12.15 sq. ft.; Elevator Area 5.94 sq. ft.

PERFORMANCE • Maximum Speed 142 mph at 2450 rpm at S. L.; Cruise Speed 130 mph at 2400 rpm at 10,000 ft.; Landing Speed 45 mph; Rate of Climb 1000 fpm at S. L.; Service Ceiling 21,000 ft.; Absolute Ceiling 22,500 ft.; Range with Maximum Payload 420 mi.; Range with Maximum Fuel Load 610 mi.

REMARKS
Three hundred flying hours covering approximately 36,000 mi. for $674.00 which includes fuel, oil, maintenance and insurance makes the Mooney Mite one of the lowest cost planes flying today. The Mooney line includes the M-18LA with Lycoming engine, the M-18C with Continental. The deluxe model of each includes starter, generator and position lights. The manufacturer will sell the airframe only if desired.
Piper PA-18 Super Cub

TYPE • Two-place
DESIGNATION • PA-18
SPECIFICATIONS • Span 35.3 ft.; Length 22 ft. 6 in.; Height 6 ft. 8 in.;

Empty Weight 895 lb.; Gross Weight 1,500 lb.; Wing Loading 8.4 lb. per sq. ft.; Power Loading 12.0 lb. per bhp; Engine Lycoming O-290-D2, 135 hp at 2,600 rpm at S. L.; Fuel Capacity 36 gal.; Propeller Sensenich; Gear conventional.

PERFORMANCE • Maximum Speed 127 mph; Cruise Speed 112 mph at 75 percent power at 7,000 ft.; Landing Speed 38 mph; Rate of Climb 1,050 fpm at S. L.; Service Ceiling 20,500 ft.; Range 500 mi.

REMARKS
This series also comes as an agriculture model with a gross of 1,070 lb. equipped with a 110 gal. chemical tank. Another version is the PA-18T with a 108 hp Lycoming used by the Air Force in some of its civilian training programs. This model has a 90 hp Continental.
TYPE • Four-place

DESIGNATION • PA-22

SPECIFICATIONS • Span 29.3 ft.; Length 20.4 ft.; Height 6.2 ft.; Empty Weight 1,005 lb.; Gross Weight 1,950 lb.; Wing Loading 13.2 lb. per sq. ft.; Power Loading 14.4 lb. per bhp; Engine Lycoming O-290-D2, 135 hp at 2,600 rpm takeoff; Fuel Capacity 36 gal.; Propeller Aeromatic or Sensenich controllable pitch; Gear tricycle.

PERFORMANCE • Maximum Speed 137 mph; Cruise Speed 123 mph at 75 percent power at 7,000 ft.; Landing Speed 48 mph; Rate of Climb 800 fpm at S. L.; Service Ceiling 15,500 ft.

REMARKS
Standard Pacer with tricycle gear costs only 2 mph in speed with no appreciable difference in other performance factors.
Piper PA-23 Twin Apache

TYPE • Four-place

DESIGNATION • PA-23

SPECIFICATIONS • Span 37 ft.;

<table>
<thead>
<tr>
<th>Length</th>
<th>Height</th>
<th>Engine</th>
<th>Gross Weight</th>
<th>Empty Weight</th>
<th>Useful Load</th>
<th>Wing Loading</th>
<th>Power Loading</th>
<th>Wing Area</th>
<th>Baggage</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.1 ft.</td>
<td>9.5 ft.</td>
<td>(2) Lycoming O-320, 150 hp at 2700 rpm</td>
<td>3500 lb.</td>
<td>2180 lb.</td>
<td>1320 lb.</td>
<td>17.2 lb. per sq. ft.</td>
<td>11.6 lb. per hp</td>
<td>204 sq. ft.</td>
<td>196 lb.</td>
</tr>
</tbody>
</table>

PERFORMANCE • Cruise Speed more than 150 mph.

REMARKS

This new Piper twin Apache is all-metal design with short takeoff characteristics and slow landing speed for short field operations. It is capable of maintaining altitude at full gross weight on one engine. The rear seat can be removed in less than two minutes to provide 80 cu. ft. of unobstructed stowage space. The model can be converted into an ambulance plane with room for one stretcher and attendant in the rear seat. The cabin has been built so that a hatch can be cut in the floor for camera installation. Flap and landing gear controls are shaped as an airfoil and wheel respectively for positive identification.
PLANE IN PRODUCTION

MILITARY

BEECH AIRCRAFT CORP.
Wichita, Kans.

Beech T-34 Mentor

TYPE • Trainer

DESIGNATION • T-34A (Air Force)

SPECIFICATIONS • Span 32 ft. 10 in.; Length 25 ft. 11 in.; Height 9 ft. 7 in.; Empty Weight 2170 lb.; Gross Weight 2900 lb.; Wing Loading 16.33 lb. per sq. ft.; Power Loading 12.89 lb. per bhp; Engine Continental O-470-13, 225 hp at 2600 rpm; Fuel Capacity 50 gal.; Propeller Beech constant speed; Gear tricycle; Wing Area 177.6 sq. ft.; Aileron Area 11.5 sq. ft.; Flap Area 23.3 sq. ft.; Fin Area 10.39 sq. ft.; Rudder Area 6.54 sq. ft.; Stabilizer Area 22.25 sq. ft.; Elevator Area 15 sq. ft.

PERFORMANCE • Maximum Speed 189 mph at 225 hp at 2600 rpm at S. L.; Cruise Speed 173 mph at 135 hp at 2300 rpm at 10,000 ft.; Landing Speed 54 mph; Rate of Climb 1230 fpm at S. L.; Service Ceiling 20,000 ft.; Range with Maximum Payload 736 mi. at 10,000 ft. 60 percent power.

REMARKS

The T-34 Mentor, developed by Beech as a private venture, has now been adopted as the official primary trainer for the U. S. Air Force, U. S. Navy, and the air services of Canada, Chile, Colombia, El Salvador and Japan. It has won every evaluation contest in which it has participated since the first prototype flight, Dec. 2, 1948.
Type • Anti-Submarine Combat
Designation • HSL-1 (Navy)

Specifications • Main Rotor Diameter 51 ft. 6 in.; Length 40 ft.; Height 14 ft. 6 in.; Engine Pratt and Whitney R-2800, 1900 hp normal rated; Fuel Capacity 425 gal.

Performance • All data are classified.

Remarks
This is the first helicopter specifically designed for anti-submarine warfare, and marks Bell’s first departure from the single main rotor configuration. The HSL-1 rotor system has the standard Bell rigid two-blade rotor and automatic stabilizer system. The engine is mounted in conventional position in the aft section of the fuselage. The rotors can be folded rearward, the rear blades folding forward for compact carrier stowage. Stabilizing fins are provided for directional stability in high speed flight.
Boeing B-52 Stratofortress

TYPE • Heavy bomber

DESIGNATION • B-52 (Air Force)

SPECIFICATIONS
- Span 185 ft.
- Sweepback 35 deg.
- Length 156 ft.
- Height 48 ft.
- Gross weight more than 350,000 lb.
- Engine (8) Pratt and Whitney J57 turbojet, 10,000 lb. thrust class
- Gear eight main wheels in tandem with single outrigger wheels near wing tips.

PERFORMANCE • Can be described only as “a very-high speed, long-range heavy bomber with a service ceiling over 45,000 ft.”

REMARKS
Two experimental prototypes of this airplane continued to undergo Boeing and Air Force test programs at year end. First Stratofortress to fly, the YB-52 made its initial flight April 15, 1952 reversing the usual order. It was ordered into quantity production before the first flight. Boeing is building production B-52s at Seattle, Wash., and the company’s Wichita, Kans. Division was tooling up at year end for second source production. Prototypes have tandem seating; production models side-by-side. The B-52 is the largest and heaviest jet airplane ever built.
Boeing RB-47E (foreground) and B-47E

TYPE • Medium Bomber

DESIGNATION • B-47E (Air Force)

SPECIFICATIONS • Span 116 ft.; Sweepback 35 deg.; Length 106 ft.; Height 28 ft.; Gross Weight more than 200,000 lb.; Normal Bomb Load more than 20,000 lb.; Engine (6) General Electric J47, 6000 lb. thrust normal rated; provisions for 33 external ATO units, 1000 lb. each and water injection systems providing 17 percent power increase; Gear dual main wheels in tandem with a single outrigger under each inboard pod.

PERFORMANCE • Maximum Speed more than 600 mph; Service Ceiling over 40,000 ft.; Range more than 3000 mi.

REMARKS
The B-47 is the fastest operational bomber in the world. The first XB-47 flight took place Dec., 1947 and more than 1000 have been built since. Another model, the RB-47E, differs from the standard model in having longer nose, more windows and air-conditioned camera compartment in place of bomb bay. Crew for this model is pilot, co-pilot riding in tandem and observer-photographer. Among the features of the B-47 are the thin flexible wings which have a drooped appearance on the ground changing to a slight dihedral in flight. A B-47 set a new jet endurance record during 1954 with a 17,000 mi. flight in 35 hours with the aid of aerial refueling. Crew: 3.
TYPE • Tanker Transport

DESIGNATION • KC-135 (Air Force) this is the advanced version of the 707 transport, details of which are not released.

SPECIFICATIONS • Span 130 ft.; Sweepback 35 deg.; Length 128 ft.; Height 38 ft. 3 in.; Gross Weight 190,000 lb.; Engine (4) Pratt and Whitney J-57 turbojet, 10,000 lb. thrust class; Gear tricycle, main undercarriage units, four-wheel trucks, dual nose wheels.

PERFORMANCE • Cruising Speed 550 mph; Service Ceiling over 42,000 ft.

REMARKS
America's first jet tanker-transport was rolled from Renton, Wash. plant May 14, 1954, and made its maiden flight July 15, 1954. It was flown at altitudes of more than 42,000 ft. and speeds of over 550 mph in early flight tests. It was ordered into production Sept. 1, 1954. Three-view drawing below is 707.
Boeing KC-97G Stratofreighter

TYPE • Tanker transport

DESIGNATION • KC-97G (Air Force)

SPECIFICATIONS • Span 141 ft. 3 in.; Length 110 ft. 4 in.; Height 38 ft. 3 in. (foldable tail); Gross Weight 153,000 lb.; Maximum Weight 175,000 lb.; Engine (4) Pratt and Whitney R-4360-59 Wasp Major, 3500 hp at takeoff; Propellers Hamilton Standard, four blade, full feathering and fully reversible.

PERFORMANCE • Maximum Speed 375 mph; Cruising Speed over 300 mph; Service Ceiling over 35,000 ft.

REMARKS

Flying boom controls and boom operator's station are mounted as a single unit which can be easily removed. Internal fuel tanks are located so that the airplane may also carry cargo while in the tanker configuration. By removing the pod and installing cargo doors in its place, the airplane can serve as a cargo, troop or hospital transport. Chief difference between G and earlier models is the provision for two droppable wing tanks and the relocation of internal fuel tanks. Cargo version carries a maximum of 68,500 lb. of heavy cargo such as jeeps, trucks and artillery. Passenger version carries 130 men, ambulance model up to 79 litter patients and attendants.
TYPE • Liaison

DESIGNATION • L-19A (Army)

SPECIFICATIONS • Span 36 ft.; Length 25 ft.; Height 7 ft. 6 in.; Empty Weight 1448 lb.; Gross Weight 2100 lb.; Engine Continental O-470-11, 213 hp takeoff; Gear Cessna spring type; Propeller McCauley for cruising speeds up to 145 mph, Koppers Aeromatic and Hartzell controllable propellers can also be installed.

PERFORMANCE • Maximum Speed 146 mph at 5000 ft.; Cruise Speed 104 mph; Observation Speed 46 mph; Rate of Climb 1290 fpm at S. L.; Service Ceiling 22,900 ft.; Range at Cruising Speed 306 mph.

REMARKS
The L-19A is all-metal, has a wide door opening and ample rear cockpit and baggage space that can be converted to stretcher installation. Flaps are the high lift type and extend rearward as they are lowered. Flap travel is 60 deg. An experimental development of this model was the XL-19B, essentially the same airplane as the L-19A except for the substitution of the Boeing 502-8 turboprop engine. The L-19C is similar to the L-19A except for modifications to the fuel system, engine installation, cowl and instrumentation. Navy version is the OE-2. The L-19A is also used by the Marines. Two-place,
Chance Vought F7U-3 Cutlass

TYPE • Fighter

DESIGNATION • F7U-3 (Navy)

SPECIFICATIONS • Span 39 ft. 8½ in.; Length 44 ft. 3½ in.; Height 14 ft. 7.44 in.; Gross Weight 23,300 lb.; Engine (2) Westinghouse J46-WE-2, 4800 lb. thrust unaugmented, 8200 lb. thrust with afterburners; Gear tricycle; Wing Area 540 sq. ft.; Alivator Area 74.4 sq. ft.; Speed Brake Area 36.1 sq. ft.; Fin Area 131.5 sq. ft.; Rudder Area 12.9 sq. ft.

PERFORMANCE • Maximum Speed over 650 mph; Rate of Climb over 13,000 fpm; Service Ceiling combat approved 45,000 ft.

REMARKS

An attack version of the F7U-3, the A2U-1, started into production late in 1954 but was subsequently halted. Future of the project was uncertain as we went to press. It is basically the same airframe as the F7U-3 but has added range and armament protection changes and provisions for carrying a more varied bomb load. The F7U-3 continued in production during the year with large numbers going to the Fleet. The Cutlass has a dual power control hydraulic system rather than a single system with a separate manual control system. Each system is completely independent of the other. Alivators combine ailerons and elevators and provide longitudinal and lateral control. Leading edge wing slats replace conventional landing flaps for low stalling speeds.
Convair F-102 delta wing interceptor

TYPE • Fighter

DESIGNATION • F-102 (Air Force)

SPECIFICATIONS
- Span 37 ft.
- Length 52 ft.
- Height 18 ft.
- Gross Weight 25,600 lb.
- Engine Pratt & Whitney J-57

PERFORMANCE • All data are classified.

REMARKS

The F-102 is a large delta wing interceptor designed for either piloted or pilotless flight. It uses the Hughes guidance equipment and mounts the Hughes Falcon missile. The first production model was completed in March, 1954. First all-weather supersonic interceptor for the Air Force, the F-102's electronic and armament improvements make it a lethal weapon in any kind of weather.
Convair R3Y-1 Tradewind

TYPE • Transport

DESIGNATION • R3Y-1 (Navy)

SPECIFICATIONS • Span 145 ft. 9 in.; Length 139 ft. 8 in.; Height 51 ft. 5 in.; Empty Weight 80,000 lb.; Gross Weight 150,000 lb.; Overload Gross Weight 160,000 lb.; Engine (4) Allison T40A-10, 5500 hp takeoff; Propeller Aero Products three blade.

PERFORMANCE • Maximum Speed 386 mph at 25,000 ft.; Cruise Speed 300 mph; Rate of Climb 2500 fpm; Range with Maximum Payload 2300 mi.

REMARKS

The new production version of the XP5Y-1 features extensive redesign with completely refaired bow, new high aspect ratio vertical tail, new engine installations, modified float support structure. The R3Y-2 loads from the bow and is the assault transport version. The original model was the first multi-engine turboprop airplane. It made its initial flight April, 1950. Design features high length-beam ratio hull for low drag in flight and improved water handling characteristics. Cargo flying boat.
TYPE • Heavy bomber

DESIGNATION • B-36J (Air Force)

SPECIFICATIONS
- **Span** 230 ft.
- **Length** 162 ft. 1 in.
- **Height** 46 ft. 9 in.
- **Gross Weight** over 400,000 lb.
- **Wing Loading** 85 lb. per sq. ft.
- **Engine** (6) Pratt and Whitney R-4360, 3800 hp (4) General Electric J47 turbojet, 5200 lb. thrust
- **Propeller** Curtiss Electric three blade; Gear tricycle, dual nose wheel, four wheel truck main;
- **Wing Area** 4772 sq. ft.
- **Aileron Area** 247.8 sq. ft.
- **Flap Area** 517.7 sq. ft.
- **Fin Area** 325.2 sq. ft.
- **Rudder Area** 217.3 sq. ft.
- **Stabilizer Area** 505.9 sq. ft.
- **Elevator Area** 472.9 sq. ft.

PERFORMANCE • Maximum Speed over 435 mph; Landing Speed 100 mph; Service Ceiling over 45,000 ft.; Range with Maximum Fuel Load 10,000 mi.

REMARKS
The B-36 is one of the largest combat aircraft in the world and is the standard Strategic Air Command heavy bomber. All models before the -D have been converted to B-36Ds with the addition of jet pods and other improvements. The RB-36D and RB-36E versions are identical except for the substitution of camera equipment for bomb load including 14 in the forward bomb bay. The B-36J is the last of the series. The program was phased out Aug. 14 at the Fort Worth plant. Three-view drawing at left is RB-36H model.
TYPE • Trainer

DESIGNATION • T-29D (Air Force)

SPECIFICATIONS • Span 91 ft. 9 in.; Length 74 ft. 8 in.; Height 27 ft. 3 in.; Empty Weight 30,481 lb.; Gross Weight 43,575 lb.; Wing Loading 53.3 lb. per sq. ft.; Power Loading 8.72 lb. per bhp; Engine (2) Pratt and Whitney R-2800-99W, 2500 hp; Fuel Capacity 1550 gal.; Propeller Hamilton Standard three blade; Gear tricycle; Wing Area 817 sq. ft.; Aileron Area 24.52 sq. ft.; Flap Area 140 sq. ft.; Fin Area 86.2 sq. ft.; Rudder Area 41 sq. ft.; Stabilizer Area 175.44 sq. ft.; Elevator Area 58.62 sq. ft.

PERFORMANCE • Maximum Speed 314 mph at 1700 rpm at 15,800 ft.; Cruise Speed 239 mph at 5000 ft.; Landing Speed 93 mph; Rate of Climb 1415 fpm at S. L.; Service Ceiling 25,100 ft.; Absolute Ceiling 26,200 ft.; Range with Maximum Fuel Load 2222 mi.

REMARKS

The T-29 series is built as a trainer for bombardiers and navigators, the -D model for bombardiers, the -C for navigators. The T-29D accommodates seven students and instructors. The T-29C version is equipped with 14 stations, each with table, instrument panel and other essential navigational training aids. Radar training equipment provides for three students with instructors.
Douglas F4D-1 Skyray

TYPE • Fighter

DESIGNATION • F4D-1 (Navy)

SPECIFICATIONS • Span 27 ft. 6 in.; Length 37 ft. 7 in.; Height 12 ft. 10 in.; Gross Weight about 16,000 lb.; Engine Pratt and Whitney J57-P2.

PERFORMANCE • All data are classified.

REMARKS

Named the Skyray because of its resemblance to the ocean dwelling manta ray, the F4D is a supersonic fighter interceptor. Its delta-like wing provides a low aspect ratio, maximum sweep and minimum thickness. Air scoops are located at either side of the fuselage and elevons on the trailing edges of the wings combine aileron and elevator functions. It is the first carrier-based airplane ever to hold the world's speed record. On Oct. 3, 1953, the F4D set the world's official speed record over a three kilometer (1.863 mi.) course averaging 753.4 mph in four passes. On Oct. 16, 1953, the same plane averaged 728.110 mph for a 100 kilometer (62.1 mi.) course record.
TYPE • Attack
DESIGNATION • A3D (Navy)
SPECIFICATIONS • Span 72 ft. 6 in.; Length 75 ft. 10 in.; Height 23 ft. 9 in.; Wing Loading 90 lb. per sq. ft.; Thrust Loading 3.7 lb. per lb. of thrust; Engine (2) Pratt and Whitney J57 turbojet, 9500 lb. thrust; Gear tricycle.

PERFORMANCE • (Estimated) Maximum Speed more than 650 mph; Service Ceiling over 45,000 ft.; Range more than 1500 mi.

REMARKS
The XA3D-1 was equipped with Westinghouse J-40 engines, the production model with J57s. This model first flew Sept. 16, 1953. It can be used at altitude for combat missions, at low level for mine laying or can be adapted aboard a carrier for photo reconnaissance. It has an internal bomb bay capable of holding the largest type bombs, torpedoes or other munitions used aboard carriers. Pressurized cabin has a crew of three—pilot, pilot-bombardier and gunner-navigator. The A3D has a simple slide-type escape chute and an upper ditching hatch. It also has hydraulic dive brakes in the side of the fuselage. It entered production in Jan., 1953.
Douglas A4D-1 Skyhawk

TYPE • Bomber

DESIGNATION • A4D (Navy)

SPECIFICATIONS • **Gross Weight** 14,400 lb.; Engine J65-W-4 Wright Sapphire. All other specifications classified.

REMARKS

The A4D Skyhawk, smallest and lightest U. S. jet combat plane ever built, was developed by the Douglas El Segundo Division. It required only 18 months to design and build the first model, and the first flight on June 22, 1954, took place two weeks after the tiny plane came off the production line. Although designed for carrier operations, the Skyhawk is small enough to omit the traditional folding wings of that type. The A4D is less than half the size of many current operational jet fighters but has a performance superior to many of them and a combat radius greater than many current propeller driven attack planes. All other data are classified.
TYPE • Reconnaissance

DESIGNATION • RB-66 (Air Force)

SPECIFICATIONS • Span 72 ft. 6 in.; Length 75 ft. 2 in.; Height 23 ft. 7 in.; Empty Weight 39,735 lb.; Gross Weight 70,000 lb.; Overload Gross Weight 79,000 lb.; Wing Loading 90 lb. per sq. ft.; Engine (2) Allison J71-A-9; Gear tricycle; Wing Area 780 sq. ft.; Aileron Area 32.6 sq. ft.; Flap Area 108.8 sq. ft.; Fin Area 129.9 sq. ft.; Rudder Area 32.5 sq. ft.; Stabilizer Area 114.8 sq. ft.; Elevator Area 52.2 sq. ft.

PERFORMANCE • All data are classified.

REMARKS

The RB-66 is a swept-wing, twin-jet bomber re-engineered from the basic design of the Douglas A3D. Its two Allison J-71 engines are slung in pods beneath its high wings. First flight, June 28, 1954. This model was designed specifically for photo reconnaissance and is a running mate for the B-66, the bomber version also in production at the Douglas Long Beach plant. The XA3D-1 was first flown Oct. 28, 1952 and at that time was the most powerful carrier based design to go into production. This model had two Pratt and Whitney J57s and was designed for carriers of all classes.
Douglas AD-5 Skyraider

TYPE • Attack bomber

DESIGNATION • AD-5 (Navy)

SPECIFICATIONS • Span 50 ft. ¼ in.; Length 40 ft. 5/8 in.; Height 15 ft. 9½ in.; Empty Weight 12,313 lb.; Gross Weight 18,799 lb.; Overload Gross Weight 25,000 lb.; Wing Loading 47 lb. per sq. ft.; Power Loading 9.9 lb. per bhp; Engine Wright R-3350, 2700 hp normal rated; Fuel Capacity 380 gal.; Propeller Aeroprop four blade; Gear conventional; Wing Area 400 sq. ft.; Aileron Area 52 sq. ft.; Flap Area 32 sq. ft.; Fin Area 33 sq. ft.; Rudder Area 22 sq. ft.; Stabilizer Area 43 sq. ft.; Elevator Area 44 sq. ft.

PERFORMANCE • (Estimated) Maximum Speed 365 mph; Cruising Speed 300 mph; Combat Radius 500 mi.

REMARKS
AD Skyraiders have been produced in quantity including AD-1s, -2s, -3s, -4s, -5s and -6s since late 1945. Numerous versions have been turned out ranging from attack-dive bombers, night attack, radar countermeasures, airborne early warning, anti-submarine and target towing to the extremely different AD-5 “Multiplex” which can be used as an attack fighter, attack bomber, passenger transport, air ambulance with litters, troop carrier, hunter-killer, early warning radar, target tug, photo reconnaissance, torpedo and rocket assault. 300-pound conversion kits can be installed in a few hours to change the airplane from attack bomber to 12-place transport, cargo plane or VIP transport.
Douglas AD-6 Skyraider

TYPE • Attack

DESIGNATION • AD-6 (Navy)

SPECIFICATIONS • Span 50 ft. 3/16 in.; Length 38 ft. 10 1/2 in.; Height 15 ft. 8 in.; Empty weight 11,800 lb.; Gross weight 18,000 lb.; Powerplant Wright R3350-26W, 2,700 hp at takeoff and 2,900 rpm. Fuel capacity 380 gal. with provisions for two 150 gal. drop wing-tip tanks; propeller Aero-

products; Gear conventional retractable.

REMARKS

AD Skyraiders have been produced in quantity at Douglas' El Segundo Division, including AD-1s, -2s, -3s, -4s, -5s and -6s, since late 1945. Numerous versions have been designed and produced, ranging from attack-dive bombers, night attack, radar counter-measures, airborne early warning, anti-submarine, and target towing to the extremely different AD-5 "Multiplex" which can perform over a dozen distinct jobs. Although the basic AD (other than AD-5) is a single place airplane, the Q (counter-measure) version has accommodations inside the fuselage for an additional radar operator, while the W (special search equipment) and N (night operations) versions can carry two extra crew members.

An AD-4 set a new world record for loads carried by a single-engine aircraft on May 21, 1953, when it carried a bomb load of 10,500 lb. and a useful load of 14,941 lb. Its basic weight was 11,798 lb. Originally produced to meet a 1,000-lb. load spec, ADs regular carried 8,000 and 9,000-lb. bomb loads off carriers in Korea. On July 10, 1953, in San Francisco, it was revealed that AD-4B Skyraiders are equipped to carry atomic bombs and had been in operation aboard Navy carriers for nearly a year.
Planes in Production — Military

Type • Transport

Designation • C-124C (Air Force)

Specifications • Span 174 ft. 1.58 in.; Length 130 ft. 05 in.; Height 48 ft. 3.62 in.; Empty Weight 101,052 lb.; Gross Weight 185,000 lb.; Overload Gross Weight 194,500 lb.; Wing Loading 74 lb. per sq. ft.; Power Loading 12.2 lb. per bhp; Engine (4) Pratt and Whitney R-4360-63A, 3800 hp (wet), 3400 hp (dry); Fuel Capacity 11,000 gal.; Propeller Curtis three-blade reversible; Gear tricycle, dual main and nose wheel; Wing Area 2506 sq. ft.; Aileron Area 66.2 sq. ft.; Flap Area 521.4 sq. ft.; Fin Area 280.3 sq. ft.; Rudder Area 185.1 sq. ft.; Stabilizer Area 394.7 sq. ft.; Elevator Area 285.8 sq. ft.

Performance • (Estimated) Maximum Speed 298 mph at 20,800 ft.; Cruising Speed 264 mph at 13,600 ft.; Rate of Climb 800 fpm; Service Ceiling full gross 22,050 ft.; Range 6280 mi.

Remarks
The C-124C is the newest in the C-124 series and is being produced at the Long Beach Div. It is the largest heavy cargo and troop transport in production today. It was developed from the C-74 by addition of bulge under the fuselage and many minor refinements. A hydraulically operated nose loading ramp can take cargo items up to 130 in. wide and 140 in. high. An amidships loading door can handle cargo items measuring 89 in. wide, 155 in. long and 35 in. high. This hold is stressed for 16,000 lb. As a troop carrier, it can carry 200 troops and their equipment, or as a hospital plane, 127 litter patients and their attendants.
TYPE • Transport

DESIGNATION • C-119G (Air Force), R4Q-2 (Navy)

SPECIFICATIONS • Span 109 ft. 3 in.; Length 86 ft. 6 in.; Height 26 ft. 3 in.; Empty Weight 39,920 lb.; Gross Weight 64,000 lb.; Overload Gross Weight 77,000 lb.; Wing Loading 44.2 lb. per sq. ft.; Power Loading 9.1 lb. per bhp; Engine (2) Wright R-3350, 2650 hp normal rated, 3500 hp takeoff; Fuel Capacity 2624 gal.; Propeller Aeroproducts four blade; Gear tricycle dual main gear; Wing Area 1447 sq. ft.; Aileron Area 33.7 sq. ft.; Flap Area 60 sq. ft.; Fin Area 357 sq. ft.; Rudder Area 55.6 sq. ft.; Stabilizer Area 172.34 sq. ft.; Elevator Area 113.86 sq. ft.

PERFORMANCE • Maximum Speed 294 mph at 2250 hp at 2600 rpm at 15,500 ft.; Cruise Speed 230 mph at 1800 hp at 2300 rpm at 10,000 ft.; Landing Speed 92 mph; Rate of Climb 1600 fpm at S. L.; Service Ceiling 28,000 ft.; Absolute Ceiling 29,000 ft.; Range with Maximum Payload 2000 mi. (with 18,000 lb. cargo — maximum cargo is 29,400 lb.); Range with Maximum Fuel Load 3048 mi.

REMARKS

The Flying Boxcar is also used by the U. S. Marine Corps as R4Q-2, and by the Royal Canadian Air Force. It was developed from the wartime C-82A. Versatility is available in the box car fuselage, equipped with an electrically-operated monorail for rapid aerial delivery of cargo packs, light artillery, jeeps or 42 paratroops. In 20 minutes the cabin can be converted to carry 38 litter patients with four attendants. The C-119G model made its appearance in 1953 and is also in use with the Belgian, Italian and Indian air forces. Flying Boxcars have been in continuous production since 1944 when the first C-82 flew. Crew: 5.
TYPE • Transport

DESIGNATION • C-123B (Air Force)

SPECIFICATIONS • Span 110 ft.; Length 76 ft. 3 in.; Height 34 ft. 1 in.; Empty Weight 30,388 lb.; Gross Weight 54,000 lb.; Overload Gross Weight 60,000 lb. (estimate); Wing Loading 44 lb. per sq. ft.; Power Loading 10.8 lb. per bhp; Engine (2) Pratt and Whitney R-2800, 1900 hp normal rated 2500 hp takeoff; Fuel Capacity 2414 gal. (includes auxiliary wing tanks); Propeller Hamilton Standard three blade; Gear tricycle dual wheels; Wing Area 1223.2 sq. ft.; Aileron Area 83.3 sq. ft.; Flap Area 128 sq. ft.; Fin Area 186.7 sq. ft.; Rudder Area 59.2 sq. ft.; Stabilizer Area 217.7 sq. ft.; Rudder Area 59.2 sq. ft.; Elevator Area 127.9 sq. ft.

PERFORMANCE • Maximum Speed 253 mi. at 1800 hp at 2600 rpm at 13,000 ft.; Cruise Speed 186 mi. at 1150 hp at 2150 rpm at S. L.; Landing Speed 85 mi.; Rate of Climb 1100 fpm at S. L.; Service Ceiling 24,000 ft.; Absolute Ceiling 25,000 ft.; Range with 1800 lb. Payload 1470 mi.; Range with Maximum Fuel Load 2990 mi.

REMARKS
Normal cargo load of the C-123B is 16,000 lb. It is equipped with integral hydraulically operated ramp and cargo door. Loading demonstrations have shown that a 155 mm howitzer and ¾ ton truck can be completely loaded and tied down in less than two minutes. The same cargo can be unloaded in one minute. Tie down fittings are stressed for 10,000 lb. in any direction and are spaced on the cargo compartment floor on a 20-in. grid pattern. The C-123B was designed specifically as a cargo plane and can carry 60 fully-equipped troops, 50 litter patients, tow a glider weighing up to 30,000 lb. or be towed in an emergency.
TYPE • Anti-submarine

DESIGNATION • S2F-1 (Navy)

SPECIFICATIONS • Span 69 ft. 8 in.; Length 42 ft. 3 in.; Height 16 ft. 3 in.; Engine (2) Wright R-1820-82, 1525 hp takeoff.

PERFORMANCE • All data are classified.

REMARKS

New twin-engine craft is designed to integrate both hunter and killer functions of AF-2 single-engine anti-submarine types. As with the AF-2S and AF-2W Guardian models, speed and high performance have been exchanged for endurance to permit hours of sea patrol seeking the enemy snorkel. Full combat version will mount huge search radar dome, carry torpedoes, depth charges, mines, sonobuoys and cannon.
PLANE PRODUCTION—Military

TYPE • Fighter

DESIGNATION • F9F-8 (Navy)

SPECIFICATIONS • Span 34 ft. 6 in.; Length 41 ft. 7 in.; Height 12 ft. 3 in.; Engine Pratt and Whitney J48-P-8, 7250 lb. thrust.

PERFORMANCE • All data are classified.

REMARKS
The F9F-8 Cougar has replaced the F9F-6 on the production line. The -8 is faster, more maneuverable and has greater range. Changes include replacing the movable wing slats with fixed cambered leading edges and extending the trailing edges. These modifications improved the Cougar's speed, maneuverability and low speed handling characteristics. Elimination of the hydraulic system in the wings and lengthening the fuselage by eight inches provided additional space for fuel. The Cougar was the Navy's first operational sweptwing fighter. It has four 20 mm cannons mounted in its nose and can carry a wide variety of external stores.
Grumman F9F-9 Tiger

TYPE • Fighter

DESIGNATION • F9F-9 (Navy)

SPECIFICATIONS • Span 31 ft. 7 in.; Length 40 ft. 10 in.; Height 12 ft. 8 in.; Engine Wright J65-W-6 with afterburner.

PERFORMANCE • All data are classified.

REMARKS

The Tiger, although bearing an F9F designation, is a completely new design, and one of the world's few military aircraft capable of supersonic speeds in level flight. Its indented fuselage, nicknamed "coke bottle" was designed to reduce drag characteristics at transonic speeds. Wings, swept to same degree as Cougars, are extremely thin. The entire upper and lower skins are machined from single sheets of aluminum alloy. A small portion of the wing near the tip folds down manually for carrier storage. This simplicity of design is characteristic throughout. The Tiger's first flight was made July 30, 1954. Year end contracts amounted to over $190-million. The Tiger was in production at year end. It will carry the most modern armament designed for fighters, including air-to-air and air-to-ground missiles.
Grumman SA-16A Albatross

TYPE • Utility

DESIGNATION • SA-16A (Air Force), UF-1 (Navy), UF-1G (Coast Guard)

SPECIFICATIONS • Span 80 ft.; Length 61 ft. 4 in.; Height 24 ft. 5 in.; Engine (2) Wright R-1820-76, 1425 hp takeoff.

PERFORMANCE • Maximum Speed 277 mph; Cruise Speed 230 mph.

REMARKS

The Albatross, Grumman's largest amphibian, was the first aircraft adopted by the unified Naval-Air Force command. It is used by the Air Force, Navy and Coast Guard as a general utility aircraft capable of performing as a hospital plane or for air-sea rescue, cargo, transport or photographic duty. It carries the widest variety of communication and navigation equipment found in the air today. On active service with every Air Force, Air Rescue Squadron throughout the world, the Albatross has participated in many dramatic rescues, including a single Arctic mission requiring separate landings on water, ice, on water again and finally on land. Crew: 6.
HILLER HELICOPTERS
Palo Alto, Calif.

Hiller H-23B (Army) HTE-2 (Navy)

TYPE • Utility
DESIGNATION • H-23B (Army); HTE-2 (Navy)

SPECIFICATIONS • Main Rotor Diameter 35 ft.; Anti-Torque Rotor Diameter 5.5 ft.; Length 38.7 ft.; Height 9.8 ft.; Empty Weight 1705 (H-23B), 1754 (HTE-2); Useful Load 795 lb. (H-23B), 746 lb. (HTE-2).

PERFORMANCE • Maximum Speed 84 mph at S. L.; Cruise Speed 70 mph at S. L.; Rate of Climb 770 fpm at S. L.; Service Ceiling 9400 ft.; Range 135 mi.

REMARKS
-The 12-B is the three-place commercial version of this model. Accessories are available for agricultural spraying and dusting, evacuation work, night flying and executive use. The H-23B and HTE-2 are both used as helicopter trainers. A number are also in service with foreign governments including the British.
KAMAN AIRCRAFT CORP.
Windsor Locks, Conn.

Kaman HOK-1

TYPE • Utility

DESIGNATION • HOK-1 (Navy)

SPECIFICATIONS • Rotor Diameter 47 ft.; Length 22 ft. 7 in.; Height 12 ft. 6 in.; Engine Continental R-975-40, 525 hp at 2600 rpm.

PERFORMANCE • All data are classified.

REMARKS

General utility design can be readily converted to ambulance version carrying two litter patients and one medical attendant or an additional ambulatory patient, in addition to the pilot. The HOK-1 uses the patented Kaman servo-flap for blade control. The twin vertical fins provide directional stability in high speed flight. Stabilizer controllable from collective pitch control.
LOCKHEED AIRCRAFT CORP.
Burbank, Calif.

TYPE • Transport
DESIGNATION • C-130A (Air Force)
SPECIFICATIONS • Span 132 ft.; Length 95 ft.; Height 38 ft.; Engine (4) Allison T-56 turboprop, 3750 hp takeoff; Propeller Curtiss-Wright Turboelectric three blade.

PERFORMANCE • All data are classified.

REMARKS
Two development models of this new turboprop were built at Lockheed's Burbank facility and at year end the YC-130 was undergoing flight test at Palmdale and Edwards Air Force bases. Production contracts for the C-130 were assigned to GAP-6, operated by Lockheed at Marietta, Ga. The C-130A has a high, widespread wing; a low-to-the ground fuselage, an upswept high tail which permits loading at truck-bed height from the rear. In regular Air Force operation the plane is designed to fly the following missions: (1) Long-range personnel movement and logistic support operations in air evacuation, troop carrier and cargo. (2) Assault and support missions right to the front lines, carrying troops and materiel for forward airstrip delivery or parachute drop. (3) Ambulance missions.
Type • Patrol

Designation • P2V-7 (Navy)

Specifications • Span 103 ft. (includes tip tanks); Length 91 ft. 5 in.; Height 29 ft. 4 in.; Empty Weight 43,950 lb.; Gross Weight 72,000 lb., with jet pod engines 75,500 lb.; Engine (2) Wright R3350-32W turbo-compound, 3250 hp and (2) Westinghouse J-34 engines in pods, 3400 lb. thrust; Propeller Hamilton Standard three blade; Wing Area 1000 sq. ft.

Performance • Maximum Speed 300 mph (without pods); Service Ceiling 22,000 ft. (without pods).

Remarks

The P2V-7 is the latest in the Neptune anti-submarine warfare series. Identifying features are double-bubble pilot canopy, jet pod engines supplementing its turbo-compound powerplants and elongated tail housing MAD gear (magnetic airborne detector) for locating underwater submarines. Like previous Neptunes, the P2V-7 is a versatile plane which can be converted for patrol, mine laying or torpedo bomber duty. The J-34 pod installations can be cut in for extra power in over-target maneuvers and takeoffs from short runways. The Westinghouse J-34s require only three bolts to hold them in place under the wing's leading edge. Lockheed is modifying the P2V-5 and P2V-6 by installing jet pod engines on all aircraft of these series. Crew: 7.
TYPE • Reconnaissance

DESIGNATION • RC-121 (Air Force) WV-2 (Navy)

SPECIFICATIONS • Span 123 ft.; Length 116 ft.; Height 26 ft.; Empty Weight 81,000 lbs.; Gross Weight 145,000 lbs. (based on claim with two wing tip tanks); Wing Loading 87 lb. per sq. ft.; Engine (4) Wright R3350-34; 3250 hp takeoff, 2600 hp cruise; Fuel Capacity 8,000 plus gal.; Propeller Hamilton Standard 6903A three-bladed 15 ft.; Wing Area 1650 sq. ft.

PERFORMANCE • Maximum Speed 270 plus mph; Cruising Speed 200 plus mph; Landing Speed 105 mph; Rate of Climb 800 fpm; Service Ceiling 20,000 plus ft.; Range with Maximum Fuel Load 3500 plus nautical mi.

REMARKS
Late in the year, Lockheed announced the RC-121D, new series which added two 600-gallon wingtip fuel tanks and a 1000-gallon fuselage tank for extra hours aloft. Fuel capacity on the RC-121D totals 8750 gallons, 2200 gallons more than previous models. These new altitude reconnaissance aircraft bulging with electronic detection apparatus, were first announced as being in production in August. The craft are designed to carry the military services’ most powerful search radar to high altitudes where radar beams (which cannot bend over the horizon) attain their maximum effectiveness in spotting either surface or air targets. Exact effective range of the radar was not revealed. RC-121’s are special versions of Lockheed’s Super Constellation. The Air Force version will be used to give air-defense forces extra-early warning of approaching targets. The WV-2’s will be used by the Navy primarily to screen U. S. fleets. Two complete flight crews plus a group of electronics specialists, a total of 31 men in all, make up the flying ship’s complement. No three-view drawings of the plane were available when the Year Book went to press.

TYPE • Fighter

DESIGNATION • F-104

REMARKS
Design details and performance characteristics are classified information. The only facts which have been cleared for release to date include: (1) The airplane is a supersonic fighter; (2) It is a specialized type of plane which trades weight and complexity for greater speed and maneuverability; (3) It has a Curtiss-Wright J-65 engine plus afterburner. No photographs have been released on the airplane.
Lockheed R7V-2 turboprop Super Constellation

TYPE • Transport

DESIGNATION • R7V-2 (Navy)

SPECIFICATIONS • Span 117 ft.; Length 116 ft. 2 in.; Height 24.5 ft.; Gross Weight 150,000 lb.; Engine (4) Pratt and Whitney T-34 turboprop, 5550 hp; Fuel Capacity 8750 gal. including two 600 gal. tip tanks; Propeller Hamilton Standard three blade.

PERFORMANCE • Cruise Speed 440 mph; Service Ceiling 35,300 ft.

REMARKS
The R7V-2 carries 36,000 lb. in 5400 cu. ft. of storage space. In over-water configuration it can carry 97 passengers and overland, 106. As a mercy plane, it can carry 73 patients in litter beds and four attendants. Normal cruising altitude is 25,000 ft. It can fly 16-ton loads across the continent in less than six hours. The ordinary cabin supercharger system has been eliminated in this model. Each engine is an air compressor, developing 70 psi; cabin pressurization lines require only 27 psi for full actuation. Lockheed at year end had a contract for two R7V-2 prototypes with the Navy and was building an additional two (YC-121F) for the Air Force.
Lockheed T-33A Shooting Star

TYPE • Trainer

DESIGNATION • T-33A (Air Force)
TV-2 (Navy)

SPECIFICATIONS • Span 38 ft. 10½ in.; Length 37 ft. 8 in.; Height 11 ft. 8 in.; Empty Weight 8400 lb.; Gross Weight 15,000 lb.; Wing Loading 60.8 lb. per sq. ft.; Engine Allison J-33-35, 5200 lb. thrust at 11,750 rpm at S. L.; Fuel Capacity 683 gal. including tip tanks.

PERFORMANCE • Maximum Speed 580 mph; Rate of Climb 5525 fpm; Service Ceiling 45,000 ft.; Range 1345 mi.

REMARKS
The T-33 is a development of the F-80 Shooting Star, first standard jet plane in the military services. It has been in service since 1948 and is now being built for both the Air Force and Navy and also several foreign powers through the Mutual Defense Assistance Pact. T-33s are also being produced by Canadair Ltd., Montreal for the Royal Canadian Air Force. In addition to being the standard jet trainer in this country, T-33s have been used to train pilots from Holland, France, Belgium, Turkey, Greece, Denmark, Norway, Italy and Portugal, all NATO countries. Crew: 2.
TYPE • Fighter

DESIGNATION • F-94C (Air Force)

SPECIFICATIONS • Span 37 ft. 3 in.; Length 44 ft. 6 in.; Height 14 ft. 10 in.; Engine Pratt and Whitney J48-P-5; Gear tricycle. All other specifications classified.

PERFORMANCE • All performance data classified.

REMARKS
The F-94C Starfire has many changes over earlier F-94A and -B models including improved electronic equipment, thinner wing and swept tail. The plane does not carry guns, but mounts 24 2.75 in. rockets in barrel launcher in nose plus 24 more in special wing pods. The F-94C is the first production fighter equipped with a deceleration parachute. It is a development of the original mass-produced F-80 Shooting Star. The wing uses special Lockheed machine-tapered and ribbed skin plating. Production on this model was completed in Feb., 1954. All-weather interceptor; crew: 2.
TYPE • Patrol

DESIGNATION • P5M-2 (Navy)

SPECIFICATIONS • Span 118 ft.; Length 102 ft.; Height 30 ft. 11 in.; Gross Weight over 70,000 lb.; Engine (2) Wright R-3350-32W; Propeller Hamilton Standard four blade.

PERFORMANCE • All data are classified.

REMARKS

Developed from the PBM flying boat, the P5M features a long afterbody designed to improve takeoff characteristics and reduce bouncing and instability during landing. To assist water maneuvering, a pair of hydroflaps are mounted on the aft hull and act as water rudders. The big flying boat is heavily equipped with radar and special devices for submarine detection. It also carries a substantial load of depth charges, bombs, torpedoes, rockets and/or mines. There is a gun turret in the tail. Crew: 7.
TYPE • Bomber

DESIGNATION • B-57B (Air Force)

SPECIFICATIONS • Span 64 ft.; Length 65 ft. 5 in.; Height 14 ft. 8 in.; Empty Weight 26,000 lb.; Gross Weight more than 50,000 lb.; Engine (2) Wright J65-W-1, 7220 lb. thrust.

PERFORMANCE • Maximum Speed more than 500 knots; Service Ceiling more than 45,000 ft.; Range more than 2,000 nautical mi.

REMARKS
The B-57B differs from earlier versions in that it has a completely redesigned cockpit and canopy and has speed brakes on both sides of the fuselage. Primary advantage of the new cockpit is greatly improved visibility for the two crew members. Seating is a tandem arrangement, with the second officer directly behind and slightly higher than the pilot. The speed brakes give more control during low altitude operations and landing approaches. Included in the armament is a rotary bomb door which is removable and preloaded before being replaced in position. Bombs or rockets are carried internally until release time when the door is turned over making the stores external. Bombs at the moment of release are already in the air through which they will fall.
McDonnell F-101A Voodoo

TYPE • Fighter

DESIGNATION • F-101A (Air Force)

SPECIFICATIONS • Span 39.7 ft.; Length 67.4 ft.; Height 18 ft.; Engine (2) Pratt & Whitney J57, 10,000 lb. thrust.

PERFORMANCE • All data are classified.

REMARKS

The F-101A announced late in the year is a long range, strategic fighter. Designed to have versatile combat capabilities enabling it to perform a variety of missions, the Voodoo is in the supersonic class and is capable of carrying atomic weapons. The twin jet is scheduled for assignment to the Strategic Air Command. Wings are swept 35 deg. A photo reconnaissance version, the RF-101A, is under development for the Air Force. The F-101 is an aerodynamic evolution of an earlier Voodoo model, the XP-88A Voodoo.

McDonnell F-101

The Pratt & Whitney engines (model J57-P-13) that power the F-101 have afterburners shorter by about two feet than other J57 afterburner types produced by Pratt & Whitney. The power of these J57 engines which are in the 10,000 pound thrust class, is increased tremendously by the afterburner device in which additional fuel is burned as the pilot calls for boost in jet thrust. Most of the unusually large fuel load needed for these powerful engines is contained in the fuselage with additional provisions made for carrying extra fuel externally. The "short" afterburner for the F-101 configuration was developed by P&W at East Hartford, Conn., under an Air Force contract.
McDonnell F3H-1N

TYPE • Fighter

DESIGNATION • F3H-1N (Navy)

SPECIFICATIONS • Span 35 ft. 4 in.; Length 59 ft.; Height 14 ft.

PERFORMANCE • All data are classified.

REMARKS

The single-jet F3H-1N is an all-weather, general purpose, carrier fighter adaptable to a wide variety of missions. It combines interceptor speed and fighter maneuverability with the payload of an attack bomber. Thin wings and tail surfaces are swept back 45 deg. enabling the Demon to combine high speeds and good control in the supersonic range with the low speed characteristics required for carrier-based operations. All-weather operations are made possible by a new type radar and the latest developments in computing and fire control equipment. Armament consists of fast firing, high velocity 20 mm cannon and multiple combinations of external stores including a large number of air-to-air rockets.
TYPE • Fighter

DESIGNATION • F-100A (Air Force)

SPECIFICATIONS • Span 36 ft.; Length 46 ft.; Height 13 ft.; Engine Pratt and Whitney J57-P7, plus afterburner.

PERFORMANCE • Maximum Speed supersonic. Service Ceiling over 50,000 ft.; Tactical Radius over 575 mi.

REMARKS
The F-100 was designed as the successor to the F-86 Sabre. The new fighter is the first production airplane in the world to fly regularly at supersonic speed in both level and climbing flight. It features a 45 deg. swept wing, uses tail braking parachute, "solid" stabilizer and large ventral air brake. The F-100A holds the world's speed record and is now in squadron service.

North American F-100

The country's first supersonic fighting unit was formed in September, 1954, when the 436th Day Fighter Squadron at George AFB, California, was equipped with F-100's. The 479th Fighter Wing, of which the 436th Squadron is a part, was thus equipped with the world's fastest production airplane—the FAI announced earlier in the year that the Super Sabre's mark of 755.149 mph was now recognized as the official world speed record. An F-100 attained this average speed in two passes over a 15-km course in October, 1953.
North American F-86D Sabre

TYPE • Fighter
DESIGNATION • F-86D (Air Force)

SPECIFICATIONS • Span 37 ft. 1 in.; Length 41 ft. 8 in.; Height 15 ft.; Gross Weight 18,000 lb.; Engine General Electric J47-17, 5200 lb. thrust takeoff plus afterburner.

PERFORMANCE • Maximum Speed 680 mph; Tactical Radius over 500 mi.; Service Ceiling over 45,000 ft.

REMARKS
The F-86D Sabre interceptor was virtually a new design over previous models coming equipped with afterburner and search radar in the nose. The -F model was designed for use as either a fighter or low-level fighter bomber. The F-86H, put into production in 1953, has the dual role of fighter-bomber and day fighter. The -H is slightly larger than previous models featuring a GE J-73 engine, stronger landing gear and improved suspension and release mechanisms for carrying droppable wing tip tanks. Navy version of this model is the FJ-2 Fury which is a carrier based, folding wing fighter assigned to the Marines. The FJ-3 is similar to the -2 except for the installation of a Wright J-65 Sapphire engine. The FJ-4 was announced late in the year. Latest in the F-86 series is the -K model which flew for the first time Sept. 10, 1954. All F-86 and FJ models have the all-flying tail in which the elevator and stabilizer are a single controllable surface. Trainer version, TF-86F, was created by adding a five ft. extension to the fuselage plus training aids.
TYPE • Trainer
DESIGNATION • T-28B (Navy)

SPECIFICATIONS • Span 40.6 in.; Length 32.9 ft.; Height 12.6 ft.; Gross Weight 8,038 lb.; Engine Wright R-1820, 1,425 hp; Gear tricycle.

PERFORMANCE • Maximum Speed 346 mph; Cruise Speed 190 mph; Stalling Speed 72 mph; Rate of Climb 2060 fpm; Service Ceiling 37,000 ft.; Range 1038 mi.

REMARKS

The T-28 replaces the previous primary, basic and advanced type trainers and combines these separate stages into a single airplane. It was the first tricycle gear trainer in the Air Force. Servicing the trainer is facilitated by an access port behind the engine. Armament, gun sight, radio and other gear are easily removed for various training missions. The T-28B is the second model in this series and is in production for the Navy. Three-view drawing at left is T-28A.
TYPE • Interceptor

DESIGNATION • F-89D (Air Force)

SPECIFICATIONS • Span 56 ft. 2 in.; Length 53 ft. 4 in.; Height 17 ft. 7 in.; Gross Weight over 40,000 lb.; Engine (2) Allison J35-A-35 with afterburners; Wing Area over 600 sq. ft.

PERFORMANCE • Maximum Speed more than 600 mph; Service Ceiling over 45,000 ft.

REMARKS
The F-89D is America's most heavily armed fighter type airplane. It carries 104 2.75 in. folding air-to-air rockets in permanently mounted wing tip pods. Placement of the rockets in wing tip pods instead of in conventional fuselage or under wing locations provides additional combat advantages. Not only can large number of rockets be carried, but firing does not interfere with vision of the crew, nor are the engine air intakes exposed to smoke and debris produced by the firing. The rockets can be fired in a single, giant volley, or can be fired in groups. This enables the Scorpion to make as many as three passes at a single target. The Scorpion uses decelerons combining the functions of ailerons and air brakes in the split, lateral control surfaces. F-89Ds are on assignment with fighter interceptor squadrons of the Air Defense Command and Alaskan Air Command. Crew: 2.
TYPE • Utility

DESIGNATION • HUP-2 (Navy)

SPECIFICATIONS • Rotor Diameter 35 ft.; Length 31 ft. 11 in.; Height 13 ft. 2 in.; Empty Weight 4231 lb.; Gross Weight 5700 lb.; Overload Gross Weight 6100 lb.; Engine Continental R-975-46, 525 hp normal rated 550 hp takeoff; Fuel Capacity 150 gal.; Gear fixed tricycle.

PERFORMANCE • Maximum Speed 115 mph at S. L.; Cruise Speed 92 mph; Rate of Climb 1200 fpm; Range 260 mi.

REMARKS

The HUP-2 is a tandem rotoed, three- to six-place search and rescue helicopter. The fuselage is all metal, stressed skin, semi-monocoque construction. An overlapping tandem rotor design, the HUP-2 is compact enough to go down any aircraft elevator without blade folding and down cruiser elevators with blades folded. Side-by-side seating of pilot and co-pilot, dual controls and an autopilot are provided. The insulated and sound proofed cabin extends 8 ft. 3 in. to the aft of the pilot’s compartment and contains approximately 160 cu. ft. of space. A 48 in. x 26 in. rescue hatch is located on the starboard side at the forward end of the cabin.
Pinsecki H-21C Workhorse

TYPE • Assault Transport

DESIGNATION • H-21C (Army)
H-21B (Air Force)

SPECIFICATIONS • Rotor Diameter 44 ft.; Length 52 ft. 6 in.; Height 16 ft.; Empty Weight 8500 lb.; Gross Weight 13,300 lb.; Overload Gross Weight 15,000 lb.; Engine Wright R-1820-103, 1425 hp; Fuel Capacity 300 gal.; Gear fixed tricycle.

PERFORMANCE • Maximum Speed 135 mph at S. L.; Cruise Speed 98 mph at S. L.; Rate of Climb 960 fpm; Service Ceiling 10,000 ft.; Range over 450 mi.

REMARKS
The H-21B is the Air Force model in this series, and is similar to the H-21C. The fuselage is of all metal stressed skin, semi-monocoque construction. The cockpit has side-by-side seating with the pilot on the right and complete hydraulic controls. In addition, the H-21B has an autopilot. The main entrance door is located on the left side at the rear of the cabin. On the right side at the forward end of the cabin is a second door, slightly smaller, where a 400 lb. capacity boom type rescue or loading hoist can be installed. Both cabin doors slide open and shut along the sides of the fuselage and each door has a plexiglas knockout panel for emergency exit. There are two additional escape hatches above the cabin in the crown of the fuselage. Both the H-21B and C models have a 4500 lb. capacity external cargo sling.
Piasecki H-25 Army Mule

TYPE • Utility

DESIGNATION • H-25A (Army)

SPECIFICATIONS • Rotor Diameter 35 ft.; Length 31 ft. 11 in.; Height 12 ft. 6 in.; Empty Weight 3963 lb.; Gross Weight 5750 lb.; Overload Gross Weight 6100 lb.; Engine Continental R-975-46, 525 hp normal rated 550 hp takeoff; Fuel Capacity 150 gal.; Gear fixed tricycle.

PERFORMANCE • Maximum Speed 104 mph at S. L.; Cruise Speed 80 mph; Rate of Climb 650 fpm; Service Ceiling 10,000 ft.; Range 253 mi.

REMARKS
The H-25A has an overlapped tandem rotor design with dual hydraulic controls, side-by-side seating and a contoured plastic nose for maximum visibility. A 48 in. x 26 in. rescue hatch is located at the forward end of the cabin in the right side of the floor adjacent to the pilot's seat. A hydraulic hoist is included for aerial hoisting. The engine is fan cooled and easily removable as a complete power package, including accessories and lubricating system. Engine power is transmitted through a drive shaft and rpm reduction transmissions to the two 35 ft. three-bladed rotors which are counter-rotating.
Republic F-84F Thunderstreak

TYPE • Bomber

DESIGNATION • F-84F (Air Force)

SPECIFICATIONS • Span 33 ft. 6 in.; Length 43 ft. 4 in.; Height 14 ft. 4 in.; Gross Weight 25,000 lb.; Engine Wright J65-W-3, 7200 lb. thrust.

PERFORMANCE • Maximum Speed more than 650 mph; Service Ceiling 45,000 ft.; Range with Maximum Payload over 2000 mi.

REMARKS

The F84-F has a primary mission as fighter-bomber, but its performance and versatility make it adaptable for interception and escort missions. It is armed with six .50 caliber machine guns and can carry more than 6000 lb. of bombs, rockets and napalm. In addition, it is listed as capable of carrying the atomic bomb. It is in service with six USAF commands and is also slated for delivery to nine NATO nations. Among the more noticeable differences between this and earlier models are the swept wing, fattened fuselage for larger J65 engine, and faired aft canopy structure. Structure uses heavy forge press parts. The F-84F Thunderstreak, the Air Force's first swept-wing fighter-bomber, far exceeds performance of previous F-84 models. Equipped for in-flight refueling.
Republic RF-84F Thunderflash

TYPE • Reconnaissance
DESIGNATION • RF-84F (Air Force)

SPECIFICATIONS • Span 33 ft. 6 in.; Length 47 ft. 6½ in.; Height 15 ft.; Engine Wright J65, 7200 lb. thrust.

PERFORMANCE • Maximum Speed more than 650 mph; Service Ceiling over 45,000 ft.; Range with Maximum Fuel Load over 2000 mi.

REMARKS
The RF-84F Thunderflash is a combat twin of the Thunderstreak. It was designed to meet requirements for a high speed, high or low altitude, day or night photo plane capable of getting pictures and, if necessary, fighting its way back to base. The Thunderflash mounts four .50 caliber machine guns, two in each wing. Wing root air intakes permit installation of aerial cameras and radar in the nose of the plane. Teamed with the Convair B-36 carrier plane in the composite known as FICON, it combines the 10,000 mi. range of the bomber with its own 2000 mi. range. It can take off and land on the mother plane.
TYPE • Helicopter

DESIGNATION • XH-39 (Army)

SPECIFICATIONS • Main Rotor Diameter 35 ft.; Tail Rotor Diameter 6 ft. 4 in.; Length 30 ft. 3 in.; Height 9 ft. 3 in.; Empty Weight 2,200 lb.; Gross Weight 3,560 lb.; Engine Turbomeca Artonste II with maximum power rating 400 hp at 35,000 rpm, continuous power rating 323 hp at 35,000 rpm.

PERFORMANCE • High speed at sea level 127 knots, cruising 120 knots; Maximum rate of climb 750 fpm; Cruising range 220 miles.

REMARKS
The XH-39 set the world's speed record for helicopters when it flew at 156.005 mph over the 3 kilometer course at Windsor Locks, Conn. The world's helicopter altitude record of 24,500 feet was established on October 17, 1954 with the XH-39. The 81 feet of payload space offers adequate accommodation for three passengers and 100 lbs of baggage, or two litter patients and a medical attendant, or 800 lbs of cargo.
Sikorsky HR2S

TYPE • Transport
DESIGNATION • HR2S-1 (Navy)

SPECIFICATIONS • Rotor diameter 90 ft.; Length 60 ft.; Gross Weight 28,500 lb.; Engine (2) Pratt and Whitney R-2800, derated to 1900 hp.

PERFORMANCE • All data are classified.

REMARKS
This new Sikorsky model is S-56 commercial model and H-37A Army model. The HR2S-1 carries two Marine squads (26 men) or three jeeps plus crew. Commercial version, projected for 1956, will carry 34 passengers in airline service. Rotor and tail fold for carrier stowage. Autopilot and anti-icing equipment are standard. Clam-shell nose doors permit cargo and troop loading with greater ease than in previous side door loading models. Retractable main landing gear is the first on a production helicopter. Five bladed main rotor and four bladed tail rotor are all-metal and fold mechanically for stowage.

Sikorsky HSS

TYPE • Anti-submarine
DESIGNATION • HSS-1 (Navy)

SPECIFICATIONS • Engine Wright R-1820, 1425 hp.

PERFORMANCE • All data are classified.

REMARKS
This single engine, single main rotor helicopter is larger than the Navy's H04S and Marine HRS. Equipped for extensive submarine detection work, its main piece of equipment is sonar gear which includes an electrical device that may be lowered into the ocean while the helicopter hovers at low altitude. The engine is installed in the nose of the aircraft with clamshell doors which open to give the same case of maintenance found on the HO4S. Gear is tricycle with the main gear forward. The four all-metal main rotor blades and four bladed tail rotor can be folded manually for shipboard stowage. The pilot and copilot fly from a position above and slightly back of the engine, while the passenger-cargo area is directly below the main rotor head. The HSS-1 is equipped with a Sikorsky developed autopilot.
TYPE • Helicopter

DESIGNATION • S-55 (Army)

SPECIFICATIONS • Main Rotor Diameter 53 ft.; Tail Rotor Diameter 8 ft. 9 in.; Length 42 ft. 2 in.; Height 13 ft. 4 in. Empty Weight 4,795 lb.; Gross Weight 7,200 lb.; Engine Pratt & Whitney Wasp S1H2 with 550 bhp; Fuel Capacity 185 gal.

PERFORMANCE • Maximum Speed 101 mph; Cruise Speed 85 mph; Maximum Rate of Climb at Sea Level 700 fpm; Range 405 st.mi.

REMARKS
The S-55 has a seating capacity of crew (pilot and copilot) passengers (military—10 (commercial)—7, with alternate cargo capacity of 340 cubic feet. Military models have Wright R1300 engine.
CHAPTER EIGHT

Engines in Production

The following list of aircraft engines includes only those in production during the year. Unless otherwise noted the specifications are the manufacturers'.

AEROJET-GENERAL CORP.
Azusa, Calif.

<table>
<thead>
<tr>
<th>MODEL: 14AS-1000 (JATO Motor)</th>
<th>MODEL: 15KS-1000 (JATO Motor)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATA</td>
<td>DATA</td>
</tr>
<tr>
<td>Type: Solid propellant rocket.</td>
<td>Type: Solid-propellant rocket.</td>
</tr>
<tr>
<td>SPECS</td>
<td>PERFORMANCE</td>
</tr>
<tr>
<td>DIAMETER: 10.25 in. LENGTH: 35.4 in.</td>
<td>RATING: 1,000 lb. thrust for 15 sec.</td>
</tr>
<tr>
<td>EMPTY WEIGHT: 120 lb. LOADED WEIGHT: 200 lb.</td>
<td></td>
</tr>
<tr>
<td>PERFORMANCE</td>
<td>REMARKS</td>
</tr>
<tr>
<td>RATING: 1,000 lb. thrust, or 330 hp, for a duration of 14 sec.</td>
<td>A new smokeless JATO developed for the Armed Services. New model is 5KS-4500 rated at 4500 lb. thrust for five seconds.</td>
</tr>
</tbody>
</table>

EQUIPMENT

JATO motor consists of a steel cylinder closed on fore end with exhaust nozzle, igniter and safety diaphragm located on aft end. Thrust is transmitted through three mounting lugs welded on the cylinder to the aircraft attachment fittings.

REMARKS

The 14AS-1000 JATO motor is CAA-certificated and its use on the Douglas DC-3 and Douglas DC-4 airplanes has been approved by CAA for commercial airline operation.

A hermetically sealed version of the 14AS-1000, the 14AS-1000 G-1, has been authorized by the CAA for a source of standby power for commercial aircraft.

AIRCOOLED MOTORS, INC.
Syracuse, N. Y.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DATA</td>
<td>DATA</td>
</tr>
<tr>
<td>TYPE: 6 cylinder, air-cooled, horizontally opposed. CAA TYPE CERTIFICATE: 238.</td>
<td>TYPE: Liquid bi-propellant rocket, gas or chemically pressurized.</td>
</tr>
<tr>
<td>SPECS</td>
<td>SPECS</td>
</tr>
<tr>
<td>LENGTH: 40 19/32 in. FUEL GRADE: 80 octane. BORE: 4.5 in. STROKE: 3.5 in.</td>
<td>DIAMETER: 15 in. LENGTH: 130 in.</td>
</tr>
<tr>
<td>EMPTY WEIGHT: 355 cu. in. COMPRESSOR RATIO: 1:3.5:1. DRY WEIGHT: 560 lbs. with hub and accessories. WEIGHT PER HP: 1.86 lbs.</td>
<td></td>
</tr>
</tbody>
</table>

PERFORMANCE

TAKE-OFF POWER, 185 hp at 3,100 rpm CRUISE: 135 hp. FUEL CONSUMPTION: .51 lbs. per hp hr. OIL CONSUMPTION: .002 lbs.

EQUIPMENT

MODEL: Franklin 6A4-165-B3.

DATA
TYPE: 6 cylinder, air-cooled, horizontally opposed. CAA TYPE CERTIFICATE: 238.

SPCS
LENGTH: 27 13/32 in. FUEL GRADE: 80 octane. BORE: 4.5 in. STROKE: 3.5 in.
DISPLACEMENT: 335 cu. in. COMPRESSION RATIO: 7:1. DRY WEIGHT: 324 lb. with hub and accessories. WEIGHT PER HP: 1.97 lb.

PERFORMANCE
TAKE-OFF POWER: 165 hp at 2,800 rpm.
CRUISE: 124 hp at 2,200 rpm. FUEL CONSUMPTION: .5 lb. per hp hr. OIL CONSUMPTION: .002 lb. per hp hr.

EQUIPMENT

MODEL: Franklin 6V4-200-C32, C33.

DATA
TYPE: 6 cylinder, air-cooled, horizontally opposed. CAA TYPE CERTIFICATE: 244.

SPCS
LENGTH: 29 1/32 in. FUEL GRADE: 91 octane. BORE: 4.5 in. STROKE: 3.5 in.
DISPLACEMENT: 335 cu. in. COMPRESSION RATIO: 8.5:1. DRY WEIGHT: 333 lb. with hub and accessories. WEIGHT PER HP: 1.66 lb.

PERFORMANCE
TAKE-OFF POWER: 200 hp. FUEL CONSUMPTION: .52 lb. per hp hr. OIL CONSUMPTION: .002 lb. per hp hr.

EQUIPMENT

REMARKS
This model was designed for helicopter installations.

MODEL: Franklin 6V4-178-B32 and B-33.

DATA
TYPE: 6 cylinder, air-cooled, horizontally opposed; 178 hp; CAA TYPE CERTIFICATE: 244.

SPCS
LENGTH: 34 3/4 in. FUEL GRADE: 80 octane. BORE: 4.5 in. STROKE: 3.5 in.
DISPLACEMENT: 335 cu. in. COMPRESSION RATIO: 7:1. DRY WEIGHT: 308 lb. with hub and accessories. WEIGHT PER HP: 1.73 lb.

PERFORMANCE
TAKE-OFF POWER: 178 hp. FUEL CONSUMPTION: .52 lb. per hp hr. OIL CONSUMPTION: .002 lb. per hp hr.

EQUIPMENT

MODEL: Franklin 6V6-245-B16F.

DATA
TYPE: 6 cylinder, air-cooled, horizontally opposed. CAA TYPE CERTIFICATE: 258.

SPCS
LENGTH: 39 7/32 in. FUEL GRADE: 80 octane. BORE: 4.75 in. STROKE: 3.5 in.

PERFORMANCE
TAKE-OFF POWER: 245 hp at 2,275 rpm. FUEL CONSUMPTION: .32 lb. per hp hr. OIL CONSUMPTION: .002 lb. per hp hr.

EQUIPMENT
CARBURETOR: Bendix PS-7BD. IGNITION: Dual Ebersman LA-6.

MODEL: Franklin 6A4-150-B3.

DATA
TYPE: 6 cylinder, air-cooled, horizontally opposed. CAA TYPE CERTIFICATE: 238.

SPCS
LENGTH: 37 13/32 in. FUEL GRADE: 80 octane. BORE: 4.5 in. STROKE: 3.5 in.

PERFORMANCE
TAKE-OFF POWER: 150 hp at 2,600 rpm.
CRUISE: 113 hp at 2,350 rpm. FUEL CONSUMPTION: .5 lb. per hp hr. OIL CONSUMPTION: .002 lb. per hp hr.

EQUIPMENT
MODEL: J71.

DATA

TYPE: Axial-flow turbojet.

SPECs

DIAMETER: 37 in. LENGTH: 194 in. WEIGHT: 4,090 lb.

PERFORMANCE

All performance data are classified.

REMARKS

The new J71 series turbojet engines are the latest development of the axial flow multi-stage compressor engine made by Allison. The engine has 16 axial stages of compression with a 3 stage turbine. It is an all-weather engine, incorporating de-icing features and has substantially improved fuel economy. The engine features a canular combustion section. There are 10 individual inner cans within the single outer can and compressed air flows from the outer section to the inner liners for combustion. Entirely independent of external oil supply, the J71 has its own complete oil system. It also has its own hydraulic system to operate a variable-area jet nozzle and retractable air inlet screens. Latest model is -9 installed in Douglas RB-66.

MODEL: J35-A-35.

DATA

TYPE: Centrifugal-flow turbojet.

SPECs

DIAMETER: 50.5 in. LENGTH: 107 in. WEIGHT: 1,820 lb. COMPRESSION RATIO: 5.1:1.

PERFORMANCE

TAKE-OFF: 7,400 lb. at 8,000 rpm. MILITARY: 5,600 lb. at 8,000 rpm. NORMAL: 4,491 lb. at 7,370 rpm.

REMARKS

Afterburner equipped. Used in Northrop F-89D all-weather Scorpion.
ENGINES IN PRODUCTION

DATA
TYPE: Centrifugal-flow turbojet.

SPECS
LENGTH: 159.50 in. WIDTH: 49.83 in.
TOTAL WEIGHT: 1750 lb. COMPRESSOR STAGES: One.
TURBINE STAGES: One.
STARTER: Electric starter-generator.

PERFORMANCE
STATIC THRUST: 4600 lb. at 11,750 rpm;
IDLE: 1010 lb. at 7000 rpm.

REMARKS
Current production installation is in Martin B-51 Matador.

MODEL: T40-A-6, -10.

CONTINENTAL MOTORS CORP.
Muskegon, Mich.

MODEL: A65-8F.

DATA
TYPE: 4 cylinder, air-cooled, horizontally opposed. CAA TYPE CERTIFICATE: 205.

SPECS
LENGTH: 30.41 in. FUEL GRADE: 73 octane.
BORE: 3.875 in. STROKE: 3.625 in.
DISPLACEMENT: 171 cu. in. COMPRESSION RATIO: 6.5:1.
DRY WEIGHT: 176 lb. with lube and accessories.
WEIGHT PER HP: 2.7 lb.

PERFORMANCE
TAKE-OFF POWER: 65 hp at 2,350 rpm.
CRUISE: 53 hp at 2,150 rpm. FUEL CONSUMPTION: 49 lb. per hp hr.

EQUIPMENT
CARBURETOR: Stromberg NA-83A.
IGNITION: Eisemann AHA or J. I. Case 4-CAM.
FUEL PUMP: A. C. Spark Plug Co.

MODEL: C85-12F.

DATA
TYPE: 4 cylinder, air-cooled, horizontally opposed. CAA TYPE CERTIFICATE: 233.

SPECS
LENGTH: 32 in. FUEL GRADE: 73 octane.
BORE: 4.062 in. STROKE: 3.625 in.
DRY WEIGHT: 182 lb. with lube and accessories.
WEIGHT PER HP: 2.14 lb.

PERFORMANCE
TAKE-OFF POWER: 85 hp at 2,575 rpm.
CRUISE: 68 hp at 2,400 rpm. FUEL CONSUMPTION: 5.4 gal. per hr.

EQUIPMENT
CARBURETOR: Bendix-Stromberg NA-S3A1.
FUEL PUMP: A. C. Spark Plug Co.

MODEL: C90-12F.

DATA
TYPE: 4 cylinder, air-cooled, horizontally opposed. CAA TYPE CERTIFICATE: 252.

SPECS
LENGTH: 31.74 in. FUEL GRADE: 80 octane.
BORE: 4.062 in. STROKE: 3.625 in.
DRY WEIGHT: 186 lb. with lube and accessories.
WEIGHT PER HP: 2.07 lb.

PERFORMANCE
TAKE-OFF POWER: 90 hp at 2,475 rpm.
CRUISE: 68 hp at 2,350 rpm. FUEL CONSUMPTION: 52 lb. per hp hr.

EQUIPMENT
CARBURETOR: Bendix-Stromberg NA-S3A1.
FUEL PUMP: A. C. Spark Plug Co.

MODEL: C125-2.

DATA
TYPE: 6 cylinder, air-cooled, horizontally opposed. CAA TYPE CERTIFICATE: 236.

SPECS
LENGTH: 43 in. FUEL GRADE: 73 octane.
BORE: 4.062 in. STROKE: 3.625 in.
DRY WEIGHT: 257 lb. with lube and accessories.
WEIGHT PER HP: 2.05 lb.

PERFORMANCE
TAKE-OFF POWER: 125 hp at 2,550 rpm.
CRUISE: 96 hp at 2,400 rpm. FUEL CONSUMPTION: 5 lb. per hp hr.

EQUIPMENT

DATA

TYPE: 6 cylinder, air-cooled, horizontally opposed. CAA TYPE CERTIFICATE: 253.

SPECS

PERFORMANCE

TAKE-OFF POWER: 145 hp at 2,700 rpm; CRUISE: 108 hp at 2,450 rpm; FUEL CONSUMPTION: 5 lb. per hp hr.

EQUIPMENT

MODEL: E185.

DATA

TYPE: 6 cylinder, air-cooled, horizontally opposed. CAA TYPE CERTIFICATE: 246.

SPECS

PERFORMANCE

TAKE-OFF POWER: 205 hp at 2,600 rpm; CRUISE: 130 hp at 2,050 rpm; FUEL CONSUMPTION: 5 lb. per hp hr.

EQUIPMENT

MODEL: E-225.

DATA

SPECS

PERFORMANCE

TAKE-OFF POWER: 225 hp at 2,650 rpm; CRUISE: 170 hp at 2,400 rpm; FUEL CONSUMPTION: 5 lb. per hp hr.

EQUIPMENT

CARBURETOR: Bendix-Stromberg PS-5C. IGNITION: Scintilla S6LN-21. STARTER: Eclipse Type 397-13. GENERATOR: Delco-Remy. FUEL PUMP: Romec. This engine also available with full AN accessory section.

MODEL: O-315-A.

DATA

TYPE: 4 cylinder, air-cooled, horizontally opposed.

SPECS

PERFORMANCE

NORMAL RATED POWER: 150 hp at 2,600 rpm. CRUISE: 115 hp at 2,400 rpm. FUEL CONSUMPTION: 5 lb. per hp hr.

MODEL: O-470-A.

DATA

TYPE: 6 cylinder, air cooled, horizontally opposed. CAA type certificate: 273.

SPECS

PERFORMANCE

TAKE-OFF POWER: 225 hp at 2,600 rpm; CRUISE: 175 hp at 2,400 rpm; FUEL CONSUMPTION: 5 lb. per hp hr.

EQUIPMENT

REMARKS

This model which powers both the new Cessna 180 and 310 is the first of Continental's new 0-470 series to reach production. Among the design improvements are a new oil cooler integrated with the crankcase which uses the down flow of air, as do the cylinder fins and a full flow type oil filter mounted within the crankcase at the former location of the screen which it supplanted. Supercharging can be provided at minimum cost by the addition of a belt-driven external supercharger. Other models in the series are:

MODEL 0-470-B. Similar to 0-470-A, but with Bendix-Stromberg PS-5C carburetor mounted at back of engine. Designed for wing-type installation. PERFORMANCE: 235 hp at 2,600 rpm with compression ratio of 8:17 and 91 Octane fuel. MODEL SO-470. Similar to 0-470-B, but with supercharger. Rating: 265 hp at 2,600 rpm at 10,000 ft. for take-off and normal rating. MODEL C50-470. Similar to SO-470, but with geared prop. drive. Rating: 300 hp at 3000 rpm at 10,000 ft. take-off and normal rating.

MODEL: Continental Model 140.

DATA

TYPE: Gas Turbine Air Compressor.

SPECS

DIAMETER: 19.7 in. LENGTH: 41.8 in. COMPRESSOR: single-sidled, centrifugal. TUR-
ENGINES IN PRODUCTION

BINE: two-stage, solid disc, axial flow. COMBUSTOR: Annular, straight-through flow. AIR DELIVERY: 2.3 lb sec. at 50 psi, std. day. WEIGHT: 210 lb.

PERFORMANCE
AIR HP: 205 at 34,000 rpm, std. day. TOTAL AIR FLOW: 6.8 lb. sec., std. day. FUEL FLOW: 280 lb. hr. at max. rpm, std. day. TURBINE EXIT TEMP.: 1025 deg. F. at 34,000 rpm, 205 air hp.

REMARKS
The air generator is presently being used for turbine starting. The unit is an American version of the French PALOUSTE series.

MODEL: 352 (J69-T-9)

DATA
TYPE: Centrifugal-flow turbojet.

SPCNS
DIAMETER: 22.3 in. LENGTH: 50.5 in.

COMPRRESSOR: single-sided, centrifugal flow.

TURBINE: single-stage, solid disc, axial flow.

COMBUSTOR: annular, straight-through flow.

WEIGHT: 333 lb.

PERFORMANCE

REMARKS
The other models are available as target drone power plant and booster units.

Other small gas turbines either in partial production, development or experimental stages include Model 420 (Aspin II) with a takeoff thrust of 790 lb. at 34,500 rpm; Model 210-1 (Austate I) with a takeoff shaft hp of 280 plus 10 lb. thrust at 34,000 rpm—this model was used on the Cessna XL-190; Model 220-2 (Austate II) with a takeoff shaft hp of 425 at 33,000 rpm—used in the Sikorsky XII-39 helicopter; Model 260, 400 hp at takeoff at 34,800 rpm; Model 354 with 1,000 lb. thrust at 20,350 rpm—is scheduled for the Ryan Q-2 drone; Model 352 with a takeoff thrust of 920 lb. at 22,700 rpm is scheduled for the production Cessna XT-37 trainer.

FAIRCHILD ENGINE DIVISION
FAIRCHILD ENGINE & AIRPLANE CORP.
Farmingdale, N. Y.

MODEL: J44

DATA
TYPE: Turbojet.

PERFORMANCE
STATIC THRUST: 1000 lb. at 15,780 rpm.
NORMAL RATED THRUST: 1000 lb. at 15,780 rpm.
AFTERBURNER THRUST: None.

SPECNS
LENGTH: 32 in. WIDTH: 22 in. TOTAL WEIGHT: 335 lb.

COMPRRESSOR STAGES: 1.

TURBINE STAGES: 1.

EQUIPMENT
STARTER: Comp. Air or Electric.

GENERAL ELECTRIC CO.
Cincinnati, Ohio

G.E. XT-58 helicopter engine mock-up in front of G.E. J47-17 with afterburner
DATA
TYPE: Axial-flow turbojet.

SPECS
WEIGHT: 2,500 lb. (approx.). FRONTAL AREA: 7.35 sq. ft. LENGTH: 34 in. DIAMETER: 36.75 in. COMPRESSOR: 12 stage axial flow. COMPRESSION RATIO: 5:1. TURBINE: single stage. INLET AIR FLOW: 90 lb. per sec. FUEL GRADE: AN-F-58 or 100/130 gasoline.

PERFORMANCE
TAKE-OFF THRUST: Over 5,200 lb. at 7,950 rpm at sea level. NORMAL RATING: 4,320 lb. at 7,370 rpm. CRUISE RATING: 3,700 lb. at 7,000 rpm.

MODEL: J47-GE-17, 23, 25, 27.
The J-17 engine is the standard production model redesigned to reduce its use of strategic materials by using substitute materials wherever possible. This redesign resulted in a saving of about 20 percent in strategic metals used previously. In addition, the engine is equipped with a long afterburner assembly. This auxiliary unit provides a substantial increase in thrust for short periods by the injection of raw fuel into the hot tailpipe gases, resulting in additional fuel consumption. The J-23, 25, and 27 engines feature special anti-icing equipment and a special ignition system making starts possible at altitudes of more than 50,000 ft. Thrust is over 6,000 lb.

MODEL: J73.
DATA
TYPE: Axial-flow turbojet.

SPECS
DIAMETER: 36.75 in. LENGTH: 146 in.

PERFORMANCE
STATIC THRUST: In excess of 9,000 lb. dry. Afterburner thrust has been estimated at 14,000 lb. by some experts not in on the development or production of this model.

MODEL: XT 58-GE-2
DATA
TYPE: Axial Flow Turboshift.

REMARKS
All specifications and data on the XT-58 are classified other than to say its size is comparable to the conventional piston power plant in the family automobile but is several times as powerful. It is designed for the Navy’s Bureau of Aeronautics primarily to power helicopters; however, with some modifications, it can be adapted as a power plant for fixed wing aircraft either as a turbo-prop or a turboshift.

JACOBS AIRCRAFT ENGINE CO.
Pottstown, Pa.

MODEL: R-755A.
DATA
TYPE: Radial 7 cyl. air cooled.

PERFORMANCE
TAKEOFF HP: 300 at 2200 rpm. CRUISING HP: 225 at 1900 rpm. FUEL CONSUMPTION: .450 per hr hr. @ cruising.

SPECS

CURRENT PRODUCTION INSTALLATIONS: Cesna 195.

MODEL: R-755B.
DATA
TYPE: 7 cyl. radial A.C.

PERFORMANCE
TAKEOFF HP: 275 at 2200 rpm. CRUISING HP: 205 at 1900 rpm. FUEL CONSUMPTION: .450 per hr hr. @ cruising.

SPECS

CURRENT PRODUCTION INSTALLATIONS: (Experimental) Jacobs 104 helicopter.

MODEL: R-755EH.
DATA
TYPE: Air cooled 7 cyl. radial geared for rotor 8.5:1.

PERFORMANCE
TAKEOFF HP: 350 at 2500 rpm. CRUISING HP: 262 at 2500 rpm. FUEL CONSUMPTION: .500 per hr hr. @ cruising.

SPECS
DISPLACEMENT: 757 cu. in. BORE: 3.25 in. STROKE: 5.00 in. COMPRESSION RATIO: 6.5:1. FUEL GRADE: 92 min. DRY WEIGHT: 600 lb. WIDTH: 44.0 in. LENGTH: 42.37 in. CARBURETOR: Simmonds S.U. fuel injection pump. MAGNETOS: 1 Scintilla VMN7-DF5, 1 Scintilla battery timer. STARTER AND GENERATOR: Provision for Eclipse type 397 starter, Eclipse 25A generator.

CURRENT PRODUCTION INSTALLATIONS: (Experimental) Jacobs 104 helicopter.
LYCOMING DIVISION
AVCO MFG. CORP.
Williamsport, Pa.

MODEL: O-235-C1.

DATA
- **TYPE:** 4 cylinder, air-cooled, horizontally opposed; 115 hp.
- **CAA TYPE CERTIFICATE:** 223.

specs
- **LENGTH:** 29.56 in.
- **FUEL GRADE:** 80 octane.
- **BORE:** 4.375 in.
- **STROKE:** 3.875 in.
- **DISPLACEMENT:** 233.3 cu. in.
- **COMPRESSION RATIO:** 6.75:1.
- **DRY WEIGHT:** 236 lb. with hub and accessories.
- **WEIGHT PER HP:** 2.05 lb.

PERFORMANCE
- **TAKE-OFF POWER:** 115 hp at 2,500 rpm.
- **CRUISE:** 86 hp at 2,350 rpm.
- **FUEL CONSUMPTION:** .52 lb. per hp hr.
- **OIL CONSUMPTION:** .012 lb. per hp hr.

EQUIPMENT
- **CARBURETOR:** Marvel-Schebler MA-4-5.
- **IGNITION:** Dual SciHilla SFGLN-3.
- **STARTER:** Delco-Remy.
- **GENERATOR:** Delco-Remy.

MODEL: GO-435-C2.

DATA
- **TYPE:** 6-cylinder, horizontally-opposed, geared, air-cooled.
- **APPROVED TYPE CERTIFICATE:** 228.

specs
- **LENGTH:** 39.57 in.
- **HEIGHT:** 29.59 in.
- **WIDTH:** 33.12 in.
- **BORE:** 4.875 in.
- **STROKE:** 3.875 in.
- **WEIGHT:** 432 lb.
- **FUEL GRADE:** 80.
- **COMPRESSION RATIO:** 7.3:1.

PERFORMANCE
- **TAKE-OFF POWER:** 260 hp at 3,400 rpm.
- **RATED POWER:** 240 hp at 3,000 rpm.
- **FUEL CONSUMPTION:** .67 lb. per hp hr.

EQUIPMENT
- **CARBURETOR:** Marvel-Schebler MA-6-5.
- **MAGNETOS:** SciHilla SFGLN-3.
- **SPARK PLUGS:** Autolite SH-2K.
- **ENGINE:** 325 hp.

MODEL: O-290-D-2.

DATA
- **TYPE:** 4-cylinder, horizontally-opposed, direct-drive, air-cooled.
- **APPROVED TYPE CERTIFICATE:** 229.

specs
- **LENGTH:** 29.36 in.
- **HEIGHT:** 22.81 in.
- **WIDTH:** 32.32 in.
- **BORE:** 4.875 in.
- **STROKE:** 3.875 in.
- **DISPLACEMENT:** 229 cu. in.
- **COMPRESSION RATIO:** 7.0:1.
- **WEIGHT:** 253 lb.
- **FUEL GRADE:** 80.

PERFORMANCE
- **TAKE-OFF POWER:** 140 hp at 2,200 rpm.
- **RATED POWER:** 125 hp at 2,600 rpm.
- **FUEL CONSUMPTION:** .46 lb. per hp hr.

EQUIPMENT
- **CARBURETOR:** Marvel-Schebler MA-3SPA.
- **MAGNETOS:** SciHilla SFGLN-20/21.
- **ENGINE:** 325 hp.

MODEL: GS-580-D.

DATA
- **TYPE:** 8 cylinder, air-cooled, horizontally opposed.
- **CAA TYPE CERTIFICATE:** 256.

specs
- **LENGTH:** 57.00 in.
- **FUEL GRADE:** 100/130.
- **BORE:** 4.875 in.
- **STROKE:** 3.875 in.
- **DISPLACEMENT:** 578 cu. in.
- **COMPRESSION RATIO:** 7.30:1.
- **WEIGHT:** 543 lb.
PERFORMANCE
TAKE-OFF POWER: 150 hp. FUEL CONSUMPTION: 0.53 lb. per hr.

EQUIPMENT
CARBURETOR: Marvel-Schebler. IGNITION: Delco-Remy.
FUEL PUMP: AC.

MODEL: O-340.

DATA
TYPE: 6 cylinder, air-cooled, supercharged, helicopter engine for horizontal or vertical installation.

SPECs

PERFORMANCE
TAKEOFF hp 160 at 2700 rpm. CRUISING HP 120 at 2450 rpm. FUEL CONSUMPTION: 9 gal. per hour.

EQUIPMENT

MODEL: VO-434AIA.

DATA
TYPE: 6 cylinder, opposed, aircooled for vertical installation. CAA type certificate No. 279.

SPECs

PERFORMANCE
CONTINUOUS HP 250 at 3200 rpm. FUEL CONSUMPTION: 80 percent power, 3200 rpm. 20 gal. per hr.
MODEL: Double Wasp CA and CB series, (R-2800)

DATA
TYPE: 18 cylinder, air-cooled, radial. CAA TYPE CERTIFICATES: 231 and 264.

SPCDS
DIAMETER: 52.9 in. LENGTH: 81.40 in. FUEL GRADE: 100/130 or 100/135. BORE: 5.75 in. STROKE: 6 in. DISPLACEMENT: 2,804 cu. in. COMPRESSION RATIO: 6.75 to 1. DRY WEIGHT: Two speed, 2,390 lb.; single speed, 2,337 lb.

PERFORMANCE (CBS)
TAKE-OFF POWER: 2,400 hp at 2,800 rpm and 4,000 ft. with water injection; 2,050 hp at 2,700 rpm at 6,000 ft. dry. NORMAL RATED POWER: 1,600 hp at 2,600 rpm at 5,500 ft.

EQUIPMENT
CARBURETOR: Stromberg PR-59E5. IGNITION: Seintilla DLE10 low tension. CB16, same in low, but has maximum continuous rating in high of 1,700 hp.

REMARKS
The CA series includes the -3, -15, and -18 models. The CB series includes the -13, -14, -16, and -17 models. Essential differences are in supercharger gear ratios and weights. Most other parts are interchangeable. Military versions of the Double Wasp power the following production aircraft: Beech T-36, Bell XHSL-1 helicopter, Chase C-123 transport, Convair T-29 trainer, Douglas C-118A cargo, Grumman AF-2S and -2W hunter-killer teams, North American AF-1 carrier bomber and Vought F4U-5N and AF-1 fighter-bombers. Commercial versions power the Convair 240 and 340 transports, Douglas DC-6, -6A, and -6B transports and Martin 2-0-2A and 4-0-4 transports.

MODEL: Wasp Major CB Series, (R-4360).

DATA

SPCDS

PERFORMANCE
TAKE-OFF POWER: 3,500 hp at 2,700 rpm and 500 ft. (with water); 3,250 hp at 2,700 rpm and 700 ft. (without water). NORMAL RATED POWER: 2,650 hp at 2,550 rpm at 5,500 ft. MAXIMUM CONTINUOUS RATING: 2,840 hp at 2,550 rpm at 5,500 ft.

EQUIPMENT
CARBURETOR: Stromberg PR-100B3. IGNITION: 4 Seintilla S14315-10 low tension.

REMARKS
Wasp Major is used on Boeing B-50 bomber (4), Convair B-36 bomber (6), Boeing C-97 transport (4), Douglas C-124 transport (4), Convair C-99 transport (6), Fairchild C-119 Packet (2) and the Boeing Stratogruver commercial transport (4). Development versions of the engine have produced more than 4,000 hp.

MODEL: Turbo-Wasp J48 (JT-7)

DATA
TYPE: Centrifugal-flow turbojet.

SPCDS
DIAMETER: 50.50 in. LENGTH: 109.75 in. COMPRRESSOR: double-entry, single-stage, centrifugal-flow. TURBINE: axial-flow, single-stage. WEIGHT: 2,000 lb. FUEL: Kerosene, gasoline or special jet fuel.
The AIRCRAFT YEAR BOOK

PERFORMANCE

TAKING-OFF POWER: 7,250 lb. thrust. MILITARY RATING: 7,250 lb. thrust. NORMAL RATING: 5,600 lb. thrust. CRUISE RATING: 3,750 lb. or 3,100 lb. thrust.

REMARKS

MODEL: Turbo-Wasp PT-2 (T34).

DATA

TYPE: Axial-flow turboprop.

SPECS

DIAMETER: 34.06 in. LENGTH: 157.4 in. COMPRRESSOR: 13-stage axial-flow. TURBINE: three-stage, axial-flow. PROPELLER REDUCTION GEAR: two-stage, 11:1 ratio. WEIGHT: 2,564 lb. FUEL: Kerosene, gasoline or special jet fuel.

FUEL CONSUMPTION: 0.62 lb. hr.

REMARKS

Engine thrust is divided 90 percent to propeller turbine and 10 percent to jet nozzle. Stainless steel is used almost exclusively throughout the engine structure. This model is no longer offered commercially.

MODEL: Turbo-Wasp J57 (JT-3)

DATA

TYPE: Axial-flow turbojet.

REMARKS

Specifications and performance data are still classified other than mention that engine is in the 10,000 lb. thrust class. It powers the Air Force's Boeing B-52 long-range bomber, the North American F-100, McDonnell F-101, Convair F-102, and the Navy's Douglas F4D fighter and A3D bomber. The J-57 also powers the Boeing 707. The fighter aircraft are powered by afterburner versions of the J-57 engine.

WESTINGHOUSE ELECTRIC CORP.

AVIATION GAS TURBINE DIVISION

MODEL: J34-WE-36

DATA

TYPE: Axial-flow turbojet.

SPECS

DIAMETER: 27 in. LENGTH: 111.4 in. HEIGHT: 34.7 in. WEIGHT: 1,207 lb. COMPRESSION RATIO: 4.35.

PERFORMANCE

TAKING-OFF THRUST: 3,400 lb. at 12,500 rpm. OPERATING ALTITUDE: 45,000 ft.

REMARKS

Automatic control system functions from single cockpit lever. Air inlet is divided into two elliptic openings between the arms of the "Y" duct. All other data are classified.

MODEL: J40-WE-8

DATA

TYPE: Axial-flow turbojet.

SPECS

DIAMETER: Approx. 40 in. LENGTH: Approx. 25 ft. WEIGHT: Approx. 3,500 lb.

REMARKS

All other specification and performance data are classified.

MODEL: J46-WE-8

DATA

TYPE: Axial-flow turbojet

SPECS

DIAMETER: Approx. 3 ft. LENGTH: Approx. 16 f. WEIGHT: Approx. 2,100 lb.

REMARKS

All other specification and performance data are classified.

Westinghouse J40 is used in McDonnell F3H fighter

328
MODEL: R-1300-1.

Data

Type: 7 cylinder, air-cooled, radial.

Specs

- **Length:** 48.12 in.
- **Fuel Grade:** 91/98 octane.
- **Bore:** 6.125 in.
- **Stroke:** 6.312 in.
- **Displacement:** 1,300 cu. in.
- **Compression Ratio:** 6.2:1.
- **Dry Weight:** 1,045 lb.
- **Performance**
 - **Take-off Power:** 300 hp at 2,600 rpm.
 - **Cruise:** 420 hp, Fuel Consumption: .48 lb. per hp hr.
- **Equipment**
 - **Carburetor:** Stromberg PD9F1.
 - **Ignition:** Dual Bosch SF-7LU-2.

Remarks

This model was designed for blimp and helicopter installations; also the R-1300-3.

MODEL: R-1300-2.

Data

Type: 7 cylinder air-cooled.

Specs

- **Diameter:** 50.45 in.
- **Bore:** 6.125 in.
- **Stroke:** 6.312 in.
- **Displacement:** 1,300 cu. in.
- **Compression Ratio:** 6.2:1.
- **Gross Weight, Dry:** 1,056 lb.
- **Performance**
 - **Take-off Power:** 300 hp at 2,600 rpm.
 - **Cruise:** 420 hp, Fuel Consumption: .48 lb. per hp hr.
- **Equipment**
 - **Carburetor:** Stromberg PD9F1.
 - **Ignition:** Dual Bosch SF-7LU-2.

Remarks

This engine is the latest in a long line of R-1300 cu. in. power-plants that were first introduced more than ten years ago. This model is also built with 2-speed supercharger and optional reduction gear ratios.

MODEL: R-1820-76A.

Data

Type: 9 cylinder, air-cooled, radial. CAA Type Certificate: 243.

Specs

- **Length:** 47.69 in.
- **Fuel Grade:** 100/130.
- **Bore:** 6.125 in.
- **Stroke:** 6.375 in.
- **Displacement:** 1,320 cu. in.
- **Compression Ratio:** 6.8:1.
- **Dry Weight:** 1,365 lb.
- **Performance**
 - **Take-off Power:** 1,425 hp at 51.5 in.
 - **Cruise:** 900 hp at 33 in.
 - **Fuel Consumption:** .46 lb. per hp hr. at 60 percent power.
- **Equipment**
 - **Carburetor:** Stromberg PD12K14.
 - **Ignition:** Dual Seinstella 594L14.

Remarks

This is a larger engine produced by Goodyear for ZPSK blimp.

MODEL: R-3350-24W.

Data

Type: 18 cylinder, air-cooled, radial. CAA Type Certificate: 318.

Specs

- **Length:** 78.52 in.
- **Fuel Grade:** 100/130.
- **Bore:** 6.125 in.
- **Stroke:** 6.125 in.
- **Displacement:** 3,350 cu. in.
- **Compression Ratio:** 6.3:1.
- **Dry Weight:** 2,804 lb.
- **Performance**
 - **Take-off Power:** 2,300 hp at 2,500 rpm.
 - **Cruise:** 1,470 hp at 2,300 rpm.
- **Fuel Consumption:** .46 lb. per hp hr.
- **Equipment**
 - **Carburetor:** Bendix PD9F3.
 - **Ignition:** Deutic 3NO.9.

Remarks

Current production installation is Goodyear ZPSK blimp.

MODEL: R-3350-26W.

Data

Type: 18 cylinder, air-cooled, radial.

Specs

- **Length:** 81.34 in.
- **Fuel Grade:** 115/145.
- **Bore:** 6.125 in.
- **Stroke:** 6.312 in.
- **Displacement:** 3,350 cu. in.
- **Compression Ratio:** 6.2:1.
- **Dry Weight:** 2,848 lb.
- **Weight per HP:** 1.05 lb.

Wood-Ridge, N. J.
MODEL: R-3350-30W-30WA, 85, 34.

DATA
TYPE: 18 cylinder air-cooled radial.

SPCS

PERFORMANCE
TAKE-OFF POWER: 3,250 hp at 2,900 rpm. NORMAL RATED POWER: 2,600 hp at 6,500 ft.

REMARKS
The R-3350-30W is a compound version of the R-3350-26W using three small turbines driven by exhaust gas and connected by fluid couplings to the crankshaft. This increases the take-off power to 3,250 hp. Ignition system is Scintilla DLN-9; the carburetor, Stromberg PR58S2.

MODEL: 972TC18DA-1, -3.

DATA
TYPE: 18 cylinders air cooled.

SPCS
DIAMETER: 56.6 in. BORE: 6.125 in. STROKE: 6.312 in. DISPLACEMENT: 3,350 cu. in. COMPRESSION RATIO: 6.7 to 1. FUEL CONSUMPTION: .391 lb. per hp per hr. at 50 percent power.

REMARKS
Model DA-1 is in production for the Lockheed Super Constellation 1049C. Another version, the DA-2, is produced for the Douglas DC-7B.

MODEL: 972TC18DA4.

DATA
TYPE: 18 cylinder radial compound.

SPCS

PERFORMANCE
TAKEOFF HP 3250 at 2900 rpm. CRUISING HP 1910 at 2400 rpm. FUEL CONSUMPTION: .385 lb. per hp hr. (at 1200 hp).

EQUIPMENT

REMARKS
Current production installations are Canadair CL-28 and Douglas DC-7C.

MODEL: J65-W-1.

DATA
TYPE: Axial-flow turbojet.

SPCS
DIAMETER: 37.5 in. LENGTH: 114.83 in. WEIGHT: 2,595 lb. (2,696 with accessories). COMPRESSOR STAGES: 13 of 29.375 in. in diameter. TURBINE STAGES: 2 of 30.5 in. in diameter.

PERFORMANCE
STATIC THRUST: 7,220-7800 lb. at 8,300 rpm. NORMAL RATED THRUST: 6,400 lb. at 8,000 rpm.

REMARKS
Current production installation of various J65 models include Grumman F9F-9, Douglas A4D, Lockheed XF-104, Martin B-57, North American FJ-3 and FJ-4, Republic RF84-F and F84-F. The J65-W-1 is rated at 7,800 lb. thrust.
1954 CHRONOLOGY

1954 DAY BY DAY CHRONOLOGY

(NOTE: The following chronology is condensed from American Aviation Daily, only daily in the aviation field, published by American Aviation Publications, Inc., Wayne W. Parrish, Editor.)

JANUARY

Jan. 1
Harmar D. Denny appointed to new six-year term as Civil Aeronautics Board member.

Chance Vought Aircraft, Inc., starts operations as wholly-owned subsidiary of United Aircraft Corp, Frederick O. Detweiler, formerly Division Manager, elected president. Official separation date: July 1, 1954.

Jan. 5
Air National Guard Col. Willard W. Millikan sets New York-to-Washington speed mark of 24 minutes in North American F-86F.

Jan. 6
President Eisenhower names Chan Gurney as new CAB chairman through December 31, 1954.

Post Office Department's experimental test of flying non-local first-class mail between New York and Chicago enter fourth month. Air Transport Association reports experiments have yielded Post Office an average of $2,000 above payments made to air carriers for each ton of mail flown.

Jan. 8
Navy announces acceptance of first production model of McDonnell F3H-1N, powered by single Westinghouse J40 turbojet. Later models will be powered by Allison J-71 of greater thrust.

Jan. 10
Thomas E. Braniff, founder and president of Braniff Airways, killed in crash of private plane near Shreveport, La.

Jan. 11
Howard Hughes announces that non-profit foundation, Howard Hughes Medical Institute, will become sole owner of Hughes Aircraft company.

British Overseas Airways Corp. grounds all DeHavilland Comet jet transports following Jan. 10 Comet crash near Island of Elba.

Bell Aircraft Corp. confirms existence of XB-63 Rascal guided missile. No details revealed.

Jan. 13
Navy Secretary Robert B. Anderson says 40 per cent of Navy's aircraft are modern types.

Jan. 14
Braniff Airways directors name Fred Jones, Oklahoma City, as board chairman, and Charles E. Beard, formerly executive vice president, as president.

Air Force announces that two Martin B-52 pilotless bomber squadrons will be deployed to Germany in 1954 for use in NATO defense.

Jan. 21
President Eisenhower submits fiscal 1955 budget to Congress, calling for steady air power expansion and $4.74-billion in new money for Navy and Air Force aircraft and related procurement. President says new budget "pays toward the creation, maintenance, and full exploitation of modern air power."

Jan. 26
Navy announces delivery of first Bell HSL-1 anti-submarine helicopter.

FEBRUARY

Feb. 1
Earl D. Johnson, former Under Secretary of the Army, becomes president of Air Transport Association, succeeding Emory S. Land. Land will remain as ATA consultant for one year.

For first time in history, Civil Aeronautics Board loses case in Supreme Court. Court rules (9-0) that "excess profits" of an airline's domestic operations must be offset against that airline's international subsidy needs.

Feb. 2
Douglas YC-124C, USAF four-engined turboprop transport, makes first flight. Plane is powered by Pratt & Whitney YT34-P-1 engines.

Feb. 4
Convair announces production is underway on B-36J, with gross weight of more than 400,000 pounds.

Lockheed Aircraft Corp. says P2V-7, newest version of Neptune patrol bomber, is in production. Plane is equipped with two wing-mounted Westinghouse J44 jet pods to supplement its two Wright Turbo Compound piston engines.

Feb. 12
Continental Casualty Co. of Chicago announces 25 per cent reduction in rates for airline trip insurance, resulting from scheduled airlines' safety record and increased efficiency within the company.

Feb. 15
Charles A. Lindbergh nominated by President Eisenhower as brigadier general in Air Force reserve.

Far East Air Forces reveals that a regular U. S. airlift to flying supplies to 250 USAF technicians in Indo-China. Douglas B-26's are being sent to Indo-China to bolster French Air Force.

Feb. 17
Associated Aviation Underwriters and Mutual of Omaha increase coverage provided to scheduled air travelers by 25 per cent, due to "the scheduled airlines' splendid safety records."

Feb. 18
Civil Aeronautics Board reports that U. S. scheduled airlines in 1953 carried a total of 333.3 million passengers, 19.5-billion passenger miles.

Feb. 24
Aircraft Industries Association says that 20 U. S. airplane manufacturers now have 53 different models of military aircraft in production for the Air Force, Navy, Army and NATO nations.

Feb. 25
Consair B-37A turboprop (Allison T40's) flying boat makes first flight at San Diego. The 80-ton
seaplane is America's first water-based turbo-
prop transport.

MARCH

Mar. 1

New peak reached in number of U. S. air-
ports: 6,760.

Mar. 3

Harold R. Harris resigns as president of
Northwest Airlines.

Mar. 11

Army announces orders for 272 helicopters
for National Guard units, with about 88 to be
delivered within 12 months. ANG units will
receive Bell H-13's and Hiller H-23's.

Utility Airplane Council of Aircraft Industries
Association reports that utility aircraft ship-
ments increased in 1953. Seven companies
shipped a total of 3,788 one- to 10-place utility
planes during the year, compared with ship-
ment of 3,058 such planes during 1952. Dollar
value was up to $34,458,000 from 26,159,000.

Mar. 17

Navy announces two vertical takeoff fighters:
Convair XFV-1 and Lockheed XFV-1. Both
planes will be powered by Allison T40 turbop
props turning Curtiss contra-rotating props.

Bell Aircraft Corp. has built more than 1,300
Model 47 helicopters, about 25 per cent for
commercial users, with a total value of $35-
million.

Mar. 18

Boeing rolls out first production model B-52
Stratofortress at Seattle, Wash.

Gen. Nathan F. Twining, USAF Chief of Staff,
says aircraft manufacturers will reach a peak
in airframe weight deliveries during 1954.

Mar. 24

Navy takes delivery of Lockheed WV-2 Super
Constellation, powered by four Curtiss-Wright
R-3350 Turbo Compound engines. Aircraft
carry more than six tons of search radar and
electronic detection gear. It is designed as a
maximum altitude reconnaissance plane.

Mar. 29

American Airlines DC-7 sets official Los
Angeles-to-New York commercial speed record:
6 hours, 10 minutes. (Unofficial record is set
on following day by another American Airlines
DC-7: 5 hours, 51 minutes.)

Mar. 31

Census Bureau reports that exports of air-
craft, parts and accessories during 1953 aver-
egaged $73.3-million per month.

North American F-51 Mustang piloted by Joe
Dellona sets new transcontinental speed mark
for piston aircraft, flying from Los Angeles to
New York in four hours, 24 minutes, 17
seconds.

APRIL

Apr. 1

President Eisenhower signs legislation to
create Air Force Academy.

First tourist service across Pacific, mid-
Atlantic to southern Europe and South Africa,
and round-the-world starts. Pan American Air-
ways being flights to Johannesburg, Manila,
Tokyo and round-the-world. TWA starts flights
on April 2 to Lisbon and Madrid. Northeast
Airlines starts Pacific tourist service to April 4.
Russians display long-range sweeping jet bomber comparable in size to Boeing B-52, in Soviet Air Force fly-past over Red Square in Moscow. Among other planes shown: nine new medium jet bombers believed comparable to Boeing B-17.

May 4

Cornell-Cuggenheim Aviation Safety Center announces intensive long-range program to stimulate development of vertical rising commercial passenger aircraft. First step in new program will be technical study of helicopters, VTO aircraft, convertiplanes, and experimental craft using boundary layer control.

Operation Flashburn, most concentrated tactical support operation in peacetime history, ends. Held from Apr. 26-May 4, about 500 planes of all types, including 260 Fairchild C-119's, took part. Flying Boxers flew total of 1,131 sorties and 2,043 hours.

May 5

General Precision Equipment Corp. acquires 92 per cent of outstanding stock of Link Aviation, Inc. Link management, including board chairman Edwin A. Link and president Allan Willford, continues unchanged.

May 12

Air Force announces that first of two Republic YF-84F's ordered to evaluate General Electric J75 engine as powerplant for sweeping Thunderstreak has made first flight at Edwards AFB.

May 15

May 16

Eastern Air Lines schedules more than half of its trunk operations as coach flights, in move to counteract increased operating expenses with increased coach traffic. Carrier's new coach services provide 5,230,000 air coach seat miles per 24-hour period.

May 17

Whitley C. Collins named president of Northrop Aircraft, Inc. Collins will also remain as president of Radioplane Co., wholly-owned Northrop subsidiary.

May 20

First of two turboprop Convair 340's ordered by USAF makes initial flight (16-min.) over Fort Worth. YC-513C is powered by two Allison YT56 engines.

May 24

Air Material Command reveals that production orders have been given to Convair Division of General Dynamics (for F-162 supersonic interceptors) and to McDonnell Aircraft Corp. (for F-101 penetration fighters).

Martin Viking II, single stage rocket, sets record altitude record soaring 153 miles high (49,240 feet) at 430 m.p.h. at White Sands Proving Ground, New Mexico.

May 25

Goodyear ZPG-2 non-rigid airship (production version of ZPG-1) sets record for flight without refuelling, landing at Key West, Fla., after 200 hours, 4 minutes in the air.

May 26

President Eisenhower releases Air Coordinating Committee review of U.S. air policy, which he says will be used as "guide" in future consideration of civil aviation questions.

May 27

North American Aviation builds last F-102F at Los Angeles, and start preparation of varied production areas for F-100 Super Sabre.

Legislation authorizing $5-million expansion in research facilities of NACA signed by President Eisenhower. New research will include investigations of fuel for inter-continental guided missiles and development of high-speed seaplane fighters.

JUNE

June 1

Paul R. Beaufort, 36, co-founder of Braniff Airways, dies.

June 2

June 4

First public demonstration of Sikorsky XSS-1 Navy antisubmarine helicopter (S-58).

June 7

Navy reveals that Douglas A4D lightweight attack bomber, powered by Wright J65 engine, can carry the atomic bomb. Deliveries to fleet units will begin about June, 1955.

June 15

June 23

June 28

Aircraft Industries Association announces that the aircraft industry has become nation's largest manufacturing employer, with more than 200,000 workers.

June 28

Douglas RR-66A flies 36 minutes on initial test flight. An adaptation of Navy's A3D, it is powered by two Allison J71 turbosjets suspended in pods under the plane's high sweep-back wing.

June 30

New board chairman of Northrop Aircraft, Inc., is William C. McDuflfe, replacing the late Gen. Oliver P. Echols. McDuflfe has been a member of the Northrop board since 1943.

JULY

July 6

Air Force announces that Lockheed XF-104 has made first flight. Plane is powered by a Wright J65 engine.

July 15

Boeing 707, America's first jet transport, makes initial flight at Renton (Wash.) Municipal Airport. Powered by four Pratt & Whitney J57's, it has maximum gross weight of 190,000 pounds and cruising speed in the 550-m.p.h. class. Wingspan is 130 feet, length 128 feet. Military tanker version is designated Model 717.

July 16

National Safety Council has announced that aircraft-maneuvering ranked fourth among all U. S. industries in industrial safety performance during 1953. Aircraft producers had 3.50 disabling accidents per million manhours.

333
compared with average of 7.44 for all U. S. industries.

July 19
Convair Division of General Dynamics Corp. announces Air Force order for Convair C-131B "Firing Laboratory" versions of Convair 340 twin-engined airliner. USAF will use the plane for testing electronic equipment.

July 22
Goodyear ZS2G-1 airship, designed for Navy anti-submarine warfare, makes first flight.

July 23
Dr. Albert F. Zahm, 92, credited with building a wind tunnel for aeronautical research experiments 20 years before the Wright Brothers' first flight, dies in Indiana.

Lt. Gen. Hubert Harmon, special assistant for Air Force Academy matters since late 1949, has been approved by President Eisenhower as the school's first superintendent.

July 28
Aircraft Industries Association reports that 33,000 military planes (22,000 for the Air Force) have been delivered since mid-1950.

July 31
Approximately 1,200 pilots strike against American Airlines, demanding retention of ruling limiting pilot flights to eight hours. CAB had authorized transcontinental services which would require exceeding this limit.

AUGUST
Aug. 1
Convair XPV-1 vertical take-off fighter makes first free flight. The Allison T40-powered plane lighted 20 feet on initial hop, later climbed to 150 feet. Reported forward speed is more than 380 m.p.h.

Aug. 3
Defense Secretary Charles E. Wilson announces establishment of new Continental Air Defense Command, comprising elements of all military services. CADC will begin operations September 1.

Aug. 5
Air Force says orders have been placed for a "limited number" of Boeing 707 jet transports for use as flying tankers.

First Boeing B-52A production model makes 78-minutes maiden flight at Seattle.

Grumman Aircraft Engineering Corp. publicly unveils supersonde P-9F-9 Tiger. Powerplant is Wright 165 engine.

Cesna Aircraft Co. confirms reports of four-engined pressurized business aircraft design. Engineering and mockup phases have been completed, and plane is expected to fly in 1955. Engines are 320-h.p. Continentals, and speed about 250 m.p.h.

Aug. 6
Harold L. Graham, Jr., succeeds Walter Sterling, who resigned, will continue to handle sales development for the company as a consultant.

Glenn L. Martin Co. announces new version of Canberra—B-57B—capable of carrying four napalm tanks and eight five-inch high velocity rockets under the wings. Plane has redesigned cockpit and canopy, speed brakes on both sides of the fuselage.

Aug. 14
Last Convair B-36 delivered to Air Force by Convair Division of General Dynamics Corp. Experimental model first flew August 8, 1946.

AUGUST
Aug. 18
Senate confirms nomination of Lyle S. Garlock as an Assistant Secretary of the Air Force. Navy accepts first production Bell HSL-1 anti-submarine helicopter.

Aug. 23
Lockheed YC-130 turboprop cargo plane makes initial flight. It is powered by four 3,750-h.p. Allison T56 engines. First PLACEK H-21G has been delivered to Army. Range is reported greater than 450 miles, speed more than 130 m.p.h., and service ceiling about 10,000 feet.

Aug. 24
Strike of 1,200 pilots against American Airlines ends at midnight. Pilots fail to gain objective; retention of ruling limiting flight duty to eight hours per day. Walkout resulted from transcontinental services, authorized by CAB, which exceeded this limit. Twenty-five day strike was most expensive in airline history, resulting in estimated $18,750,000 loss of revenue to the company.

Aug. 25
Assistant Defense Secretary Fred A. Seaton says U. S. military aircraft inventory is 34,000 planes, one-third of them jet-powered.

Aug. 26
Convair announces cargo version of Model 340 transport. Convair Freightliner will haul up to 7½ tons of cargo over medium ranges at speeds up to 280 m.p.h. Navy has ordered plane, designated R4Y-1. Army's turbine-powered Sikorsky XH-39 sets new helicopter speed record of 156,005 m.p.h. over three-kilometer course at Windsor Locks, Conn. Pilot is Warrant Officer Billy I. Wester.

Aug. 27
Adm. D. W. Ramsey, president of Aircraft Industries Association, reports that U. S. aircraft manufacturers are building 900 to 1,000 military planes per month.

Aug. 30
Donald W. Nyrop named president of Northwest Airlines, succeeding Harold R. Harris, who resigned in March. Nyrop, a former CAB chairman, assumes office October 16.

New York Airways starts first scheduled night passenger operation in U. S. Line uses Sikorsky S-55 helicopters.

SEPTEMBER
Sept. 1
Lockheed turboprop Super Constellation (Navy R7V-2) makes first flight. Plane is powered by four 5,200-h.p. Pratt & Whitney T34 engines.

Sept. 5

Production starts on Douglas DC-7C, new long-range version of DC-7. Douglas officials say airplane's range of more than 5,000 miles will be greater than that of any other commercial transport.

Sept. 17
Flying Tiger Line and Slick Airways call off intended merger, previously approved by CAB.

Thomas L. Grace resigns as president of Slick Airways. Pending appointment of new president, Joseph L. Grant, vice president and secretary-treasurer, will serve as acting general manager.

Airframe Industries Association reports that U. S. exported 6,440 civil aircraft and 2,093 civil plane engines to 105 countries between 1947 and 1953.

Col. Henry G. MacDonald named director of Aircraft Production Resources Agency, succeeding retired Maj. Gen. Kern D. Metzger. MacDonald also heads Air Material Command's Industrial Resources Division at Wright-Patterson AFB.

Sen. Pat McCarran (D-Nev.) dies in Hawthorne, Nev. McCarran, active in civil aviation matters during his 22-year tenure in the Senate, was the author and the sponsor of the Civil Aeronautics Act of 1938. He sponsored the first bill in Congress to create a separate Air Force, was author and sponsor of the Federal Airport Act, and was co-author of the Civilian Pilot Training Act.

Lawrence D. Bell relinquishes post as general manager of Bell Aircraft Co. Bell will continue as president. Leston F. Faneuf, who has been assistant general manager, secretary and treasurer, will become general manager.

Glidden S. Domann of Domann Helicopters, Inc., becomes chairman of the board and is succeeded as Domann president by Donald S. B. Waters, formerly financial assistant to the vice president and general manager of Kaiser Metal Products, Inc.

Air Force's first reintermediate jet trainer, Cessna XT-37, makes first test flight at Wichita, Kan. Plane is powered by two Marboro 352 jet engines, built under license by Continental Motors as J69.

Convair B-33 supersonic bomber and Lockheed F-104 lightweight supersonic air superiority fighter were introduced into production. Air Force announced. Air Force Secretary Harold E. Talbott says Boeing 717 jet tanker, also in production, has been given USAF designation KC-135.

Carlton Putnam resigns as board chairman of Delta-C&S Air Lines. He is succeeded by R. W. Freeman, president of the Louisiana Coke Cola Bottling Co., Ltd.

Unofficial helicopter altitude record (24,300 feet) set by Sikorsky XB-39 at Bridgeport, Conn.

David S. Smith sworn in as Assistant Air Force Secretary (Manpower and Personnel).

McDonnell Aircraft Corp. receives contract to produce advanced Navy all-weather attack aircraft. It is company's first entrance into attack aircraft design field.

Henry Bogoss of Sinclair Refining Co. is elected chairman of National Business Aircraft Association.

Independent Military Air Transport Association and Transport Air Group merge. Combined group will be under direction of IMATA president Ramsey D. Potts, Jr.

Convair XFY-1 vertical take-off fighter makes first transition flight.

John F. Fleiberg, former Assistant Secretary of the Navy for Air, named chairman of the Conference of Local Airlines. He succeeds Donald W. Nyrop.

Clarence N. Sayen re-elected president of AFI-Air Line Pilots Association.

Harmon International Trophies awarded to Jacqueline Cochran, first woman pilot to exceed speed of sound, and Maj. Charles E. Yeager, who established a world speed record of 1,650 m.p.h. in December, 1955. President Eisenhower presents trophies at White House ceremonies.

Clyde V. Cessna, 74, aviation pioneer and founder of Cessna Aircraft Co., dies.

McDonnell F-101A Voodoo, supersonic long-range strategic fighter capable of in-flight refueling and carrying atomic weapons, displayed publicly for first time.

Lockheed Aircraft Corp. reveals it will produce turboprop version of Super Constellation, designated Model 1449. Transport will have a new wing, and will be ready for airline service in 1957, company officials say. It will be powered by four Pratt & Whitney PT2 (F44) engines.

President Eisenhower accepts resignation of Under Secretary of Commerce Robert B. Murray, effective January 26. Murray, whose term had been extended three times, will return to private business.

Aviation scientist Dr. Theodore Von Karman receives 1964 Wright Brothers Trophy.

AIRCRAFT YEAR BOOK GOES TO PRESS.
ADAMS, Alvin P., aviation executive born in Grand Junction, Colo.; vice president, Pan American World Airways. Address: 135 E. 42nd St., New York, N. Y.

ADAMS, C. C., aviation executive; vice-president—finance and secretary, Braniff Airways, Inc. Address: Love Field, Dallas, Tex.

ADAMS, Joseph P., government executive born in Seattle, Wash., Nov. 15, 1907; member Civil Aeronautics Board; NACA; former director of Aeronautics, State of Washington; Washington State and D. C. Bar; Colonel, Marine Corps Reserve aviation. Address: 2367 King Place, N. W., Washington 7, D. C.

ADLER, Ernest Jr., engineer born in Hardin, Mont., June 6, 1915; president, All American Aircraft, Inc. Address: Long Beach, Calif.

AHRENS, R. F., aviation executive; vice president, personnel, United Air Lines. Address: Clearing Station, 5929 S. Cicero Ave., Chicago 38, Ill.

ALEXANDER, Eben Roy, editor born in Omaha, Neb., Feb. 15, 1899; managing editor, Time. Address: 9 Rockefeller Plaza, New York, N. Y.

ALLEN, William M., airplane manufacturer born in Lo Lo, Mont., Sept. 1, 1900; president, Boeing Airplane Co. Address: P. O. Box 3107, Seattle 14, Wash.

ALLIS, James Ashton, banker born in St. Paul, Minn., 1881; chairman of the board, Fairchild Engine and Airplane Corp. Address: 280 Inwood Ave., Upper Montclair, N. J.

ALTSCHUL, Selig, aviation consultant born in Chicago, Ill. Address: 25 Broad St., New York, N. Y.

AMIS, R. T., Jr., aviation executive born in Kansas City, Mo., June 13, 1912; president, Aero Design & Engineering Co. Address: 2620 N. W. 27th, Oklahoma City, Okla.

ANDERSON, Jack, public relations counsel born in Los Angeles, Calif., March 31, 1910; director of public relations and advertising, Marquardt Aircraft Co., Van Nuys, Calif.

ANDERSON, Robert B., government official, Deputy Secretary of Defense. Address: The Pentagon, Washington 25, D. C.

ANDERSON, Samuel Egbert, Air Force officer born in Greenwood, N. C., Jan. 6, 1906; Major General (permanent). Address: Commander AACS, Andrews AFB, Wash. 25, D. C.

ANGST, Walter, chief engineer, Kollman Instrument Corp. Address: 80-06 45th Ave., Elmhurst, N. Y.

ANSLEY, M. L., controller born in Bay St. Louis, Miss., Mar. 3, 1902; treasurer, Aeronautical Securities, Inc. Address: One Wall St., New York, N. Y.

ARCHER, Harold B., engineering test pilot born in Morris Trwp., Washington County, Pa., Nov. 17, 1915; chief, experimental flight engineers, Pratt & Whitney Aircraft. Address: 95 West Middle Turnpike, Manchester, Conn.

ARMOUR, Merrill, attorney born in Baldin, Mich., Apr. 8, 1903; Washington Counsel, Aircraft Owners & Pilots Assn. Address: 1001 18th St., N. W., Washington, D. C.

ARNOLD, J. E., aviation executive born in Mt. Vernon, S. D., May 16, 1910; manager, Convair Division, General Dynamics Corp. (Dingfield, Tex., plant). Address: Dingfield, Tex.

ARNOLD, Milton Wolfe, Air Force officer born in Troup County, Ga., May 23, 1907; vice-president, operations and engineering, Air Transport Association of America. Address: 1407 Sixteenth St., N. W., Washington 25, D. C.

ARNSTEIN, Karl, scientist-engineer born in Prague, Czechoslovakia, Mar. 24, 1887; vice-president, engineering, Goodyear Aircraft Corp. Address: 1210 Massillon Rd., Akron 15, O.

ARTHUR, William T., aviation executive; ass't. vice-president, operations, Delta-C & S Air Lines. Address: Municipal Airport, Atlanta, Ga.

ASHLEY, Tom, aviation editor born in Shreveport, La., Jan. 5, 1913; managing editor Flight Magazine. Address: P. O. Box 750, Dallas 1, Tex.

AUSTIN, James W., aviation executive; vice-president, traffic and sales, Capital Airlines, Inc. Address: National Airport, Washington 1, D. C.

AYER, John B., public relations counsel born in Farm, Colo., May 3, 1906; Address: 5250 Electric St., La Jolla, Cal.

BACKMAN, Roy, aviation executive born in Salt Lake City, Utah, Nov. 23, 1913; vice president, Pacific Airmoive Corp., Burbank, Cal.

BAILEY, W. R., regional sup’t. of Flight American Airlines. Address: Chicago Municipal Airport, 3265 West 56th St., Chicago, Ill.

BAKER, J., business executive; personnel director, Continental Motors Corp. Address: Murley St., Muskegon 92, Mich.
BAKER, Keith, journalist born in Springfield, Mass., July 18, 1917; assistant to president, Chance Vought Aircraft, Inc. Address: Box 5907, Dallas, Tex.

BAKER, Morris B., aviation editor, The Commercial Appeal. Address: Memphis 1, Tenn.

BAKER, Paul S., aeronautical engineer born in Quincy, Mass., Oct. 2, 1907; chief, flight test and dynamics, Republic Aviation Corp. Address: Farmingdale, N. Y.

BALDINI, Angelo, accountant born in New Castle, Del., Dec. 11, 1921; treasurer, Bellanca Aircraft Corp. Address: 1423 Stapler Pl., Wilmington, Del.

BARDWELL, Eugene S., aviation executive born in Falconer, N. Y., Nov. 19, 1895; director public and industrial relations, Schweizer Aircraft Corp. Address: 208 Overland St., Elmira, N. Y.

BARNARD, Harvey F., Jr., airline executive born in Harrodsburg, Pa., Sept. 19, 1913; personnel director, Frontier Airlines. Address: 4045 East 18th Ave., Denver, Colo.

BARNETT, Charles A., engineer born in Dallas, Tex., July 12, 1913; vice-president and chief engineer, Kellett Aircraft Corp. Address: P.O. Box 468, Camden 1, N. J.

BARLOW, Wilmer L., engineering executive born in Baton Rouge, La., Oct. 25, 1903; vice president and chief engineer, Sperry Gyroscope Co. Address: 504 Park Ave., Manhasset, N. Y.

BARRY, Philip, aviation executive born in Winthrop, Mass.; assistant executive director, Airlines Personnel Relations Conference. Address: National Airport, Washington 1, D. C.

BARTFIELD, James E., engineer born in New York, N. Y., Feb. 24, 1919; assistant chief engineer, Stroomkoff Aircraft Corp. Address: West Trenton, N. J.

BASSETT, Preston Rogers, business executive born in Buffalo, N. Y., 1892; president, Sperry Gyroscope Co. Div. of Sperry Corp.; vice-president of The Sperry Corp. Address: 104 Broadway, Rockville Centre, N. Y.

BAUMAN, Edgar H., aviation writer and consultant born in New York, N. Y., Jan. 4, 1899. Address: P.O. Box 293 Uptown, Kingston, N. Y.

BAUMANN, J. B., aviation executive; president and chief engineer, Baumann Aircraft Corp. Address: Baumann Aircraft Corp., 5514 Satsuma St., North Hollywood, Calif.

BEACH, Robert E., lawyer born in New Britain, Conn., Sept. 12, 1911; corporation counsel, United Aircraft Corp. Address: 143 Boulder Rd., Manchester, Conn.

BEALL, Wellwood E., airplane designer and engineering executive born in Canon City, Colo., Oct. 26, 1906; senior vice president, Boeing Airplane Co. Address: Box 3107, Seattle 14, Wash.

BEALS, H. W., engineer born in Roma, Ind., Mar. 18, 1987; director, engineering, west coast American Airlines, Inc. Address: 231 18th St., Santa Monica, Cal.

BEARD, Charles E., aviation executive; president and director, Braniff Airways, Inc. Address: Love Field, Dallas, Tex.

BEARDSLEY, John Murchison, civil engineer born in Washington, D. C., Nov. 27, 1907; assistant administrator for operations, civil Aeronautics Administration. Address: c/o Civil Aeronautics Adm., Washington 25, D. C.

BEEBE, W. T., aviation executive; vice president-personnel, Delta-C&S Airlines, Atlanta Municipal Airport, Atlanta, Ga.

BEECH, Olive Ann (Mrs. Walter H.), aviation executive; president, Beech Aircraft Corp.; Address: Wichita, Kans.

BEERMAN, T. E., Assistant Secretary-Assistant Treasurer, Aerojet-General Corporation, subsidiary of The General Tire & Rubber Co., Akron, O. Address: Azusa, Calif.

BEIGHLE, Jackson E., aviation executive born in Sawyer, N. D.; sales manager, Sikorsky Aircraft. Address: Sturgis, Meadville and Westport, Conn.

BELL, Clarence O., aviation executive born in Mansfield, O., Nov. 18, 1885; executive vice president, Aero Engineering, Inc.; Address: 3225 First National Tower, Akron, O.

BELL, Harold W., Jr., aviation executive; director of personnel, Continental Air Lines, Inc.; Address: Stapleton Airport, Denver 7, Colo.

BELL, Lawrence Dale, airplane manufacturer born in Montrose, Ind., Apr. 5, 1894; president, Bell Aircraft Corp.; Address: P. O. Box 1, Buffalo 5, N. Y.

BELL, Ralph L., aviation executive; director of sales, Boeing Airplane Co. Address: Boeing Airplane Co., P. O. Box 3107, Seattle 14, Wash.

BELLACCO, Giuseppe Mario, airplane engineer born in Seineca, Italy, Mar. 19, 1886; chairman of the board and director of research and development, Bellanca Aircraft Corp. Address: New Castle, Del.

BELLAND, Robert A., business executive born in Ocean Springs, Miss., Dec. 19, 1897; vice president and director, Garrett Corp.; Address: 9833 Sepulveda Blvd., Los Angeles 35, Cal.

BELLER, William S., aeronautical engineer and editor born in Cleveland, Ohio, Aug. 26, 1819; managing editor, Aero Digest. Address: 339 Church Ave., Woodmere, N. Y.

BENHAM, Edward M., journalist born in Winsted, Conn.; public relations manager, Sikorsky Aircraft. Address: Route 2, Stepney Depot, Conn.

BENNEDT, Floyd S., Jr., aviation executive born in Durham, N. C., Aug. 9, 1916; treasurer, Fairchild Engine & Airplane Corp. Address: Hagerstown, Md.

BENNINGER, Fred, airline executive born in Germany, Mar. 20, 1917; secretary-treasurer and general manager, The Flying Tiger Line. Address: Lockheed Air Terminal, Burbank, Cal.

BENSON, Otis O., air force officer born in Sandstone, Minnesota, Sept. 14, 1902, brigadier general, USAF (MG), Director of Medical Staffing and Education, Office of the Surgeon General, USAF; president Aero Medical Association. Address: 1401 Upton St., N. W., Washington 16, D. C.

BERINGER, George E., aeronautical engineer born in Milwaukee, Wis., Nov. 10, 1899; general factory manager, aircraft section, Bendix Products Div., Bendix Aviation Corp.; Address: 2517 S. Tennyson Dr., South Bend, Ind.

BERLINER, Henry A., mechanical engineer born in Washington, D. C., Dec. 13, 1895; chairman of the board, Engineering and Research Corp.; Address: 2841 Tilden St., N. W., Washington, D. C.

BERN, Edward G., aviation executive; vice president and sales manager, Pan American-Grace Airways, Inc.; Address: 135 E. 42nd St., New York 17, N. Y.

BEVANS, James Milikin, Air Force officer born in San Francisco, Cal., Oct. 12, 1899; Major General, USAF (Ret.). Address: Middle Rosedale, Conn.

BELL, Nick, salmon packer born in Selca, Yugoslavia, Aug. 25, 1892; president and active chairman of the board, West Coast Airlines, Inc.; Address: 12209 Dexter Horton Bldg., Seattle 4, Wash.
BINNIE, Alan G., vice president, Hollister Instrument Corp. Address: 30-08 45th Ave., Elmhurst, N. Y.

BIRON, B. H., Jr., aviation executive born in Minneapolis, Minn., Aug. 12, 1912; vice president, Convair Division, General Dynamics Corp. Address: Box 65, Janul, Cal.

BISH, Howard P., electrical engineer born in Dayton, O., Jan. 30, 1897; manager, Government Sales, General Electric Co. Address: Schenectady, N. Y.

BISHOP, Clair W., aviation executive; personnel manager, Lycoming Div., Aveo Manufacturing Corp. Address: 632 Oliver St., Williamsport, Pa.

BITTNER, S. P., ass't. sup't. of flight, American Airlines, Address: Memphis Municipal Airport, Memphis, Tenn.

BJERKNES, J., meteorology professor born in Stockholm, Sweden, Nov. 2, 1897. Address: 620 Adelaide Dr., Santa Monica, Cal.

BLACK, Don, public relations counsel born in Bowie, Tex., June 28, 1892; assistant director, public relations, Douglas Aircraft Co. Address: 30490 Morning View Dr., Malibu, Cal.

BLATT, Robert C., engineer and editor born in Baltimore, D. C., Mar. 26, 1903; director of publications, American Society of Refrigerating Engineers, member of executive committee of aviation lighting of the Illuminating Engineering Society. Address: 9 Bishop Place, Larchmont, N. Y.

BLAYLOCK, Raymond C., aeronautical engineer born in Vassar, Mich., Sept. 1, 1904; chief engineer, Chance Vought Aircraft, Inc. Address: 4317 Druid Lane, Dallas 5, Tex.

BLICK, Robert Edwin, Naval officer born in Peru, Ind., July 8, 1899; Rear Admiral. Address: Navy Dept., Washington 25, D. C.

BOETTGER, Frank A., aircraft executive born in Cincinnati, O., Sept. 21, 1905; vice president (finance), Cessna Aircraft Co. Address: Wichita, Kans.

BOGAN, Gerald Francis, Naval officer born in Mackinac Island, Mich., July 27, 1894; Vice Admiral. Address: Navy Dept., Washington, D. C.

BOLLINGER, Lynn L., researcher born in Seymour, Ind., Dec. 17, 1912; professor, Harvard Graduate School of Business Administration; chairman, Helio Aircraft Corp. Address: Concord, Mass.

BONN, Wesley C., chief contract administrator, Hollister Instrument Corp. Address: 30-08 45th Ave., Elmhurst, New York.

BONNEY, Walter T., public relations executive born in Ludlow, Vt., May 27, 1909; assistant to the executive secretary, National Advisory Committee for Aeronautics. Address: 1512 H St., N. W., Washington 25, D. C.

BOONE, Walter Frederick, Naval officer born in Berkeley, Cal., Feb. 14, 1898; Rear Admiral. Address: Superintendent, U. S. Naval Academy, Annapolis, Md.

BORM, Fred S., Air Force officer born in Winchester, Ill., Apr. 25, 1892; Major General USAF (Ret.), vice-president, Liberty National Bank & Trust Co., Oklahoma City, Okla.

BOSTON, Jack, aeronautical engineer born in Chennai, India, Apr. 25, 1900; President, Vought Aircraft Co., New York.

BOUETTE, Richard S., aviation executive born in Venice, Ind., July 4, 1898; president, Fairchild Engine & Airplane Corp. Address: Hagerstown, Md.

BOYEE, G. T., aviation executive born in Crakl, Canada, Aug. 12, 1906; treasurer, Convair Division, General Dynamics Corp. Address: 3225 Whittier, San Diego 6, Calif.

BOWERSOCK, Justin D., journalist born in Burlington, Ia., Nov. 7, 1901; aviation editor, Kansas City Star. Address: 1729 Grand Ave., Kansas City, 17, Mo.
BOYD, Albert, Air Force officer born in Rankin, Tenn., Nov. 22, 1906; Major General, Commanding General, Wright Air Development Center, Air Research and Development Command. Address: 420 C St., Wright-Patterson AFB, O.

BRACHMAN, David S., Dr., Fellow, Aero Medical Association. Address: 20125 Woodbine Ave., Castro Valley, Calif.

BRACK, Reginald, aviation executive born in Radomsko, Russia, Dec. 26, 1910; general traffic and sales manager, Braff International Airways. Address: 6043 Walnut Hill Lane, Dallas, Tex.

BRAND, Harrison, Jr., business executive born in Ellicott, N. Y., Aug. 24, 1891; secretary-treasurer, Aircraft Industries Association of America, Inc. Address: 610 Shoreham Bldg., Washington 5, D. C.

BRANDWEIDE, Gregory J., airline executive born in St. Louis, Mo., June 15, 1898; vice president, Purchasing and Stores, American Airlines. Address: 100 Park Ave., New York 17, N. Y.

BRAZNELL, Walter W., pilot born in St. Louis, Mo., Dec. 16, 1907; director of flight, American Airlines. Address: 336 Abbey Rd., Hanhamset, N. Y.

BREIDIGMAN, William M., engineering test pilot; born in Ottumwa, Ia., June 35, 1916; test pilot, Douglas Aircraft Co. Address: 20630 Pacific Coast Highway, Malibu, Cal.

BRUNKERHOFF, William W., aviation executive born in Mt. Vernon, N. Y., July 21, 1904; president, Air Carrier Service Corp. Address: 1742 C St., N. W., Washington, D. C.

BRINKLEY, Russ, flight and ground instructor, author, radio and TV producer, and newsreel cameraman born in Pittsburgh, Pa., May 30, 1906; aviation director, Radio Station WIP-TV. Address: Room 451, Telegraph Bldg., Harrisburg, Pa.

BRITNER, P. A., aircraft executive born in Pittsburgh, Pa., July 7, 1901; division comptroller, Fairchild Engine and Airplane Corp. Address: 86 Glenaside Ave., Halfway, Md.

BROWN, B. M., electrical engineer born in Joliet, Ill., June 17, 1909; manager, Air Arm Division, Westinghouse Electric Corp. Address: Friendship International Airport, Baltimore, Md.

BROWN, J. W., director of flight operations, Southwest Airways Co. Address: P. O. Box 266, San Francisco, Calif.

BRUCKER, Milton, engineer born in St. Paul, Minn., Nov. 16, 1912; president, Zenith Plastics Co., Gardenia, Calif. Address: P. O. Box 91, Gardenia, Calif.

BRUKNER, Clayton J., manufacturing executive born in Ravenna, Neb., Dec. 13, 1896; president, Wiese Aircraft Co. Address: Swales Road, Troy, O.

BRUNTON, Frank, airline executive born in Va., Sept. 27, 1904; manager, American Airlines, Inc., public relations. Address: 918 16th St., N. W., Washington, D. C.

BUCILAWALCOTT, John C., Aeronautical Engineer born in St. Louis, Missouri, January 9, 1904; Chief Engineer, Douglas Aircraft Company, Long Beach Division. Address: 3855 Lakewood Blvd., Long Beach, California.

BUDR, John F., publisher and editor of Air Transportation born in Brooklyn, N. Y., Aug. 9, 1899. Address: 310 Bridge St., New York, N. Y.

BUNCE, J. L., engineer born in Hartford, Conn., Dec. 21, 1904; factory manager, Pratt and Whitney Aircraft Div. of United Aircraft Corp. Address: 247 Cedar Ave., Hartford 5, Conn.

BURREN, William A. M., aviation consultant born in New York, N. Y., Apr. 8, 1906; consultant to the U. S. Air Force. Address: 630 Fifth Ave., N. Y. 20, N. Y.

BURKE, Edmund, aviation executive born in Sigourney, Iowa, Feb. 13, 1878; secretary, Convair Division, General Dynamics Corp. Address: 4051 Alameda Dr., San Diego 3, Calif.

BURKE, John W., Jr., attorney born in Washington, D. C., Sept. 19, 1915; director of personnel, Capital Airlines. Address: 2311 Tracy Pl., Washington, D. C.

BURKE, M. F., accountant born in Meriden, Conn., Aug. 3, 1900; personnel director, United Aircraft Corp. Address: 140 Ridgewood Rd., W. Hartford, Conn.

BURLEY, Joseph C., engineer born in Brooklyn, Mass., May 16, 1908; vice president, Boston Insulated Wire and Cable Co. Address: 65 Bay St., Boston, Mass.

BURNELL, Jack, maintenance executive born in Denver, Colo., Mar. 6, 1903; director of engineering and maintenance, Frontier Airlines. Address: 2390 Dexter, Denver, Colo.

BURNS, C. L., aircraft executive born in Manchester, England, Nov. 17, 1893; assistant to general manager, Pratt & Whitney Aircraft, Div. of United Aircraft Corp. Address: Mountain Ave., Bloomfield, Conn.

BURNS, Robert Whitney, Air Force officer born in Stanley, Wis., Sept. 15, 1908; Major General (permanent). Address: Assistant Vice Chief of Staff, HQ, USAF, Washington 25, D. C.

BURT, Clifford E., aviation executive born in Barlett, Ohio, Oct. 11, 1907; factory manager, Chance Vought Aircraft, Inc. Address: 5955 Royal Crest Dr., Dallas, Tex.

BURTON, Edward F., aeronautical engineer born in Rock Island, Ill., Nov. 6, 1899; chief engineer, Douglas Aircraft Co. Address: 366 S. Westgate Ave., W. Los Angeles, Cal.

BYRON, J. C., attorney born in St. Louis, Mo., Apr. 17, 1906; vice-president of Industrial relations, Curtiss-Wright Corp. Address: 318 West End St., Ridgewood, N. J.

CABELL, Charles Pearre, Air Force officer born in Dallas, Tex., Oct. 11, 1903; Lieutenant General. Address: Deputy Director, Central Intelligence, Washington, D. C.

CAMERON, Everett S., aviation executive, president and chief engineer, Cameron Aero Engine Corp. Address: 324 Greenwich St., Reading, Pa.

CAMPBELL, Douglas, aviation executive born in San Francisco, Calif., June 7, 1896; vice president and general manager, Pan American-Grace Airways, Inc. Address: Cat Rock Rd., Cos Cob, Conn.

CANADAY, John E., public relations counsel born in Anderson, Ind., July 29, 1905; director of public relations, Lockheed Aircraft Corp. Address: 212 S. Valley St., Burbank, Calif.

CANNON, Joseph A., test pilot born in Niagara Falls, N. Y., Dec. 25, 1918; chief of flight test, Bell Aircraft Corp. Address: 141 Forest Rd., Lewiston, N. Y.

CARBONARA, Victor E., president, Kollman Instrument Corp. Address: 80-08 Forty-fifth Ave., Elmhurst, N. Y.

CAREY, James W., Manager News Bureau, North American Aviation, Inc. Address: International Airport, Los Angeles 45, Calif.

CARR, H. N., aviation executive, president, North Central Airlines, Inc. Address: 6201 34th Ave., South, Minneapolis 23, Minn.

CARROLL, George A., aviation writer born in Pompy, N. Y., July 16, 1904; aviation editor, N. Y. Journal-American. Address: 220 South St., N. Y. 15, N. Y.

CARROLL, Hugh C., engineer born in Cres- ton, Wash., Dec. 27, 1904; manager of engineering, aeronautical and ordnance systems division, General Electric Co. Address: Scheme tady, N. Y.

CARTER, Leo A., aviation executive born in Eminence, Mo., Apr. 16, 1901; vice-president general manager, Santa Monica Div., Douglas Aircraft Co., Inc. Address: 3000 Ocean Paf Blvd., Santa Monica, Cal.

CARTER, Sydney, public relations coordi- tor, TEMCO Aircraft Corp. Address: P. O. Box 6191, Dallas 2, Tex.

CARVER, John R., airline executive; vice president and secretary, Mohawk Airlines, Inc. Address: Cornell University Airport, Ithaca, N. Y.

342
CASSADY, John Howard, Naval officer born in Spencer, Ind., Apr. 8, 1899; Vice Admiral. Address: Commander U. S. S. 6th Fleet.

CHAMBERS, Reed M., aviation insurance underwriter born in Omaha, Kans., Aug. 18, 1894; chairman of the board, United States Aviation Underwriters, Inc. Address: 80 John St., New York, N. Y.

CHANDLER, Henry W., production specialist born in Enfield, England, April 12, 1902; manager of operations, Aircraft Gas Turbine Div., General Electric Co. Address: P. O. Box 194, Cincinnati 15, Ohio.

CHAPLINE, George F., aeronautical engineer born in Lincoln, Neb., July 9, 1894; vice president, Fairchild Engine and Airplane Corp., and general manager, Fairchild Engine Division, Farmingdale, L. I., N. Y. Address: 9 The Pines, Old Westbury, L. I., N. Y.

CHATFIELD, Charles B., aeronautical engineer born in Waterbury, Conn., Sept. 8, 1892; secretary, United Aircraft Corp., E. Hartford 3, Conn. Address: 177 Steele Rd., West Hartford 7, Conn.

CHATLEY, Robert L., airmail sales executive born in Hamburg, N. Y., May 31, 1924; director of sales promotion, Cassna Aircraft Co. Address: Wichita, Kans.

CHAUNCEY, Charles Carl, Air Force officer born in Joshua, Tex., Oct. 31, 1889; Major General (permanent). Address: Route 11, Box 561, 415 Cliffside Dr., San Antonio, Tex.

CHILDS, L. A., Jr., technical director-administration, North American Aviation Corp. Address: P. O. Box 6191, Dallas, Tex.

CLARK, J. R., aeronautical engineer born in Rockport, Mass., Sept. 21, 1903; assistant chief engineer, Chance Vought Aircraft Inc. Address: Box 5907, Dallas, Tex.

CLEGG, Lee Milton, business executive born in Providence, R. I., July 16, 1897; vice-president, Thompson Products Inc. Address: 25355 Euclid Ave., Cleveland 17, O.

CLEMENTS, Norman V., advertising executive born in Chicago, Ill., Jan. 11, 1900; director of advertising and sales promotion, United Aircraft Corp. Address: East Hartford, Conn.

CLEVELAND, Carl M., advertising executive born in Green Bay, Wis., Mar. 16, 1903; assistant director of public relations and advertising, Boeing Airplane Co. Address: 5715 58th St., N. W., Seattle, Wash.

CLEVELAND, Reginald M., journalist born in New York, N. Y., Nov. 6, 1886; ret., editorial consultant, past president, The Wings Club. Address: Residen Farm, Randolph Center, Vt.

CLINE, Albert vanBlubber, public relations counsel born in Columbus, O., Jan. 18, 1915; director of public relations, Northrop Aircraft, Inc. Address: 4108 Via Nivel, Paces Verdes Estates, Calif.

CLINE, James W., aircraft executive born in La Bana, Cal., June 10, 1912; manager, international commercial sales, Douglas Aircraft Co. Address: 3000 Ocean Park Blvd., Santa Monica, Cal.

COCHREAN, Jacqueline, aviator born in Pamp'eau, Fla.; president of cosmetic firm, Jacqueline Cochran, Inc. Address: 630 Fifth Ave., New York, N. Y.

COGAN, R. F., aviation executive born in Gary, Ind., April 18, 1912; manager, Convair Division, General Dynamics Corp. Address: 6436 Camino de la Costa, La Jolla, Calif.

COHEN, La Matte T., corporation executive born in New York City, Sept. 23, 1895; director, General Dynamics Corp. Address: Rancho Santa Fe, Calif.

COLLINGS, John A., airline executive born in Washington County, Va., Apr. 6, 1903; Executive vice-president, Trans World Airlines, Inc. Address: 10 Richards Rd., Kansas City 6, Mo.

Coly, Cyrus S., executive born in Oak Park, Ill., Oct. 31, 1917; assistant vice president, Pan American-Graace Airways, Inc. Address: 70 Circle Dr., Hastings-on-Hudson, N. Y.

Coffins, Whitley Charles, aircraft manufacturer born in Des Moines, Iowa, Apr. 28, 1898; president, Radiplane Co.; president and director, Northrop Aircraft, Inc., and partner, Collins-Powell Co. Address: 1010 N. Roxbury Dr., Beverly Hills, Cal.

Contents, Thomas Selby, Naval officer born in Lamar, Mo., Mar. 25, 1898; Rear Admiral, Chief of Bureau of Aeronautics; Address: Navy Dept., Washington 25, D. C.

Conant, Frederic Warren, airplane executive born in Santa Barbara, Cal., Feb. 8, 1902; vice-president, Douglas Aircraft Co., Inc. Address: Santa Monica, Cal.

Condon, Cyril Hyde, attorney born in Waterloo, Conn., Sept. 18, 1902; partner, Condon & Forsyth, and legal adviser to international aviation operators. Address: 630 Fifth Ave., New York 20, N. Y.

Connelly, John H., president, Southwest Airways Co., Address: San Francisco Airport, San Francisco, Cal.

Conover, Harvey, publisher born in Chicago, Ill., Nov. 24, 1892; president and treasurer, Conover Mast Publications. Address: 265 E. 42nd St., New York 17, N. Y.

Converse, Edmund, lawyer born in New York, N. Y., Apr. 9, 1907; president, Bonanza Air Lines, Inc. Address: Las Vegas, Nevada.

Cook, Frank Richardson, aeronautical engineer born in Hattiesburg, Miss., Dec. 23, 1910; director, research and planning, Minneapolis-Honeywell Regulator Co. Address: 4912 Rolling Green Pkwy., Minneapolis, Minn.

Cook, Max B., aviation editor, Scripps-Howard newspapers. Address: Box 4057 Shore, Cleveland 23, Ohio.

Corner, Harvey, accountant born in Chicago, Ill., May 30, 1907; assistant controller, United Aircraft Corp. Address: Penfield Hill Rd., Portland, Conn.

Cousins, J. X., aircraft executive born in New York, N. Y., Aug. 16, 1901; treasurer and comptroller, Strookoff Aircraft Corp., Inc. Address: West Trenton, N. J.

Coyne, Thomas C., manufacturer born in Syracuse, N. Y., Aug. 3, 1900; vice-president and director of scheduling, planning, and procurement, Curtiss-Wright Corp. Address: 154 Unadilla Rd., Ridgewood, N. J.

Craig, Nicholas, aviation executive; president, Iceland Airlines, Inc. Address: 15 W. 47th St., New York, N. Y.

Crary, Harold, airline executive born in Northfield, Minn., June 30, 1888; ass to the president, United Air Lines. Address: 209 Broadway, San Diego, Cal.

Crawford, Alden Rudyard, Air Force officer born in Mt. Sterling, Ill., Nov. 27, 1900; Major General (Ret.) General Manager and vice-chairman, Republic Aviation (International) S.A. Address: Riva Caccia 12, Lugano, Switzerland.

Crawford, Frederick C., chairman of the board, Thompson Products, Inc. Address: 2355 Euclid Ave., Cleveland 17, O.

Cummings, Robert L., Jr., airlines executive born in Boston, Mass., Sept. 10, 1912; president and director, New York Airways, Inc. Address: Ridge Road, P. O. Box 704, Syosset, L. I., N. Y.

CUNNINGHAM, J. C., business executive born in Lindsay, Canada in 1889; manager of aircraft engine manufacturing, Allison Div., General Motors Corp. Address: Indianapolis, Ind.

GUSSEN, George T., airline executive born in Los Angeles, Cal., Mar. 27, 1903; vice-president, The Flying Tiger Line. Address: Lockheed Air Terminal, Burbank, Cal.

DAHLLEM, Karl, public relations counsel born in Burlington, Iowa, on Sept. 16, 1912. Director of Public Relations, American Airlines. Address: 100 Park Avenue, New York, N.Y.

DAMON, Ralph S., airline executive born in Franklin, N. H., July 6, 1907; president, Trans World Airlines, Inc. Address: 300 Madison Ave., New York 17, N.Y.

DA PARMA, E. U., executive, vice president, Sperry Gyroscope Co., Div. of Sperry Corp. Address: Great Neck, L. I., N. Y.

DABROW, Richard W., public relations counsel and aviation welfare born in Champaign County, Ill., Sept. 7, 1915; vice president, Hill & Knowlton, Inc., New York City. Address: 50 Barony Road, Scarsdale, N.Y.

DAVIS, Arthur Gayley, Naval officer born in Columbus, S. C., Jan. 14, 1903; Vice Admiral. Address: 3915 Thornapple St., Chevy Chase 13, Md.

DAVIS, D. J., engineer born in Detroit, Mich., Apr. 8, 1902; chief industrial engineer, AVCO Manufacturing Corp. Address: 1329 Arlington, Cincinnati 9,Ohio.

DAVIS, Louis, public relations executive born in Marvin, S. C., Va., Sept. 23, 1912; manager—public relations, Fairchild Engine Division. Address: Vineyard Rd., Huntington, L. I., N. Y.

DAVIS, Thomas, assistant secretary of commerce. Address: Commerce Bldg., Washington 25, D. C.

DAVIS, Thomas, aviation executive born in West Dorby, England, Sept. 24, 1904; secretary-treasurer, Republic Aviation Corp. Address: 59 Barbary Court, Amityville, N. Y.

deFERRANTI, Marc A., engineer born in Brussels, Belgium, Feb. 13, 1905; manager of marketing, Jet Engine Dept., Aircraft Gas Turbine Div., General Electric Co. Address: P.O. Box 196, Cincinnati 15, Ohio.

DEICHLER, R. E. S., airline executive born in Lancaster, Pa., Apr. 21, 1910; vice president, customer service, American Airlines. Address: 16 South Drive, Pankoono, L. I., N. Y.

DELLINGER, John Howard, Dr., physician born in Cleveland, Ohio, July 3, 1886; chairman, Radio Technical Commission for Aeronautics. Address: 2900 Connecticut Ave., Washington, D. C.

DENNEY, Carvin D., president, American Helicopter Co., Inc. Address: 2559 Sorrel Lane, Rolling Hills, Cal.

DENNEY, K. Donald, aviation executive born in Plattsburg, O., May 27, 1929; comptroller, American Helicopter Div. of Fairchild Engine and Airplane Corp. Address: 1409 Harkness St., Washington Beach, Cal.

DENNY, Harmar D., attorney born in Allegheny, Pa., July 2, 1886; vice chairman, Civil Aeronautics Board. Address: 3134 27th St., N. W., Washington 7, D. C.

de SEVERSKY, Alexander F., aeronautical consultant; engineer and airplane designer born in Tihla, Russia, June 7, 1894; inventor, designer, author. Address: Rm. 3411, 30 Rockefeller Plaza, New York 20, N. Y.

DEWEY, Frederick O., aviation executive born in Granville, O., Aug. 6, 1914; president, Chance Vought Aircraft, Inc. Address: P.O. Box 8907, Dallas, Tex.

DEVER, Hayes, public relations counsel born in Pittsburgh, Pa., July 19, 1913; secretary and director, public relations, Capital Airlines. Address: National Airport, Washington 1, D. C.
DOOLITTLE, James Harold, aviator and business executive born in Alameda, Cal., Dec. 14, 1896; vice-president and director, Shell Oil Co. Address: 50 W. 50th St., New York 20, N. Y.

DOUGLAS, Donald W., Jr., aircraft executive born in Washington, D. C., July 3, 1917; vice-president and director, military relations, Douglas Aircraft Co. Address: 5000 Ocean Park Blvd., Santa Monica, Cal.

DOUGLAS, Donald Wills, aircraft manufacturer born in Brooklyn, N. Y., Apr. 6, 1892; president, Douglas Aircraft Co. Address: 3000 Ocean Park Blvd., Santa Monica, Cal.

DOUGLASS, Robert Wilkins, Jr., Air Force officer born in Memphis, Tenn., Mar. 8, 1900; Major General. Address: The Pentagon, Washington 25, D. C.

DOWN, Sidney G., industrialist born in Swansea, Wales, Jan. 1, 1876; director, Consolidated Vultee Aircraft Corp. Address: Park Manor Hotel, San Diego, Cal.

DOWNIE, Dan, aviation writer and photographer born in Seattle, Wash., Dec. 11, 1916; public relations director and demonstration pilot, Fletcher Aviation Corp. Address: 1821 Gorson St., Pasadena, Cal.

DOWNS, T. R., aircraft executive born in Cleveland, O., Feb. 7, 1910; personnel manager, Pratt and Whitney Aircraft. Address: 22 Golf Road, Wethersfield, Conn.

DOYLE, Austin Kelvin, Naval officer born in New York, N. Y., Nov. 7, 1898; Vice Admiral; Chief of Naval Air Training. Address: NAS, Pensacola, Fla.

DRAKE, John A., engineer born in Kane, Pa., May 24, 1921; chief engineer, engines and afterburners, Marquardt Aircraft Co. Address: 7039 Andosal St., Van Nuys, Cal.

DREES, Fred J., business executive born in San Francisco, Calif., May 9, 1917; assistant to vice president and general manager, Kaiser Aluminum & Chemical Corp. Address: 42 Bonita Ave., Piedmont, Calif.

DRINKWATER, Terrell Croft, air transportation executive born in Denver, Colo., July 15, 1908; president, Western Air Lines. Address: 6060 Avion Drive, Los Angeles 45, Cal.

DRYDEN, Hugh Latimer, physicist born in Pocomoke City, Md., July 2, 1898; director, National Advisory Committee for Aeronautics. Address: 1512 H St., N. W., Washington 25, D. C.

DuBUQUE, Jean H., executive director and secretary, National Business Aircraft Assn., Inc. Address: 1701 K St., N. W., Washington 6, D. C.

BIOGRAPHICAL BRIEFs

**DUCKWORTH, Herbert Spencer, Naval officer born in Keokuk, Iowa, Oct. 23, 1900; Vice Admiral (Ret.). Address: 1596 Lancaster Terr., Jacksonville, Fla.

**DUNCAN, Donald Bradley, Naval officer born in Alpena, Mich., Sept. 1, 1896; Admiral. Address: 2300 E St., N.W., Washington, D. C.

**DUMIRE, Robert W., engineer born in Irwin, Pa., March 26, 1920; assistant mgr., canopy and laminate div., Goodyear Aircraft Corp. Address: 219 Woodside, North Canton, Ohio.

**DUNN, Francis W., public relations counsel born in Buffalo, N. Y., June 22, 1911; director of public relations, Bell Aircraft Corp. Address: P. O. Box 1, Buffalo 5, N. Y.

**DUNN, Leigh, aeronautical engineer born in Gary, Ind., Aug. 6, 1918; chief engineer, test and facility, Marquardt Aircraft Co. Address: Van Nuys, Calif.

**DUNN, Raymond N., aircraft engineer born in New York, N. Y., Mar. 2, 1914; director of engineering and maintenance, Transcontinental & Western Air, Inc. Address: 6341 Mackey St., Merrimack, Mass.

**DUNN, Thomas M., airline executive born in Asheville, N. C.; assistant to the vice-president, Pan American-Grace Airways, Inc. Address: 133 E. 42nd St., New York 17, N. Y.

**DUNNELL, Jacob W., aircraft executive born in Ridgewood, N. J., Sept. 10, 1899; assistant to the purchasing manager, Pratt and Whitney Aircraft Div. of United Aircraft Corp. Address: 320 North Quaker Lane, West Hartford 7, Conn.

**DURGIN, Calvin Thornton, Naval officer born in Fall River, Mass., Jan. 7, 1893; Vice Admiral (Ret.). Address: Bosque, Va.

**DUTTON, Ronald E., aircraft sales executive born in Union, N. J., March 29, 1915; sales mgr., Aircraftmen, Inc. Address: Municipal Airport, Oklahoma City, Okla.

**DYEKS, Branch T., airline executive born in Macksville, Kans., July 11, 1901; president, Colonial Airlines. Address: 55 Tain Dr., Great Neck, N. Y.

**EAKER, Leo C., general; vice-president, Hughes Aircraft Co. Address: Florence Ave. at Teasle St., Culver City, Cal.

**EAKER, Mather M., Jr., journalist born in Cordela, Ga., June 3, 1912; aviation editor, Daily Oklahoman. Address: Oklahoma City, Okla.

**EARLE, Robert L., aircraft executive born in Janesville, Wis., August 16, 1905; executive vice president Marquardt Aircraft Co. Address: Van Nuys, Calif.

**EDGERTON, Joseph Selby, journalist, born in Denver, Colo., Dec. 2, 1899; chief, security review branch, Department of Defense. Address: 1332 Montague St., N. W., Washington 11, D. C.

**EDSON, Peter, newspaperman born in Hartford City, Ind., Feb. 8, 1896; Washington correspondent, N. E. A. Service. Address: 1013 13th St., N. W., Washington 5, D. C.

**EDWARDS, Donald V., aeronautical engineer born in Coffeeville, Kans., Aug. 24, 1921; chief engineer, Frontier Airlines, Inc. Address: 1741 High St., Denver, Colo.

**EGGERT, Herbert F., marine and aviation insurance broker born in Brooklyn, N. Y., Apr. 2, 1887; vice-chairman, Marah & McLennan, Inc. Address: 70 Pine St., New York 5, N. Y.

**EGYVEET, C. L., chairman of the board, Boeing Airplane Co. Address: Box 3107, Seattle 16, Wash.

**EICKMANN, Edwin M., sales executive born in Indianapolis, Ind., March 13, 1907; manager, Aviation Products Div., Goodyear Tire & Rubber Co., Inc. Address: 1144 E. Market St., Akron 16, O.

**ELDER, Boyd E., engineer born in Greer, S. C., Feb. 12, 1919; design engineer, American Helicopter Co., Inc. Address: 11931 Tennessee Ave., West Los Angeles, Cal.

**ELLINGTON, Ken, public relations counsel born in Chicago, Ill., Nov. 3, 1909; assistant to the president, Republic Aviation Corp. Address: 14 Round Hill Road, Lake Success, N. Y.

**ELLIOTT, Lawrence Clifton, government executive born in Greenville, Tex., Nov. 16, 1901; regional administrator, 2nd region, Civil Aeronautics Administration. Address: Box 1689, P.O. Weath 1, Tex.

The AIRCRAFT YEAR BOOK

ERICKSON, Horrell Gus, aeronautical engineer born in Ft. Smith, Arkansas, Nov. 21, 1914; staff engineer, Chance Vought Aircraft Inc. Address: 4247 Brookview Dr., Dallas, Tex.

FARRELL, Elliott J., aviation account executive, Erwin, Wasey & Co., Inc. Address: 420 Lexington Ave., New York 17, N. Y.

FISHER, Paul W., journalist born in Joplin, Mo., June 22, 1909; director of public relations, United Aircraft Corp. Address: 121 Ridgewood Road, E. Hartford, Conn.
FLADER, Fredric, aeronautical engineer born in Antonito, Colo., Aug. 28, 1897; president and general manager, Fredric Flader, Inc. Address: 12 Ledge View Terrace, Williamsville, N. Y.

FLEMING, Roger C., public relations counsel born in Columbus, O., Nov. 3, 1912; director of public relations, Allison Div., General Motors Corp. Address: Indianapolis, Ind.

FLOBERG, John F., lawyer born in Chicago, Ill., Oct. 26, 1913; former Assistant Secretary of the Navy for Air. Address: Wardman Park Hotel, Washington, D. C.

FLOOD, Arthur F., industrial executive born in New York, N. Y., May 27, 1907; executive vice president and comptroller, Fairchild Engine & Airplane Corp. Address: Hagerstown, Md.

FLYNN, F. H., engineer born in Waterford, N. Y., Dec. 27, 1901; service manager, Pratt and Whitney Aircraft. Address: Toolland, Conn.

FORD, Lyman H., corporate executive born in Newton, Ga., May 10, 1889; president, general manager and director, Pioneer Parachute Co., Inc. Address: 157 Phine St., Manchester, Conn.

FOUCH, George E., production control specialist born in Mt. Vernon, Ohio, Apr. 11, 1909; general manager, Jet Engine Dept., Aircraft Gas Turbine Div., General Electric Co. Address: P.O. Box 196, Cincinnati 15, Ohio.

FRANCIS, Deven, journalist born in South Bend, Ind., Apr. 3, 1901; associate editor, Popular Science Monthly. Address: Jackson Heights, N. Y.

FRANKLIN, James B., pilot born in Jefferson County, Tenn., May 4, 1912; vice-president, operations and maintenance, Capital Airlines, Inc. Address: National Airport, Washington 1, D. C.

FRANZ, Anselm, engineer born in Austria; vice-president, turbine engineering, Lycoming Div., Aereo Manufacturing Corp. Address: Stratford, Conn.

FRATER, G. G., engineer born in Elkhorn, Wis., July 6, 1886; president and general manager, C. B. Lewis Co. Address: Watertown, Wis.

FRAZER, Charles D., public relations counsel born in Brooklyn, N. Y., Apr. 6, 1905; executive vice president, The National Air Council. Address: Dupont Circle Bldg., Washington 6, D. C.

FRISCHE, Carl A., aircraft executive; vice president for operations, Sperry Gyroscope Co., Div. of Sperry Corp. Address: Great Neck, L. I., N. Y.

FROEBEL, Charles, engineer born in Paris, France, Aug. 23, 1896; vice president, engineering, Eastern Air Lines, Inc. Address: 122 Stonehurst Dr., Tenally, N. J.

FRYE, William, newspaperman born in Montgomery, Ala., Jan. 9, 1908; assistant editor, Army-Navy Air Force Register and Military Editor, Army-Navy, Inc. Address: 3039 Mackin St., N. W., Washington, D. C.

GAPENNE, James J., aviation executive born in New York, N. Y., June 6, 1908; secretary, Chance Vought Aircraft, Inc. Address: P.O. Box 2997, Dallas, Texas.

GAGOS, Hubert K., public relations counsel born in Fowler, California, May 23, 1908; manager, public relations division, Douglas Aircraft Company. Address: 3600 Ocean Park Blvd., Santa Monica, California.

GALL, Ronald S., director of public relations, Curtis-Wright Corp. Address: Main & Fassitt St., Wood-Ridge, N. J.

GALLAGHER, Edward S., mechanical engineer born in Oiler, Ill., Jan. 21, 1913; manager, sales, Aviation Div., General Electric Co. Address: Schenectady, N. Y.

THE AIRCRAFT YEAR BOOK

GALLERY, Daniel Vincent, Jr., Naval officer born in Chicago, Ill., July 16, 1901; Rear Admiral. Address: Chief of Naval Air Reserve Training, U. S. Naval Air Sta., Glenview, III.

GAMSU, Sidney M., aeronautical engineer born in Gloversville, N. Y., May 1, 1915; consulting engineer. Address: 20 Wampler Ave., Dayton 5, 0.

GARBER, Paul Edward, head curator, National Air Museum, Smithsonian Institution. Address: Washington 25, D. C.

GARDNER, George E., air transportation executive born in Fargo, N. D., Nov. 3, 1899; president, Northeast Airlines, Inc. Address: 1700 South Bayshore Lane, Miami, Fla.

GARDNER, Lester Durand, aviation executive born in New York City, Aug. 7, 1876; aeronautical consultant. Address: 875 West End Ave., New York 25, N. Y.

GARDNER, Matthias Bennett, Naval officer born in Washington, D. C., Nov. 28, 1897; vice admiral. Address: Deputy Chief of Naval Operations Navy Dept., Washington 25, D. C.

GASKELL, C. W., Jr., chief engineer, Aero Design & Engineering Corp. Address: Culver City Airport, Culver City, Cal.

GASPER, George, engineer born in Jersey City, N. J., July 14, 1917; chief, design operations, Chance Vought Aircraft, Inc. Address: 3903 Cortez Dr., Dallas, Tex.

GATY, John Pomarey, aviation executive born in West Orange, N. J., Sept. 24, 1900; vice-president and general manager, Beech Aircraft Corp., Wichita, Kans.

GAULT, Carroll L., accountant born in Montreal, Canada, Sept. 21, 1902; treasurer, United Aircraft Corp. Address: 400 Main St., E. Hartford, Conn.

GAYLORD, Harvey, aviation executive born in Buffalo, N. Y., July 1, 1904; vice president and general manager of Helicopter Division, Bell Aircraft Corp., Fort Worth, Tex. Address: 3605 Sherwood Rd., Fort Worth, Tex.

GERDAN, Dimitrius, aviation executive born in North Tarrytown, N. Y., June 21, 1910; chief engineer, turbo jets, Allison Division, General Motors Corp. Address: Indianapolis 6, Ind.

GERHARDT, Edward H., aviation executive born in Chicago, Ill., 1916; Regional traffic and sales manager, Frontier Airlines. Address: Phoenix, Arizona.

GILBERT, Paul Steck, industrial relations counsel born in Selinsgrove, Pa., Nov. 28, 1895; personnel director, Grumman Aircraft Engineering Corp. Address: 215 Avoce Ave., Massapequa Park, N. Y.

GILLMOR, Reginald E., executive born in Menominee, Wis., July 13, 1887; vice president, The Sperry Corp. Address: 2801 Quebec St., N. W., Washington 8, D. C.

GISEL, William C., accountant born in Jamestown, N. Y., March 9, 1916; comptroller, Bell Aircraft Corp. Address: P. O. Box 1, Buffalo 5, N. Y.

GLASS, Fred M., aviation executive born in Winona, Mississippi, Aug. 15, 1913; director of aviation, Port of New York Authority, 111 Eighth Ave., New York 11, N. Y.

GLUHAREFF, Michael E., aeronautical engineer; chief engineer, Sikorsky Aircraft Div., United Aircraft Corp. Address: Hoyden Hill Rd., Fairfield, Conn.

GLUHAREFF, Serge E., aeronautical engineer born in St. Petersburg, Russia, Oct. 13, 1903; assistant engineering manager, Sikorsky Aircraft. Address: 185 Lordship Rd., Stratford, Conn.

GODSEY, F. W., Jr., aviation executive; manager, Baltimore Division, Westinghouse Electric Corp. Address: 2519 Wilkins Ave., Baltimore, Md.

GOLEH, H. G., aviation executive born in North Tonawanda, N. Y., July 10, 1911; director of procurement, Convair Div., General Dynamics Corp. Address: 1691 Los Altos Road, Pacific Beach, Cal.
GOODWIN, Hugh H., Naval officer born in Monroe, La., Dec. 21, 1900; Rear Admiral.

GORI, George, lawyer born in Antofagasta, Chile, S. A., Apr. 30, 1912; secretary and corporation counsel, Northrop Aircraft, Inc. Address: Hawthorne, Cal.

GOS, Bert C., executive born in Springfield, Mo., Jan. 21, 1907; executive vice president, Hill and Knowlton, Inc. Address: 12 Sunset Ter., Bronsville, N. Y.

GRANT, Joe F., airline executive born in Oklahoma City, Okla., May 17, 1916; vice president and general manager, Slick Airways. Address: 3008 Clybourn, Burbank, Cal.

GRAY, James Harvey, aviation executive born in Kinnmundy, Ill., Oct. 11, 1906; manager, Muroe operations, McDonnell Aircraft Corp. Address: St. Louis 5, Mo.

GRAYSON, H. A., writer born in Leavenworth, Kans., Dec. 8, 1900; director of publicity, Braniff Airways. Address: 920 E. 28th St., Kansas City, Mo.

GREENE, William L., engineer born in New York, N. Y., Oct. 23, 1916; chief engineer, Engineering and Research Corp. Address: 1306 Erskine St., Takoma Park 12, Md.

GREENWOOD, Marvin H., aeronautical engineer born in Houston, Tex., Nov. 19, 1914; vice president, sales and engineering, Anderson, Greenwood and Co. Address: 1400 N. Rice, Dallas, Tex.

GREER, Marshall Raymond, Naval officer born in Riverside, N. C., Mar. 1, 1896; Vice Admiral (Ret.). Address: 1679 31st St., N. W., Washington 7, D. C.

GRECC, H. E., manager, personnel administration, Bendix Aviation Corp. Address: South Bend, Ind.

GRIFFIN, C. K., airline executive born in Cedar Rapids, Iowa, Feb. 17, 1905; vice president, personnel, American Airlines. Address: 100 Park Ave., New York, N. Y.

GRIFFITH, Beverly H., public relations counsel born in Butler, Ga.; director of public relations, Eastern Air Lines. Address: 1307 Sixth Ave., New York 19, N. Y.

GRIMES, Richard V., mechanical engineer born in Denver, Pa., June 8, 1916; treasurer and chief engineer, Hartzell Propeller Inc. Address: Pliska, O.

GRISWOLD, Francis Hopkinson, Air Force officer born in Erie, Pa., Nov. 5, 1904; Major General (temporary). Address: Hq, Strategic Air Command, Offutt AFB, Omaha, Neb.

GROSS, Courtland S., aircraft manufacturer born in Boston, Mass., Nov. 21, 1904; executive vice president, Lockheed Aircraft Corp. Address: Burbank, Cal.

GROSS, Robert Ellsworth, airplane manufacturer born in Boston, Mass., May 11, 1907; president, Lockheed Aircraft Corp. Address: P. O. Box 551, Burbank, Cal.

GRUBER, Daniel, aircraft executive born in Pasco, N. J., Feb. 1, 1918; senior staff engineer, Stoutoff Aircraft Corp. Address: West Trenton, N. J.

GRUMMAN, Leroy Sondelle, airline executive born in Huntington, L. I., N. Y., Jan. 4, 1905; chairman of board, Grumman Engineering Corp. Address: Bethpage, L. I., N. Y.

GENTRY, Edward H., engineer born in Cleveland, Ohio, June 21, 1906; Assistant manager operations, Solar Aircraft Co. Address: Willows Village 3RA, Des Moines, Iowa.

GWINN, William P., aviation executive born in New York, N. Y., Sept. 22, 1907; general manager, Press and Whitney Aircraft Div., vice president, United Aircraft Corp. Address: 400 Main St., East Hartford, Conn.

HAMBLETON, Thomas E., accountant born in Columbus, Ga.; treasurer, Chicago and Southern Air Lines, Inc. Address: 2165 Poplar, Apt, Memphis, Tenn.

HAND, Alfred, government official born in Seranton, Pa., Mar. 12, 1898; Chief, ICAO Division, International Region, Civil Aeronautics Administration. Address: 17th St. and Constitution Ave., Washington 25, D. C.

HARDISON, Osborne Bennett, Naval officer born in Wadesboro, N. C., Dec. 22, 1892; Rear Admiral. Address: Navy Dept., Washington 25, D. C.

HARE, Emlen S., investment research executive born in Philadelphia, Pa., Nov. 26, 1882; president, Industrial Research, Ltd. Address: 19 Rector St., New York 6, N. Y.

HARMAN, Leonard Franklin, aircraft executive born in Auburn, Neb., Dec. 22, 1902, Address: Portuguese Bend Club, Portuguese Bend, Calif.

HARRILL, William Keen, Naval officer born in Knoxville, Tenn., May 3, 1892; Rear Admiral. Address: President General Court Martial, Naval Station, San Diego, Cal.

HARRIS, David W., airline executive born in Union City, Tenn., Sept. 3, 1912; vice president—Industrial relations, Trans World Airlines, Inc. Address: 10 Richards Rd., Kansas City, Mo.

HARRIS, Joseph S., aviation executive born in Chicago, Ill., July 4, 1904; manager, aviation department, Shell Oil Co. Address: 50 W. 50th St., New York 20, N. Y.

HARRISON, Lloyd, Naval officer born in Takoma Park, Md., Aug. 9, 1898; Rear Admiral. Address: Deputy and Assistant Chief, Bureau of Aeronautics, Navy Department, Washington 25, D. C.

HARTTRANFT, Joseph B., Jr., aviation executive born in Buffalo, N. Y., May 24, 1915; president, Aircraft Owners and Pilots Association, president, AOPA Foundation, Inc. Address: 6600 Jones Mill Road, Chevy Chase, Md.

HARTZELL, Robert N., president, Hartzell Propeller, Inc. Address: Piqua, O.

HEARVY, Lawrence A., industrialist born in Ontario, Calif., May 18, 1912; Chairman of Board and executive vice president, Harvey Machine Co., Inc. Address: 6641 Langdon St., Van Nuys, Calif.

HASSELHORN, Walter C., business administrator born in Chicago, Ill., Sept. 21, 1900; president, Cook Electric Co. Address: 1625 Hinman Ave., Evanston, III.

HATCHER, George A., aviation executive born in Belleaire, O., Dec. 14, 1911; director of customer relations, Fairchild Engine & Airplane Corp. Address: Hagerstown, Md.

HAVEREN, Edward G., engineer born in Wellesville, N. Y., Aug. 29, 1900; manager, aviation sales, General Electric Co. Address: Schenectady, N. Y.

HAWTHORNE, Randolph, editor, Aviation Age, Convoy Mast Publications. Address: 205 42nd St., New York 17, N. Y.

HAYWARD, Leland, airline executive and theatrical producer born in Nebraska City, Neb., Sept. 13, 1902; chairman of the board, Southwest Airways. Address: 655 Madison Ave., New York, N. Y.

HAZEN, Ronald McKean, aircraft engineer and executive born in Wabgeton, N. D., Oct. 3, 1897; director of engineering, aircraft engine operation, Allison Div., General Motors Corp., member, National Advisory Committee for Aeronautics. Address: 527 W. 46th St., Indianapolis 8, Ind.

HECKMAN, Walter C., engineer born in Pekin, Ill., Dec. 2, 1898; general manager, aeronautical and ordnance systems div., defense products group, General Electric Co. Address: Schenectady, N. Y.

HEDRICK, Frank E., aviation executive born in Paulsboro, N. J., June 20, 1916; director, E. S. Cowie Electric Co.; director and vice president-coordinator, Beech Aircraft Corp. Address: Wichita, Kans.

HEGENBERGER, Albert Francis, Air Force officer born in Boston, Mass., Sept. 30, 1895; Major General (Ret.). Address: Rt. 1, Box 48A, Maitland, Fla.

HEIKKILA, F. E., manager, sales department, Small Motor Division, Westinghouse Electric Corp. Address: P.O. Box 989, Lima, O.

HEILMAN, Stanley C., executive born in New Ulm, Minn., May 9, 1915; Asst. director, contract administration, North American Aviation, Inc. Address: 13667 Sunset Blvd., Pacific Palisades, Cal.

HENSHEL, Walter M., vice president, public relations, Braniff International Airways. Address: Love Field, Dallas, Tex. Home address: 4433 Southern, Dallas, Tex.

HERMES, Raymond, vice president, Aerocar Manufacturing Corp. Address: Municipal Airport, Middletown, O.

HERTZBERG, Joseph M., sales manager born in Little Falls, N. Y., Sept. 3, 1907; assistant manager, government department, Radio Corporation of America. Address: 15 Landover Road, Bryn Mawr, Penna.

HERWALD, S. E., born in Cleveland, Ohio; engineering manager, Air-Arm Division, Westinghouse Electric Corp. Address: Friendship International Airport, Baltimore, Md.

HIBBARD, Hull Livingstone, aeronautical engineer born in Freeport, Kans.; vice-president, engineering division, Beech Aircraft Corp. Address: 5720 Lindenhurst Ave., Los Angeles 36, Cal.

HICKEY, Robert Ferdinand, Naval officer born in Red Bluff, Cal., Dec. 28, 1897; Rear Admiral, Chief of Staff and Aide to Commander Naval Forces, Far East. Address: c/o FPO, San Francisco, Calif.

HIGGINS, George D., Jr., aviation executive born in Coffeyville, Kans., July 19, 1914; director of industrial security, Convair Division, General Dynamics Corp. Address: 726 Murray Ave., La Mesa, Calif.

HIGGINS, John L., aviation executive born in Mayfield, Kentucky, Dec. 1, 1907; director of sales, Slick Airway, Inc. Address: Burbank, Calif.

HILEMAN, Gordon, aircraft executive born in Hamilton, O., Feb. 17, 1921; assistant sales and service manager, aircraft division, Aerocar Manufacturing Corp. Address: 933 North F St., Hamilton, O.

HILL, John W., president, Hill & Knowlton, Inc., Public Relations Council. Address: 5400 Empire State Bldg., New York 1, N. Y.

HILLER, Stanley, Jr., helicopter manufacturer born in San Francisco, Cal.; president, Hiller Helicopters, Inc. Address: 150 Elena Ave., Alhambra, Cal.

HIRSCHFELD, Willton, aviation reporter, Cleveland Plain Dealer. Address: 529 Superior Ave., N. E., Cleveland 14, O.

HORBY, Leonard Sinclair, engineer born in Carbon, Wyo., Dec. 20, 1894; director and vice president-facilities, United Aircraft Corp. Address: 36 Neubold Rd., West Hartford, Conn.

HORNIK, Frank J., ceramic engineer born in Hammontonville, Ohio, Sept. 5, 1912; ceramic research engineer, Solar Aircraft Co. Address: 4525 Dakota Biv., San Diego 17, Cal.

HOGG, Berticom J., Superintendent, director of flight operations and chief pilot, Hawaiian Airlines, Ltd. Address: Inter-Island Bldg., P. O. Box 3257, Honolulu 1, T. H.
HOGIN, Joseph R., engineer born in Los Angeles, Cal., April 12, 1908; director, maintenance and engineering, Braniff International Airways. Address: 3525 Centenary Dr., Dallas, Tex.

HOLSCHUH, H. B., Jr., chemical engineer born in Columbus, O., March 4, 1893; retired; counsel for Aircraft Industries Association of America, Inc. Address: 40 Wall St., New York, N. Y.

HUFF, Henry F., Jr., airline executive born in El Paso, Tex., July 26, 1920; vice president, Slick Airways, Inc. Address: Burbank, Cal.

HUGHES, Howard Hubard, manufacturer, aviator, motion picture producer, born in Houston, Tex., Dec. 24, 1905; president, Hughes Aircraft Co. Address: Florence Ave. at Teale St., Culver City, Cal.

HULSEMANN, C. A., aviation executive born in Cincinnati, O., March 30, 1913; manager landing gear & Industrial brake dept., Good-year Tire & Rubber Co. Address: 1144 E. Market St., Akron 16, O.

HUNTER, Croll, airline executive born in Fargo, N. D., Feb. 18, 1893; chairman of the board, Northwest Airlines. Address: 1885 University Ave., St. Paul 1, Minn.

HURLEY, Roy T., industrialist born in New York, N. Y., June 3, 1896; president, Curtiss-Wright Corp. Address: Owennesore Park, Westport, Conn.

HYLAND, Lawrence A., engineer born in Nova Scotia, Canada, Aug. 26, 1897; vice president, general manager, Hughes Aircraft Co. Address: 1106 Woodlawn St., Los Angeles, Calif.

IDE, John J., Captain, U.S.N.R., aeronautical consultant, National Advisory Committee for Aeronautics. Address: 485 Park Avenue, New York 22, N. Y.

INCH, S. R., utilities executive born in England, June 16, 1873; director, Convair Division, General Dynamics Corp. Address: 2440 Marisol Drive, San Diego 3, Calif.

INNES, John, journalist born in Fairfield, Conn., Aug. 9, 1913; public relations manager, Chance Vought Aircraft, Inc. Address: P. O. Box 3907, Dallas, Tex.

IRELAND, Roy W., airline executive born in Chicago, Ill., July 6, 1892; vice president, traffic administration, United Air Lines. Address: 5059 S. Cicero Ave., Chicago 38, III.

ISAACSON, Leslie A., personnel executive born in Minneapolis, Minn., June 23, 1894; personnel manager, Boeing Airplane Co. Address: Rt. 1, Box 804, Kirkland, Wash.

JACOB, C. W., air transport executive born in Rogers, Tex., June 18, 1907; senior vice president and secretary, American Airlines. Address: 69 Paper Mill Road, Plandome, N. Y.

JAHN, R. F., executive, president and general manager, Ford Instrument Co., Div. of Sperry Corp. Address: 41-10 Thomson Ave., Long Island City 1, N. Y.

JASON, Walter J., patent attorney born in Detroit, Mich., Apr. 3, 1914; director of patents, Convair Division, General Dynamics Corp. Address: 5338 East Falls View Dr., San Diego 15, Calif.

JENNINGS, Ralph Edward, Naval officer born in New York, N. Y., June 14, 1897; Vice Adm. (Ret.), Dunan Helicopters, Danbury, Conn.

JOHNSON, Clarence L., aeronautical engineer born in Michigan, 1910; chief engineer, Burbank Division, Lockheed Aircraft Corp. Address: Burbank, Calif.

JOHNSON, Earl Dallum, air transportation executive born in Hamilton, Ohio, Dec. 14, 1903; president, Air Transport Association of America. Address: 4924 Indian Lane, N. W., Washington 16, D. C.

JOHNSON, Gifford E., aviation executive born in Santa Barbara, Calif., June 30, 1918; assistant to the president, Chance Vought Aircraft, Inc. Address: P. O. Box 5907, Dallas, Texas.

JOHNSON, Leo S., aviation executive born in Uncasville, Conn., Sept. 12, 1903; executive assistant to the general manager, Pratt & Whitney Aircraft Div. of United Aircraft Corp. Address: 6 Summerdale Rd., West Hartford, Conn.

JOHNSON, Leon William, Air Force officer born in Columbus, Mo., Sept. 13, 1904; Major General. Address: APO 125, c/o PM, New York, N. Y.

JOHNSON, Robert E., advertising executive born in Seattle, Wash., July 10, 1907; vice president and assistant to president, United Air Lines. Address: 3959 S. Cicero Ave., Chicago 38, Ill.

JOHNSTON, Samuel Paul, aviation executive born in Pittsburgh, Pa., Aug. 3, 1899; director, Institute of the Aeronautical Sciences. Address: 2 E. 64th St., New York 21, N. Y.

JONES, Carlyle H., director of advertising and public information, Sperry Gyroscope Co., Div. of Sperry Corp. Address: Great Neck, L. I., N. Y.

JONES, Edward F., aviation executive born in Green City, Mo., Nov. 14, 1910; assistant to the president, Convair Division, General Dynamics Corp. Address: 6020 Vista de la Mesa, La Jolla, Cal.

JURDEN, Leonard W., government official born in Marshall, Mo., Feb. 24, 1897; regional administrator, third region, Civil Aeronautics Administration. Address: Federal Bldg., 911 Walnut St., Kansas City, Mo.

KAHLE, Keith, airline executive born in Sistersville, W. Va.; president, Central Airlines, Inc. Address: Meacham Field, Fort Worth, Tex. Meacham Field, Fort Worth, Tex.

KAHN, Roger W., musical composer and aviator born in Morristown, N. J., Oct. 19, 1907; service manager and test pilot, Grumman Aircraft Engineering Corp. Address: Bethpage, L. I., N. Y.

KAISER, Henry J., airline executive born in Sprout Brook, N. Y., May 9, 1882; Chairman of the Board, Chase Aircraft Co., Inc. Address: P. O. Box 1672, Richmond 1, Calif.

KARANT, Max, aviation writer born in Chicago, Ill., Mar. 13, 1913; assistant general manager and editorial director, Aircraft Owners and Pilots Association. Address: 6310 Alcott Road, Bethesda 14, Md.

KARTVEIL, Alexander A., engineer born in Russia, Sept. 8, 1896; vice-president, chief engineer, Republic Aviation Corp. Address: Richard Hill, Huntington, N. Y.

KAY, Harry E., attorney born in Anderson County, Texas, July 31, 1902; contract administrator and assistant secretary, Chance Vought Aircraft, Inc. Address: P.O. Box 3907, Dallas, Tex.

KEEN, Harold, Public Relations Department, Ryan Aeronautical Co. Address: San Diego, Cal.

KELLER, L. Scott, division chief, Frontier Airlines. Address: Salt Lake City, Utah.

KEMP, Jack R., public relations counsel born in Mingus, Tex., Mar. 31, 1921; director of public relations, Pioneer Air Lines. Address: Dallas, Tex.

KENDALL, Stanley Carmichael, aviation executive born in Honolulu, T. H., July 7, 1890; president, Hawaiian Airlines, Ltd. Address: 3487 Kalanianaole, Honolulu, T. H.

KEPNER, Lt. Gen. William E., USAF (ret.), aircraft executive born in Miami, Ind., Jan. 6, 1893; executive vice-president, Bell Aircraft Corp. Address: P. O. Box 1, Buffalo 5, N. Y.

KETCHAM, Dixwell, Naval officer born in Buena Park, Ill., Dec. 2, 1899; Rear Admiral. Address: 1280 Bay Laurel Drive, Menlo Park, Cal.

KEY, William C., public relations executive born in Hudson, N. Y.; editor, The Pegasus, Fairchild Engine & Airplane Corp. Address: P. O. Box 770, Hagerstown, Md.

KIMBALL, Leonard S., airline executive born in Minneapolis, Minn., Dec. 22, 1908; director of public relations, Flying Tiger Line. Address: Lockheed Air Terminal, Burbank, Cal.

KIRBY, N. A., personnel manager, Curtiss-Wright Corp., propeller division. Address: Caldwell, N. J.

KITCHEN, Gerald S., airline executive born in Farnam, Neb., Oct. 29, 1912; cargo sales manager and director of public relations, Frontier Airlines. Address: 1250 Cherry St., Denver, Colo.

KLEMPERER, Wolfgang B., aeronautical engineer born in Dresden, Germany, Jan. 18, 1891; research engineer, Douglas Aircraft Co. Address: 738 So. Bristol Ave., Los Angeles 49, Cal.

KLINE, Art, aviation writer born in Staten Island, N. Y., July 9, 1906; aviation columnist, Staten Island Advance. Address: 1267 Casilton Ave., Staten Island 10, N. Y.

KNERR, Hugh Johnston, Air Force officer born in Fairfield, Iowa, May 30, 1887; Major General (retired). Address: P. O. Box 694, Coral Gables, Fla.

KOCH, A. S., Director, Office of Aviation Safety, Civil Aeronautics Administration. Address: 17th and Constitution Ave., Washington 25, D. C.

KNOTT, James E., aviation executive born in Springfield, Ohio, May 25, 1916; manager, military requirements, aircraft engine sales, Allison Div., General Motors Corp. Address: Indianapolis 6, Ind.

KOENICK, Louis R., aeronautical engineer born in Dayton, O., July 26, 1909; deputy chief, aircraft division, director of procurement and production, Air Materiel Command. Address: 2904 Lenox Dr., Dayton, O.

KOPPEN, Otto C., aircraft executive born in Brooklyn, N. Y., June 4, 1900; vice president, Helio Aircraft Corp. Address: 29 Woodcliff Rd., Welllesley, Mass.

KOUM, Kenneth, public relations executive born in Fremont, Neb., Nov. 1, 1914; public relations manager, Pratt & Whitney Aircraft Division, United Aircraft Corp. Address: 220 Collins St., Hartford, Conn.

KRISTOFFERSON, Henry C., Brig. Gen.; former commander, MATS West Coast Air Lift; now, Pan American Airways. Address: 155 E. 42nd St., New York 17, N. Y.

KUDERER, Sylvester J., aircraft executive born in Cincinnati, O., July 18, 1910; secretary and treasurer, Atwood Manufacturing Corp. Address: 225 Franklin St., Middletown, O.

KURZINA, S. B., Jr., mechanical engineer born in Caldwell, New Jersey, May 14, 1905; vice president, Curtiss-Wright Corporation. Address: 759 Morningside Road, Ridgewood, New Jersey.

KUTER, Lawrence Sherman, Air Force officer born in Rockford, Ill., May 28, 1905; Lieutenant General, Commander, Air University. Address: Maxwell AFB, Ala.

LaMOTTE, Ralph R., engineer born in Richmond, Ind., Apr. 25, 1906; manager, engineering, Aeroproducts division, General Motors Corp. Address: 290 Springbrook Blvd., Dayton, O.

LAND, Emory Scott, Naval officer born Jan. 9, 1879; Vice Admiral USN (Ret.), past pres. Air Transport Association of America, and director, General Dynamics Corp.

LAPPHIER, T. C., Jr., aviation executive born in Panama City, C. Z., Nov. 27, 1915; vice president and assistant to the president, Convair Division, General Dynamics Corp. Address: 203 Via del Norte, La Jolla, Cal.

LANSONG, R. F., vice-president, director, and group executive, Bendix Aviation Corp. Address: Teterboro, N. J.

LaPIERRE, C. W., engineer born in Jackson, Mo., Mar. 31, 1904; vice-pres. and general manager, Atomic Energy and Defense Products Group, General Electric Co. Address: Cincinnati 15, O.

LARRABEE, William, attorney born in Cedar Rapids, Ia., July 16, 1904; vice president-general manager, Radioplane Co. Address: 510 N. Veteran Ave., Los Angeles, Calif.

LARSEN, Finn J., physicist born in Bergen, Norway, Nov. 16, 1915; director of research, Minneapolis-Honeywell Regulator Corp. Address: 2601 West 54th St., Minneapolis, Minn.

LAUBACH, Harold R., aviation executive born in Easton, Penn., Jan. 7, 1908; manager, manufacturing, aeroproducts operations, Allison Div., General Motors Corp. Address: Indianapolis 6, Ind.

LAURIN, C. William, mechanical engineer born in Detroit, Mich., June 3, 1908; chief design engineer, Stratot Div., Fairchild Engine and Airplane Corp. Address: 4 Gidermill Lane, Huntington, N. Y.

LAUDAN, F. P., vice president, manufacturing, Boeing Airplane Co. Address: Box 3107, Seattle 14, Wash.

LAURIN, Kenneth N., accountant born in Seattle, Wash., June 27, 1921; chief accountant, West Coast Airlines, Inc. Address: 12027 70th Place So., Seattle 85, Wash.

LAW, Fred B., engineer born in Atlanta, Ga., October 26, 1904; general manager of the Aircraft Products Dept., Aeronautic and Ordnance Systems Div., General Electric Co., 600 Main St., Johnson City, N. Y.

LAWLER, John A., aviation executive born in Indianapolis, Ind., Apr. 25, 1901; president, Aeronaica Manufacturing Corp. Address: R. R. #3, Manchester Rd., Middletown, O.

LAZAR, E. F., assistant to vice president and assistant general manager, Sperry Gyroscope Co. Address: Great Neck, L. I., N. Y.

LEAR, William P., inventor, aviation executive; chairman of the board and director of research and development, Lear, Inc. Address: 3171 S. Bundy Drive, Santa Monica, Calif.

LEDERER, Jerome, aeronautical engineer born in New York, N. Y., Sept. 26, 1902; director, Flight Safety Foundation; technical advisor, United States Aviation Underwriters; director, Guggenheim Aviation Safety Center at Cornell University. Address: 471 Park Ave., New York 22, N. Y.

LEDERER, L. G., Dr., medical director, Capital Airlines, chairman ATA medical committee. Address: Room 70, National Airport, Washington 1, D. C.

LEE, Ben S., aviation writer born in Fort Worth, Tex., Sept. 9, 1915; public relations, Hill & Knowlton. Address: 610 Shoreham Bldg., Washington, D. C.
BIOGRAPHICAL BRIEFS

LEE, John C., aeronautical engineer born in Chicago, Ill., Dec. 5, 1898; assistant director of research, United Aircraft Corp. Address: Old Mountain Road, Farmington, Conn.

LEE, Joshua Bryan, government official born in Childersburg, Ala., Jan. 23, 1892; member, Civil Aeronautics Board. Address: Commerce Bldg., Washington 25, D. C.

LEE, Robert Merrill, Air Force officer born in Hinsdale, N. H., Apr. 13, 1909; Major General (temporary). Address: 12th AF, APO 12, New York, N. Y.

LEHNE, Henry, executive born in Pittsburgh, Pa., July 16, 1914; general manager, Electronic Systems Division of Sylvania Electric Products, Inc. Address: 8 Garland Place, Menlo Park, Calif.

LEIGHTER, Jerry, free lance aviation writer born in New York, N. Y., Jan. 3, 1918. Address: 24-32 42nd St., Long Island City 3, N. Y.

LeMAY, Curtis E., Air Force officer born in Ohio, Nov. 15, 1906; General. Address: Hq., Strategic Air Command, Offutt Air Force Base, Omaha, Neb.

LEONARD, John E., sales engineer, born in Rockford, Ill., Dec. 9, 1917; general mgr., helicopter div., Cessna Aircraft Co. Address: Wichita, Kansas.

LESTER, Everard Mason, engineer born in Norwich, Conn., July 31, 1906; assistant general manager, Fairchild Engine Division. Address: RFD #3, Huntington, N. Y.

LEWIS, Roger, aircraft industry executive born in Los Angeles, Calif., Jan. 11, 1912; Assistant Secretary of the Air Force (Materiel). Address: 3650 Upton St., N. W., Washington, D. C.

LICHTRY, Dale, senior vice president, sales and engineering, Hydro-Aire, Inc. Address: 3000 Winona Ave., Burbank, Calif.

LIPSCOMB, Willis Grandy, business executive born in Petersburg, Va., Jan. 21, 1901; vice-president, traffic and sales, Pan American Airways. Address: 135 E. 42nd St., New York 17, N. Y.

LITCHFIELD, Paul W., corporation official born in Boston, Mass., July 26, 1875; chairman of board and chief executive officer, The Goodyear Tire and Rubber Co., chairman of the board and president, Goodyear Aircraft Corp. Address: 1144 E. Market St., Akron, O.

LITTLEWOOD, William, airline executive born in New York, N. Y., Oct. 21, 1898; vice-president, research & development, American Airlines, Inc. Address: 918 16th St., N. W., Washington, D. C.

LOENING, Grover, aircraft engineer born in U. S. Consulate, Bremen, Germany, Sept. 12, 1888; aeronautical consultant, National Advisory Committee for Aeronautics; board member, National Air Museum; director, Fairchild Engine and Airplane Corp., director, New York Airways, Inc. Address: 24 W. 55th St., New York, N. Y.

LOGSDON, Charles S., aviation executive born in Boston, Maryland, Jan. 13, 1911; executive secretary and director, contest division, National Aeronautics Association. Address: 1711 Preston Road, Alexandria, Va.

LOGAN, A. F., aircraft executive born in Fresno, Calif., Feb. 26, 1892; vice president, industrial relations, Boeing Airplane Co. Address: Box 1207, Seattle 14, Wash.

LONNQUIST, Theodore Clayton, Naval officer born in Lynn, Mass., Apr. 10, 1894; Rear Admnlit, U. S. Navy. Address: Bureau of Aeronautics General Representative, Central District, Wright-Patterson Air Force Base, O.

LOVELACE, William Randolph, H. surgeon born in Springfield, Mo., Dec. 30, 1907; Colonel, Medical Reserve Surgical Staff; member, board of governors, Lovelace Clinic; member Aero Medical Panel of Navy Group on Aeronautical Research and Development to NATO. Address: Lovelace Clinic, Albuquerque, N. M.

LUDWIG, J. W., aeronautical engineer born in New York, N. Y., April 4, 1920; staff engineer, Chance Vought Aircraft Div., United Aircraft Corp. Address: Box 5907, Dallas, Tex.

LUNDIN, O. A., business executive born in Detroit, Michigan, Nov. 10, 1910; division comptroller, Allison Division, General Motors Corp. Address: Indianapolis, Ind.

LUNDQUIST, W. G., engineer born in Wright County, Minn., Sept. 25, 1903; chief engineer and vice president, Wright Aeronautical Div., Curtiss Wright Corp. Address: 32 Hollis Drive, Holokus, N. J.

LYMAN, L. D., aviation executive born in Easthampton, Mass., Apr. 24, 1891; vice president, United Aircraft Corp. Address: 400 Main St., East Hartford, Conn.

LYNCH, Roy Emerson, aviation executive born in Sturgis, Ky., Mar. 13, 1904; manager Aerospace-Allison Division, General Motors Corp. Address: Dayton, O.

LYNE, L. E., vice-president, defense products, Westinghouse Electric Corp. Address: P. O. Box 2278, Pittsburgh 30, Penna.

LYON, Edwin Bowman, Air Force officer born in Las Cruces, N. M., Dec. 8, 1892; Major General (Ret.) Address: 1827 Phelps Pl. N. W., Washington, D. C.

McADAMS, Joseph Edward, manufacturer born in Worthington, Ind., Nov. 11, 1886; president and treasurer, The Steel Products Engineering Co. Address: 1205 W. Columbus St., Springfield, 0.

McCABE, Emmett A., public relations and advertising executive born in Erie, Pa., May 18, 1907; director of advertising and community relations, Convair Division, General Dynamics Corp. Address: San Diego 12, Cal.

McCONNELL, Robert Porche, Naval officer born in Oakland, Calif., July 8, 1895; Vice Admiral (ret.). Address: Fairfield House, Rt. 5, Hendersonville, N. C.

McCULLOCH, Robert P., president, McCulloch Motors Corp. Address: 6101 W. Century Blvd., Los Angeles 45, Calif.

McDONELL, Donald N., investment banker born in Des Moines, la., Mar. 5, 1899; director, General Dynamics Corp. Address: 410 Park Avenue, New York, N. Y.

McDONEL, James S., Jr., aviation executive born in Denver, Colo., Apr. 9, 1899; president, McDonnell Aircraft Corp. Address: P. O. Box 516, St. Louis 3, Mo.

McDUFFIE, William C., aviation executive; chairman of the board, Northrup Aircraft, Inc. Address: Santa Barbara, Calif.

McERLEAN, C. F., lawyer born in Chicago, Ill., Apr. 18, 1912; director of law, United Air Lines. Address: 5959 S. Cicero Ave., Chicago 38, Ill.

McFARLAND, Marvin Wilks, librarian and historical editor born in Philadelphia, Penna., Nov. 15, 1919; head, aeronautics section, science division, and incumbent Guggenheim Chair of Aeronautics, Library of Congress. Address: 1165 Carson St., Silver Spring, Maryland.

McGARRY, James M., public relations counsel born in New York, N. Y., Feb. 26, 1921; manager, News Bureau, General Electric Co. Address: 1 River Road, Schenectady, N. Y.

McGUIYRT, John W., pilot born in Remerton, Ga., Nov. 15, 1921; chief of flight test, Chance Vought Aircraft, Inc. Address: P.O. Box 5907, Dallas, Tex.

McINTOSH, Colin H., airline executive born in Malden, Mass., 1908; air transportation consultant. Address: 1417 K St., N. W., Washington 5, D. C.

McINTYRE, James Dennett, Air Force officer born in West Point, N. Y., Apr. 9, 1893; Major General (retired). Address: 3133 Colorado Ave., N. W., Washington 8, D. C.

McKnight, Phil, public relations and advertising counsel born in Humboldt, Kans., Jan. 6, 1911; public relations director, Beech Aircraft Corp. Address: Wichita, Kans.

McLaughlin, George F., senior editor, Aero Digest. Address: 515 Madison Ave, New York 22, N.Y.

McNary, Joseph T., Air Force officer born in Emporium, Pa., Aug. 26, 1893; General (retired); a senior vice president and director of General Dynamics Corp., and president, Convair Division. General Dynamics Corp. Address: 1556 Virginia Way, La Jolla, Calif.

McQuiston, Irving Matthew, Naval officer born in Waltham, Mass., June 27, 1895; Rear Adm. Address: Office of Secretary of Defense, Pentagon, Washington 25, D.C.

Macarrell, Donald F., airline executive born in Connel Bluffs, Iowa, Feb. 8, 1906; vice president, Transportation Service, United Air Lines. Address: Stapleton Airfield, Denver 7, Colo.

Magill, Gilbert W., president and treasurer, Rotor-Craft Corp. Address: 1350 Victory Blvd., Glendale 1, Cal.

Magin, Franc W., manufacturer born in Chicago, Ill., Apr. 15, 1883; president, Square-D Co. Address: 6660 Rivard St., Detroit 11, Mich.

Mahoney, B. W., engineer born in Trum, N.Y., general manager of the Evendale Operating Department, Aircraft Gas Turbine Div., General Electric Co., Cincinnati 15, Ohio.

Mainieri, Ludwig A., mechanical engineer born in Salzburg, Austria, Feb. 9, 1900; president and chief engineer, Aerogull, Inc. Address: 2754 Groesbeck Highway, Roseville, Mich.

Malkin, Richard, author and editor born in New York, N.Y., June 27, 1913; managing editor, Air Transportation; managing editor, Air Shippers Manual. Address: 19 Bridge St., New York 4, N.Y.

Mallet, Leonard C., aircraft executive born in New York, N.Y., 1905; assistant general manager, Pratt & Whitney Aircraft Div. of United Aircraft Corp. Address: 272 N. Quaker Lane, West Hartford, Conn.

Mangel, Rolland S., sales engineer born in Meadville, Penn., October 19, 1919; manager, commercial aviation sales, and assistant to president, United Air Lines. Address: 5959 S. Cicero Ave., Chicago 36, Ill.

Mansfield, Harold, public relations counsel born in White Salmon, Wash., Apr. 16, 1912; director of public relations, Boeing Airplane Co. Address: 1611 S.W. 170th St., Seattle, Wash.

Mar.a, William A., public relations counsel born in St. Louis, Mo., Sept. 29, 1895; director of advertising and publicity, Bendix Aviation Corp.; general manager, television and broadcast receiver division, Bendix Radio Division. Address: 23825 Rockford Dr., Dearborn, Mich.

Marcus, Charles, vice-president and group executive, Bendix Aviation Corp. Address: 30 Rockefeller Plaza, New York, N.Y.

Marquardt, Roy E., aeronautical engineer born in Burlington, Iowa, Dec., 24, 1917; president, Marquardt Aircraft Co. Address: 16625 Suitney St., Van Nuys, Cal.

Marriott, Joseph S., aviation executive born in Modesta, Cal., July 5, 1893; regional administrator, Civil Aeronautics Administration. Address: 6132 Citrus Ave., Los Angeles 43, Cal.

Martin, Eric, aeronautical engineer born in Fallston, Tenn., July 24, 1907; vice president, United Aircraft Corp. and general manager, Hamilton Standard Division, United Aircraft Corp. Address: Windsor Locks, Conn.

Martin, Frank, aircraft sales executive born in Wythe County, Va., Feb. 18, 1918; sales manager, commercial aircraft, Cassna Aircraft Co. Address: 3000 Pannone Rd., Wichita 15, Kan.

Martin, Harold C., photographer born in New York, N.Y., Mar. 29, 1914; assist. to public relations director, Grumman Aircraft Engng. Corp. Address: Great River, L.I., N.Y.

Martin, John F., engineering test pilot born in Red Bluff, Cal., July 1, 1907; chief pilot, Douglas Aircraft Co. Address: 3000 Ocean Park Blvd., Santa Monica, Calif.

Martin, Samuel F., airline executive born in Cape Town, South Africa, Dec. 11, 1904; secretary of incorporation and assistant to president, United Air Lines. Address: 5959 S. Cicero Ave., Chicago 36, Ill.

MASTERS, George E., public relations counsel born in DesMoines, S. D.; public relations director, Northwest Airlines, Inc. Address: 1885 University Ave., St. Paul, Minn.

MASTERS, Norman, director of public relations and advertising, All American Aircraft, Inc. Address: 3700 E. Carson St., Long Beach 8, Cal.

MAURER, Richard S., attorney at law born in Cleveland, O., July 16, 1917; vice president, legal, and director, Delta-G&S Airlines. Address: 2601 Arden Road, N. W., Atlanta, Ga.

MAURO, Ben J., business administrator born in Sewickley, Pa., 1918; chairman of the board and president, Taylorcraft, Inc. Address: 719 Harbaugh St., Sewickley, Pa.

MAXFIELD, William T., engineer born in Salt Lake City, Utah, May 27, 1900; director of maintenance and engineering, Braniff International Airways. Address: 4538 University, Dallas, Tex.

MAY, L. J., business executive born in Chicago, Ill., Nov. 25, 1897; manager of aircraft inspection and quality, Allison Div., General Motors Corp. Address: Indianapolis, Ind.

MEHRHOF, Kenneth C., public relations counsel born in Jersey City, N. J., Mar. 20, 1918; public relations manager, Wright Aeronautical Corp. Address: 103 Linwood Terr., Allwood-Clifton, N. J.

MESKER, D. L., manager of flying, Trans World Airlines, Inc. Address: 10 Richards Rd., Kansas City 6, Mo.

MILES, Marvin G., newspaperman born in Los Angeles, Cal., May 22, 1911; aviation editor, Los Angeles Times. Address: 202 W. 1st St., Los Angeles, Cal.

MILLER, William H., regional operations officer, American Airlines, Inc. Address: LaGuardia Field, N. Y.

MINER, J. B., electrical engineer born in E. Greewich, R. I., Oct. 3, 1903; engineering manager, Aviation Engineering Dept., Small Motor Division, Westinghouse Electric Corp. Address: P.O. Box 909, Lima, O.

MINGSO, Howard, free lance writer born in Athens, Pa., Apr. 24, 1891; author and executive. Address: 299 W. 12th St., New York 14, N. Y.

MOCK, Richard M., aeronautical engineer born in New York, N. Y., July 28, 1905; president, Lear, Inc. Address: 3171 S. Bundy Dr., Santa Monica, Calif.

MOCKLER, Don Ryan, public relations counsel born in St. Louis, Mo., Sept. 15, 1903; aviation specialist, Hill & Knowlton; director and public relations executive, Helicopter Council, Aircraft Industries Association. Address: 5415 Conn. Ave., N. W., Chevy Chase, D. C.

MOGENSEN, W. A., certified public accountant born in Racine, Wis., July 11, 1897; vice-president and treasurer, AVCO Manufacturing Corp. Address: 830 Park Ave., New York, N. Y.

MOONEY, Al W., chief engineer, Mooney Aircraft Inc. Address, Kerrville, Texas.

MOORE, C. W., aviation executive born in Buffalo, N. Y., Sept. 22, 1919; vice president, sales, Helicopter Air Service, Inc. Address: 5036 West 63rd St., Chicago 38, Ill.

MORGAN, Allen W., aircraft executive born in McAle, Ark., September 24, 1909; assistant division manager—operations, Convair, a Division of General Dynamics Corp. Address: 7303 Vassar St., La Mesa, Calif.

MORGAN, Edward L., airline executive born in Big Springs, Tex., Sept. 20, 1912; manager, flight operations, Slick Airways. Address: Burbank, Cal.

MORGAN, Willard D., business executive born in Sedalia, Ky., Feb. 11, 1900; vice president, Garrett Corp. Address: 9851 Sepuheda Blvd., Los Angeles 45, Cal.

MOSIER, Harold G., lawyer born in Cincinnati, Ohio, July 24, 1889; legislative advisor, Aircraft Industries Association. Address: Shoreham Hotel, Washington, D. C.

MOSIER, O. M., airline executive born in Pawnee, Okla., Feb. 10, 1897; vice president—operations, American Airlines, Inc. Address: 100 Park Ave., New York 17, N. Y.

MOUNTSIE R, Robert, aviation writer born in Belleville, Pa. Address: 22 Charlton St., New York 14, N. Y.

MULLIN, Sam S., lawyer born in Sarasota, N. Y., Nov. 28, 1914; president and director, Cleveland Pneumatic Tool Co. Address: 3527 Guilford Rd., Cleveland Heights 18, Ohio.

MUNK, Max M., aeronautical engineer born in Hamburg, Germany, Oct. 22, 1890; Head, Dept. of Aeronautical Engineering, Columbia University; and Consulting Editor, Aero Digest. Address: 3319 Gunwood Drive, Hyattsville, Md.

MURPHY, Loren A., corporation executive born in Columbus, O., June 30, 1903; assistant general manager, Goodyear Aircraft Corp. Address: 1210 Massillon Road, Akron 15, O.

MURPHY, Thomas A., aviation executive born in Ogdenburg, N. Y., May 27, 1898; vice president and assistant general manager, Republic Aviation Corp. Address: 274 Ketcham Ave., Amityville, N. Y.

MURRAY, George Dominie, Naval officer born in Boston, Mass., July 6, 1899; Vice Admiral. Address: 3402 N St., N. W., Washington, D. C.

MURRAY, J. F., vice president, Boeing Airplane Co. Address: 403 Commonwealth Bldg., 1625 K St., N. W., Washington, D. C.

MYERS, John W., attorney born in Los Angeles, Cal., June 13, 1911; senior vice president, director, Northrop Aircraft, Inc. Address: 720 No. Rodeo Dr., Beverly Hills, Cal.

MYER, Clarence A., aviation executive born in Amherst, N. D., 1911; president, Frontier Airlines, Inc. Address: Stapleton Airport, Denver, Colo.

NAEGEL, J. W., aviation executive born in New York, N. Y., July 12, 1907; director of General Dynamics Corp. and executive vice president of Convair Division, General Dynamics Corp. Address: 1361 Rhodes Drive, La Jolla, Cal.

NEUMANN, Ray, public relations director, Slick Airways. Address: Municipal Airport, P. O. Box 5548, San Antonio, Tex.
NEVILLS, Mark E., eastern public relations representative, Boeing Airplane Co. Address: 1625 K St., N. W., Washington 6, D. C.; 120 Greenway North, Forest Hills, L. I., N. Y.

NEWBOLD, F. E., Jr., aviation executive born in Philadelphia, Pa.; vice president and general manager, Stratos Div., Fairchild Engine & Airplane Corp. Address: Stratos Div., Bay Shore, L. I., N. Y.

NEWHALL, Charles W., business executive born in Faribault, Minn., July 14, 1906; president & director, Flight Refueling, Inc.; director, Pan-Maryland Airways. Address: 1008 W. Wind Court, Towson 4, Md.

NEWILL, E. B., aviation executive born in Atlanta, Ga., Feb. 6, 1895; vice president, General Motors Corp. and general manager, Allison Division. Address: Speedway, Indianapolis, Ind.

NEWTON, Clarke, L. Col., Office of United States Special Representative in Europe, Hotel Talleyrand, 2 rue St. Florentin, Paris 1, France.

NICHOLSON, Charles A., Naval officer born in Utica, N. Y., Apr. 15, 1895; Rear Admiral. Address: Navy Dept., Washington 25, D. C.

NIEDELMAN, Samuel, aeronautical engineer born in Warsaw, Poland (U. S. citizen), Dec. 6, 1904; president, Aviquipo, Inc. Address: 25 Beaver St., New York, N. Y.

NORSTAD, Lauris, Air Force officer born in Minneapolis, Minn., Mar. 24, 1907; General. Address: Air Depot, 114 SHAPE, APO 53, N. Y.

NORTHINGTON, R. S., aviation executive born in Richmond, Va., Feb. 17, 1913; vice president, director, Fixed Base Div., Piedmont Aviation, Inc. Address: Smith Reynolds Airport, Winston-Salem, N. C.

NORTHROP, John Knausen, aeronautical engineer born in Newark, N. J., Nov. 16, 1895; Address: 767 Pasco Miramar, Pacific Palisades, Calif.

NOUZE, Hal E., airline executive born in Hermosa, N. Mex., May 24, 1901; vice president, economic controls, United Air Lines. Address: 5999 S. Cleaver Ave., Chicago 38, Ill.

NOYES, Blanche, flier and executive born in Cleveland, 0., June 23, 1900; chief, air route marking branch, planning staff div., office of Federal Airways, Civil Aeronautics Administration. Address: 2120 16th St., N. W., Washington, D. C.

OAKLEY, Bert T., corporation executive born in Castle Gate, Utah, July 15, 1915; secretary, Sperry Corp. Address: 30 Rockefeller Plaza, New York 20, N. Y.

O'BRIEN, Joseph L., executive director, Airlines Personnel Relations Conference. Address: Room 151, Public Roads Bldg., National Airport, Washington 1, D. C.

O'CONNELL, Walter C., engineer born in Sheffield, Mass., General Manager Aircraft Accessory Turbine Dept., General Electric Co. Address: 1000 Western Avenue, West Lynn, Mass.

OEETEL, Robb C., aviation executive born in Washington, D. C., Mar. 31, 1897; manager, Marketing Aviation, Essa Standard Oil Co. Address: 15 W. 51st St., New York, N. Y.

OFSIE, Ralph Andrew, Naval officer born in Eau Claire, Wis., Nov. 16, 1897; Vice Admiral. Address: Navy Dept., Washington 25, D. C.

O'KEEFE, Daniel M., meteorologist born in Southington, Conn., Sept. 8, 1914; chief meteorologist, Capital Airlines. Address: Box 111B, R.D. #1, Burke, Va.

OLSON, Harold E., aviation executive born in Goldfield, Nev., Nov. 28, 1913; factory service manager, Wichita Division, Boeing Airplane Co. Address: 3434 Orchard St., Wichita, Kans.

O'NEILL, Merlyn, Vice Admiral, born in Kenova, Ohio, Oct. 30, 1898; Commandant, U. S. Coast Guard. Address: 4000 Cathedral Ave., N. W., Washington 16, D. C.

ORTHEIN, William Robert, Jr., aviation executive born in St. Louis, Mo., Feb. 12, 1917; vice president, personnel and public relations, board of directors, McDonnell Aircraft Corp. Address: P.O. Box 516, St. Louis 3, Mo.

OSBORN, Robert L., aeronautical engineer born in Philadelphia, Pa., Nov. 19, 1900; engineering consultant, McDonnell Aircraft Corp., Lambert-St. Louis Municipal Airport. Address: Box 516, St. Louis 3, Mo.

OSBORNE, L. E., mechanical engineer born in Verona, Pa., May 16, 1895; executive vice president, Westinghouse Electric Corp. Address: P.O. Box 2276, Pittsburgh 30, Pa.

PACE, Frank, Jr., corporation and aviation executive born in Little Rock, Ark., July 5, 1914; vice president and director, General Dynamics Corp.; vice chairman and director, Canadair, Ltd. Address: 445 Park Avenue, New York 22, N.Y.

PARKINS, Wright A., engineer born in Genoa, N. D., Sept. 19, 1897; engineering manager, Pratt & Whitney Aircraft Div. of United Aircraft Corp. Address: Fernald Drive, W. Hartford, Conn.

PARKS, Oliver Lafayette, airlines executive born in Minonk, Ill., June 10, 1899; director, Ozark Airways, Inc.; Advisory Board—Air Training Command; founder and member of Executive Board, Parks College of Aeronautical Technology of St. Louis University.

PARRISH, Wayne W., editor and publisher born in Decatur, Ill., May 2, 1907; editor and publisher, American Aviation Publications. Address: 1026 Vermont Ave., N.W., Washington 5, D. C.

PASCHALL, Nat, aircraft executive born in Seattle, Wash., June 11, 1912; vice president, commercial sales, Douglas Aircraft Co. Address: 3000 Ocean Park Blvd., Santa Monica, Cal.

PATTERSON, Richard C., Jr., corporation executive and diplomat, born in Omaha, Neb., Jan. 31, 1886; director, General Dynamics Corp. Address: 280 Park Ave., New York, N. Y.

PAYNE, John B., export consultant born in Tiltonville, Pa., June 24, 1833; Director, Export Service, Aircraft Industries Association. Address: 610 Shoreham Bldg., Washington, D. C.

PAYNE, Joseph W., aviation executive born in Indianapolis, Ind., Mar. 7, 1916; manager, material control and purchasing, Allison Div., General Motors Corp. Address: Indianapolis 6, Ind.

PEALE, Mundy A., aviation executive born in Joliet, Ill., June 15, 1906; president and general manager, Republic Aviation Corp. Address: 34 Hilton Ave., Garden City, L. I., N. Y.

PERKIN, Kendall, aeronautical engineer born in St. Louis, Mo., Feb. 23, 1908; vice president, engineering, McDonnell Aircraft Corp. Address: 14 Kingsbury Pl., St. Louis 12, Mo.

PERRY, Clarence R., aviation executive born in Flint, Michigan, Jan. 9, 1905; coordinator 375, Projects, Allison Div., General Motors Corp. Address: Indianapolis 6, Ind.

PERRY, Hank R., business executive born in Bridgeport, N. J., Dec. 15, 1936; vice-president and general manager, Waco Aircraft Co. Address: 302 S. Plum St., Trey, O.

PERRY, Sam C., Jr., engineer born in New Orleans, La., Nov. 26, 1920; chief of missile design, Chance Vought Aircraft, Inc. Address: P. O. Box 5997, Dallas, Texas.
The AIRCRAFT YEAR BOOK

PETTEV, C. Gilbert, mechanical engineer born in Buffalo, N. Y.; consulting engineer. Address: Hillcrest Park, Stamford, Conn.

PETTIT, H. G., salesman born in Promise City, Iowa, Nov. 26, 1912; sales manager, aircraft division, Aeronca Mfg. Corp. Address: Box 102, Monroe, O.

PHELPS, Glenn, architect born in Lutesville, Mo., July 3, 1914; national president, CATERPILLAR Club. Address: 101 Park Ave., New York, N. Y.

PHILLIPS, Hudson, public relations executive born in St. Louis, Mo., Dec. 24, 1917; vice president, H. A. Bruno and Associates, Inc.; public relations counsel, Convair Division, General Dynamics Corp. Address: 22 Sprague Dr., Valley Stream, L. I., N. Y.

PHILLIPS, Rufus C. Jr., president, Airways Engineering Corp. Address: 1212 18th St., N. W., Washington, D. C.

PIERSOL, N., public relations counsel, Pacific Overseas Airlines. Address: Ontario, Calif.

PIHL, Paul Edward, Naval officer born in Paxton, Ill., July 19, 1898; Rear Admiral. Address: Assistant Chief for Research and Development, Bureau of Aeronautics, Navy Dept., Washington, D. C.

PIPER, William Thomas, airplane manufacturer born in Knapps Creek, N. Y., Jan. 8, 1881, president chairman of the board, Piper Aircraft Corp. Address: Lock Haven, Pa.

PITCAIRN, Harold Frederick, manufacturer born in Bryn Athyn, Pa., June 20, 1897; president, Antigoro Co. of America. Address: 1616 Walnut St., Philadelphia 3, Pa.

PLATT, Ralph C., aviation writer born in Cleveland, O., Sept. 25, 1907; aviation editor, Cleveland News. Address: 59 Coveland Dr., Avon Lake, O.

POUG, Lloyd Welch, lawyer born in Grant, La., Oct. 21, 1899; member, Pogue and Neal law firm and member, Committee on Aeronautical Law of the American Bar Association. Address: 730 Southern Bldg., Washington 5, D. C.

POMMER, C. G., engineer born in St. Louis, Mo., June 22, 1903; manager—marketing, Schenectady Aeronautica and Ordinance Div. General Electric Co. Address: 1 River Road, Schenectady, N. Y.

PORTER, Dr. R. W., engineer born in Salina, Kansas, Mar. 24, 1913; general manager, Guided Missile Dept., Aeronautical and Ordinance Systems Div., General Electric Co. Address: 2900 Campbell Ave, Schenectady 5, N. Y.

POWERS, Edward Michael, aviation executive born in Lefroy, Ill., Sept. 4, 1892; vice president, engineering and general manager, Wright Aeronautical Div., Curtiss-Wright Corp. Address: 325 Crestright Rd., Cedar Grove, N. J.

POWNALL, Charles Alan, Naval officer born in Atglen, Pa., Oct. 4, 1887; Vice Admiral (Ret.). Address: La Jolla, Calif.

PRATT, Perry W., mechanical engineer born in Lompoc, Cal., Jan. 10, 1914; chief engineer, Pratt & Whitney Aircraft Div. of United Aircraft Corp. Address: East Hartford Conn.
BIOGRAPHICAL BRIEFS

PRESCOTT, Robert W., airline executive born in Fort Worth, Texas, May 5, 1913; president. Flying Tiger Line. Address: Lockheed Air Terminal, Burbank, Cal.

PRICE, John Dale, Naval officer born in Augusta, Ark., May 13, 1892; Admiral, USN (Retired). Address: Pensacola, Florida.

PRICE, Wesley, writer born in Albany, N. Y., Mar. 6, 1904; associate editor (aviation), Saturday Evening Post. Address: R. D. No. 3, Doylestown, Pa.

PRIESTER, A. A., vice-president, technical committee, Pan American World Airways System. Address: 135 E. 42nd St., New York 17, N. Y.

PRINCETON, Albert I., editorial writer, The Hartford Times. Address: Hartford 1, Conn.

PRUDDEN, Earl D., airline executive born in Duluth, Minn., Apr. 6, 1898; vice-president, Ryan Aeronautical Co. Address: 1301 W. Sassafras St., San Diego, Cal.

PRYOR, Samuel Frazier, Jr., airline executive born in Ferguson, Mo., Mar. 1, 1898; vice-president and assistant to the president, Pan American World Airways System. Address: 135 E. 42nd St., New York 17, N. Y.

PUTT, Donald L., Air Force officer born in Sugarloaf, O., May 14, 1905; Lt. General, Deputy Chief of Staff, Development, HQ USAF. Address: The Pentagon, Wash., D. C.

QUARLES, Donald A., engineer born in Van Buren, Ark., July 30, 1894; Assistant Secretary of Defense for Research and Development. Address: 3041 Porter St., N. W., Washington, D. C.

RACHAL, Hal F., aviation executive born in Sinton, Texas, Jan. 1, 1912; president, Motors Aircraft, Inc. Address: 1410 Country Club Dr., Midland, Texas.

RADER, Louis T., Engineer born in Frank, Alberta, Canada, August 24, 1911. General Manager, Specialty Control Department, General Electric Company. Address: Wayneboro, Virginia.

RADFORD, Arthur William, Naval officer born in Chicago, Ill., Feb. 27, 1896; Admiral. Address: Chairman, Joint Chiefs of Staff, Washington 25, D. C.

RAE, Roger Maxwell, Air Force officer born in Emblem, Texas, Sept. 9, 1905; Major General (temporary). Address: Hq. 5th Air Force, Fort Worth, Texas.

RAMSPERG, Robert, attorney born in Decatur, Georgia, Sept. 3, 1890; vice-president—federal and state regulatory matters, Eastern Air Lines, Inc. Address: 9516 West Stainkope Road, Kensington, Md.

RAYMOND, William T., lawyer born in New York, N. Y., Nov. 3, 1912; Assistant to vice president, Eastern Air Lines. Address: 405 Colorado Bldg., Wash., D. C.

REGAN, Dr. James E., aeronautical engineer born in Great Britain, Aug. 16, 1917; chief engineer, Missile Div., Boeing Aircraft. Address: 6220 E. 26th St., Wichita, Kan.

REEDER, Paul E., airline executive born in Columbus, Ind., Apr. 6, 1906; manager, area flight operations, Honolulu division, United Air Lines. Address: 733 W. Greenwich Place, Palo Alto, Cal.

REEVES, William Lohigh, Naval officer born in Louisville, Ky., Nov. 18, 1900; Rear Admiral. Address: Navy Dept., Washington 25, D. C.

REESE, Clarence J., aviation executive born in Muskok, Ind., Aug. 25, 1904; president, Continental Motors Corp. Address: Muskegon, Mich.

REGAN, Herbert Ed, Naval officer born in Carson City, Nev., Apr. 3, 1900; Rear Admiral. Address: Navy Dept., Washington 25, D. C.

367
REICHELERFER, Francis Wilson, government official born in Harlan, Ind., Aug. 6, 1895; Chief of U. S. Weather Bureau. Address: Weather Bureau, Washington, D. C.

REIDY, T. H., aviation executive born in Bethlehem, Pa., Apr. 20, 1913; president, Helicopter Air Service, Inc. Address: 345 Walnut St., Northfield, Ill.

RÉINEKE, James E., airline executive born in Jefferson, Wis., Apr. 18, 1917; vice president-traffic and sales, Colonial Airlines. Address: 250 Park Ave., N. Y., 17, N. Y.

RENTSCHLER, Frederick Brant, aircraft manufacturer born in Hamilton, O., Nov. 8, 1887; chairman, United Aircraft Corp. Address: 400 Main St., E. Hartford, Conn.

REYNOLDS, Colin Wa, public relations counsel born in Los Angeles, Cal., July 18, 1908; vice president-industrial relations, Garrett Corp. Address: 9651 Sepulveda Blvd., Los Angeles 45, Calif.

REYNOLDS, J. Louis, sales executive born in Hartford, Conn., May 5, 1899; director of customer relations, Marguardt Aircraft Co. Address: Van Nuys, Calif.

RIHES, Thomas B., engineer born in Waterford, New York; assistant chief engineer, Hamilton Standard Div., United Aircraft Corp. Address: 1855 Main St., Glastonbury, Conn.

RHOADS, H. H., president, Hydro-Aire, Inc. Address: 3000 Winona Ave., Burbank, Calif.

RICHARDSON, Robert W., aviation executive born in Seattle, Wash., June 9, 1912; vice president in charge of sales, Goodyear Aircraft Corp. Address: 1210 Massilon Road, Akron 15, Ohio.

RICKENBACKER, Edward Vernon, airline executive born in Columbus, O., Oct. 8, 1890; chairman of the board and general manager, Eastern Air Lines. Address: 10 Rockefeller Plaza, New York 20, N. Y.

ROBBINS, Thomas Hinckley, Naval offices born in Paris, France, May 21, 1900; Rear Admiral. Address: Navy Dept., Washington 25, D. C.

ROBBINS, W. R., accountant born in Yorktown, N. J., Dec. 29, 1907; vice president and controller, United Aircraft Corp. Address: 2803 Albany Ave., West Hartford, Conn.

ROBERTS, Carlene, vice-president, American Airlines. Address: 913 16th St., N. W., Washington 6, D. C.

ROBERTS, Howard E., aeronautical engineer born in Porterville, Cal., Apr. 10, 1918; director of operations, American Helicopter Division of Fairchild Engine and Airplane Corp. Address: 1800 Rosecrans Ave., Manhattan Beach, Cal.

ROBERTSON, Keith E., sales manager, All American Aircraft, Inc. Address: 3700 E. Carson St., Long Beach 8, Cal.

ROBERTSON, William M., aviation executive born in DeSoto, Mo., Jan. 25, 1897, executive vice-president, Embry-Riddle International School of Aviation. Address: P. O. Box 668, Miami, Fla.

ROBINSON, Frederick F., corporation executive born in Ogden, Utah, Apr. 2, 1910; vice president and director, Airfleets, Inc. Address: 6035 Folsom Dr., La Jolla, Cal.

ROCHELEN, Ava Michael, public relations counsel born in Crimea, June 16, 1891; vice president-director of division of public relations, Douglas Aircraft Co. Address: 3000 Ocean Park Blvd., Santa Monica, Cal.

ROCKEFELLER, W. C., aviation executive born in Ogden, Utah, Apr. 2, 1910; vice president and director, Airfleets, Inc. Address: 6035 Folsom Dr., La Jolla, Cal.

ROCKWELL, C. S., executive, vice president and works manager, Sperry Farragut Company Division of the Sperry Corp. Address: Bristol, Tenn.

ROGERS, Raymond B., service engineer born in Reno, Pa., Jan. 22, 1911; asst. mgr., sales and service, Aviation Gas Turbines, Westinghouse Electric Corp. Address: 3540 Belinder Ave., Kansas City 3, Kansas.

ROHDE, Frederick W., aeronautical engineer born in Trier, Germany, Aug. 19, 1902; manager, Quality Control Dept. ACT Div., Westinghouse Electric Corp. Address: 110 Pennock Place, Media, Pa.

ROIC, Harold Joseph, airline official born in Poughkeepsie, N. Y., July 7, 1885; director and former president, Pan American-Grace Lines, Address: Kings Point End, Great Neck, L. I., N. Y.

ROOT, C. E. (Ned), public relations executive born in Paso Robles, Cal., Jan. 28, 1918; director of public relations, Convair Division, General Dynamics Corp. Address: Apt. 1, 6767 Neptune Place, La Jolla, Calif.

ROSEN, George, aeronautical engineer born in Boston, Mass., Oct. 29, 1896; chief aerodynamicist, Hamilton Standard Division, United Aircraft Corp. Address: 201 Mohawk Dr., West Hartford, Conn.

ROSENDAHL, Charles Emery, vice-admiral, USN (Ret.) born in Chicago, Ill., May 15, 1862; executive director, National Air Transport Coordinating Committee. Address: Flag Point, Toms River, New Jersey.

ROSENTHAL, Jerome Martin, attorney born in New York, N. Y., Apr. 29, 1907; vice president, Industrial Relations, National Airlines, Inc. Address: 9354 East Bay Harbor Dr., Miami Beach, Fla.

ROSS, Orrin E., engineer born in Chicago, Ill., 1895; president, Ross Aircraft Corp. Address: 3434 Merrick Rd., Seafoad, L. I., N. Y.

ROTH, C. F. B., president, director and general manager, Aircooled Motors, Inc. Address: Old Liverpool Rd., Syracuse 8, N. Y.

ROYCE, Donald, Naval officer born in Marquette, Mich., Apr. 20, 1892; Rear Admiral (Ret.). Address: 15 Pierrepont St., Brooklyn, N. Y.

RUDE, A. H., executive vice president, Aérojet-General Corp. Address: Azusa, Cal.

RUSSELL, Robert W., aviation executive born in Hartford, Conn., Feb. 24, 1906; administrative assistant, Hamilton Standard Div., United Aircraft Corp.; vice president, United Aircraft Service Corp.; assistant secretary, United Aircraft Corp. Address: Windsor Locks, Conn.

RYAN, Edward J., public relations counsel born in Company, Conn., Nov. 18, 1914; director of public relations, North American Aviation, Inc. Address: International Airport, Los Angeles 45, Cal.

RYAN, John L., lawyer born in Port Chester, N. Y., June 23, 1910; vice president and legal counsel and vice-president—industrial relations, Republic Aviation Corp. Address: Farmingdale, L. I., N. Y.

RYAN, Oswald, lawyer born in Anderson, Ind., Apr. 11, 1888; member, Civil Aeronautics Board. Address: Commerce Bldg., Washington 25, D. C.

SALLABA, Harold B., Naval officer born in Williamsport, Pa., Jan. 23, 1887; Admiral USN (Ret.); vice president, Chance Vought Aircraft, Inc. Address: 3907 Frederick Sq., Dallas, Tex.

SALVADORI, Bruno J., aeronautical engineer born June 2, 1913; executive engineer, Bellanca Aircraft Corp. Address: 305 Blue Rock Road, Wilmington, Del.
SANDERS, Richard H., mechanical engineer born in Washington, D. C., Apr. 30, 1912; partner, Sanders Aviation Co. Address: Box 26, Riverdale, Md.

SANDERS, Robert, aeronautical engineer born in Washington, D. C., Mar. 25, 1908; partner, Sanders Aviation Co. Address: 3321 Rowland Pl., N. W., Washington, D. C.

SANDERSON, John, corporation executive born in Philadelphia, Pa., Feb. 23, 1891; senior vice president and treasurer, and director The Sperry Corp. Address: 30 Rockefeller Plaza, New York 20, N. Y.

SANDSTROM, Roy J., aeronautical engineer born in Cadillac, Mich., Mar. 19, 1912; vice president, engineering, Bell Aircraft Corp. and consulting editor, Aero Digest. Address: 122 Woodcrest Blvd., Kenmore, N. Y.

SASNETT, R. Steve, aeronautical engineer born in Atlanta, Ga., Feb. 11, 1914; senior technical representative, Boeing Airplane Co. Address: 120 S. Pershing, Wichita, Kans.

SAUNDERS, Keith, writer born in Elizabeth City, N. C., Feb. 21, 1910; managing editor, American Aviation Daily; editor, National Aeronautics. Address: 1025 Vermont Ave., N. W., Washington 5, D. C.

SCANLON, Martin, Brig. General, USAF (Ret.), aviation executive born in Scranton, Pa., Aug. 1, 1889; vice president, special assignments, Republic Aviation Corp. Address: 1523 L St., N. W., Suite 406, Washington 5, D. C.

SCHAEFER, J. E., aviation executive born in Wichita, Kans., June 11, 1913; vice president, Boeing Airplane Co.; general manager, Wichita Division. Address: Wichita, Kans.

SCHUELER, George A., newspaperman born in Fulton County, Ind., June 10, 1905; aviation writer, South Bend Tribune. Address: South Bend, Ind.

SCHLATTER, David Myron, Air Force officer born in Carey, O., Nov. 21, 1901; Lieut. General. Address: Commandant, Armed Forces Staff College, Norfolk 2, Va.

SCHMIED, Edgar, vice president engineering, Northrop Aircraft, Inc. Address: Hawthorne, Calif.

SCHOLLE, Howard A., trustee born in New York, N. Y., Sept. 12, 1885; member, Aeronautical Archives Committee, Institute of the Aeronautical Sciences. Address: Lakeville, Conn.

SCHORY, Carl F., aviation executive born in Fort Wayne, Ind., Sept. 18, 1892; service manager, Hamilton Standard Div., United Aircraft Corp. Address: Windsor Locks, Conn.

SCHROEDER, Leslie L., attorney born in Minnesota Lake, Minn., Jan. 4, 1903; commissioner of aeronautics, Minnesota Department of Aeronautics. Address: 6025 Park Ave., Minneapolis, Minn.

SCHWARZENBACH, J. C., aeronautical engineer born in QueChee, Vt., Aug. 6, 1910; president, U. S. Propellers, Inc. Address: 3270 E. Foothill Blvd., Pasadena 8, Cal.

SCHWEBEL, W. H., executive born in New York, N. Y., March 10, 1902; vice president and director, Marquardt Aircraft Co. Address: 2950 N. Beverly Dr., Beverly Hills, Calif.

SCHWEIZER, Ernest, aeronautical engineer born in New York, N. Y., Apr. 20, 1912; president and chief engineer, Schweizer Aircraft Corp. Address: Elmhurst, N. Y.

SCHWEIZER, Paul A., aeronautical engineer born in New York, N. Y., July 23, 1913; vice-president and general manager, Schweizer Aircraft Corp. Address: R.D. 1, Elmhurst, N. Y.

SCHWENDLER, William T., engineer born in Winfield Junction, L. I., N. Y., April 1, 1904; executive vice president, Grumman Aircraft Engineering Corp. Address: Merritt Rd., Farmingdale, L. I., N. Y.

SEBOLD, Raymond C., aviation executive born in Fort Wayne, Ind., Dec. 3, 1906; vice-president, engineering, Convair Div., General Dynamics Corp. Address: 715 La Canada, La Jolla, Cal.

SEFFENBERG, Chester D., banker, corporate executive born in North Freedom, Wisc., Sep. 2, 1904; treasurer, Lear, Inc. Address: Santa Monica, Calif.

SEFFERT, Harold B., vice-president, operations, Pioneer Air Lines. Address: Love Field, Dallas, Tex.

SENIOR, Mil. union official born in Campgaw, N. J., June 1, 1912; president, Airline Communication Employees Association. Address: Rm. 313, 5 Beekman St., New York 7, N. Y.

SENSENICH, Harry M., business executive born in Littiz, Pa., 1903; president and treasurer, Sensenich Corp. Address: Lancaster, Pa.
BIOGRAPHICAL BRIEFS

SEREPINE, Gene, aviation public relations counsel born in New York, N. Y., Apr. 27, 1917; director of news bureau, Colonial Airlines. Address: 630 Fifth Ave., New York, N. Y.

SESSLER, Robert G., aviation executive born in Roanoke, Va., Mar. 9, 1904; president, Monocoupe Aircraft and Engine Corp. Address: Melbourne, Fla.

SEITTE, R. E., business executive born in Wells County, Indiana, Nov. 14, 1901; assistant director of engineering—aircraft engines operations, Allison Division, General Motors Corp. Address: Indianapolis, Ind.

SEITTE, T. G. W., Naval officer born in Washington, D. C., Nov. 4, 1895; Rear Admiral. Address: Commandant 8th Naval District, New Orleans, La.

SHARP, Edward Raymond, Dr., mechanical engineer born in Elizabeth City County, Va., Mar. 9, 1894; director, Lewis Flight Propulsion Laboratory, National Advisory Committee for Aeronautics. Address: 39 Hartman St., Cleveland, O.

SHARPLES, Laurence P., vice president, Sharples Corp., and chairman of the board and treasurer, Aircraft Owners and Pilots Association. Address: P.O. Box 29660, Washington 14, D. C.

SHATTO, Stanley R., aviation executive born in Reger, Mo., Dec. 29, 1908; vice-president, operations, Western Air Lines. Address: 6060 Avion Dr., Los Angeles 45, Cal.

SHESTA, John, engineer born in Russia, Dec. 9, 1901; director of research and engineering, Reaction Motors, Inc. Address: 79 Schuyler Ave., North Arlington, N. J.

SHOUTS, Roy D., engineer born in Storms, Ohio, June 23, 1903; gen. mgr., Aircraft Nuclear Propulsion Dept., Atomic Products Div., General Electric Co. Address: P.O. Box 132, Cincinnati 15, Ohio.

SHOWALTER, N. D., aeronautical engineer born in Calfax, Wash., May 13, 1906; chief engineer, Wichita Division, Boeing Airplane Co. Address: 3502 Coe Drive, Wichita, Kans.

SHRADER, R. C., airline executive born in Oseola, Nebr., Apr. 6, 1896; vice-president, Braniff Airways. Address: Highlander Apartments, Dallas, Tex.

SIKORSKY, Igor I., aeronautical engineer born in Kiev, Russia, May 25, 1889; engineering manager, Sikorsky Aircraft Div., United Aircraft Corp. Address: Sikorsky Aircraft, Bridgeport, Conn.

SILVERMAN, Joseph R., aviation executive born in Brooklyn, N. Y., June 8, 1915; quality control manager, Chance Vought Aircraft, Inc. Address: P. O. Box 5907, Dallas, Tex.

SIX, Robert E., airline executive born in Stockton, Cal., June 25, 1907; president, Continental Air Lines. Address: Denver, Colo.

SLATTERY, Edward E., Jr., public relations counsel born in Boston, Mass., May 8, 1911; chief, Office of Public Information, Civil Aeronautics Board. Address: 511 Valley Lane, Falls Church, Va.

Slick, Earl E., aviation executive born in Baltimore, Md., Nov. 20, 1920; chairman of executive committee, Slick Airways. Address: 427 Raymond Bldg., Winston-Salem, N. C.

SMALL, R. E., engineer born in Clearwater, Fla., manager of marketing, Jet Engine Department, General Electric Company. Address: Cincinnati 15, Ohio.

SMITH, C. R., airline executive born in Mineola, Texas, Sept. 9, 1903; president, American Airlines. Address: 100 Park Ave., New York 17, N. Y.

SMITH, Clyde R., pilot born in Clarksville, Pa., Dec. 23, 1914; engineering test pilot and flight analyst, Piper Aircraft Corp. Address: 311 N. Fairview, Lock Haven, Pa.

SMITH, Morris M., aeronautical engineer born in Waukegan, Ill., N. Y., June 24, 1905; vice-president, engineering, Radialplane Co. Address: 4657 Resina Ave., Encino, Calif.

SMITH, Frederick Dodge, airline pilot born in Roseville, N.J., Feb. 16, 1899; captain, Colonial Airlines. Address: 46 Cove Dr., Manhasset, N. Y.

SMITH, Lane W., airline pilot born in Laconia, N.H., Mar. 19, 1914; Captain, Western Air Lines. Address: 332-34th St., Manhattan Beach, Calif.

SMITH, Raymond B., metallurgical engineer born in Dayton, O., Sept. 2, 1914; director, Engineering Standards & Data, Reynolds Metals Co. Address: 60 Harwood Rd., Louisville, Ky.

SMITH, Rex, editor born in Gate City, Scott County, Va., June 17, 1900; vice-president, public relations, American Airlines. Address: 100 Park Ave., New York 17, N.Y.

SMITH, Robert J., president, Pioneer Aeronautical Services, Inc. Address: Municipal Airport, P.O. Box 7065, Dallas 9, Tex.

SMITH, Sory, Major General; Command, Pacific Air Force, APO 953, San Francisco, Calif.

SMITH, Theodore R., aeronautical engineer born in Oroville, Cal., Nov. 5, 1906; president, Aero Design and Engineering Corporation. Address: Culver City Airport, Culver City, Cal.

SMITH, Warren R., aviation executive born in Mount Vernon, N.Y., Aug. 10, 1916; director of public relations and assistant to the president, Fairchild Engine and Airplane Corp. Address: 3211 Newark St., N.W., Washington, D.C.

SMITH, W. W., born in Ioplin, Mo.; manager, Aviation Gas Turbine Division, Westinghouse Electric Corp. Address: P.O. Box 288, Kansas City, Mo.

SMYSER, Albert E., Jr., public relations counsel and aviation writer born in Pittsburgh, Pa., Mar. 30, 1914; Eastern public relations representative, North American Aviation, Inc. Address: 283 Madison Ave., Rm. 1520, New York, N.Y.

SOLOMON, S. J., aviation executive born in Washington, D.C., July 11, 1899; president, and chairman of the board, California Eastern Airways, Inc. Address: 9101 Calexico Rd., Silver Spring, Md.

SOUCEK, Apollo, Naval officer born in Medford, Okla., Feb. 24, 1897; Rear Admiral. Address: Chief of Bureau of Aeronautics, Navy Dept. Wash., D.C.

SPENCER, Leslie V., aviation writer and advertising executive born in Florence, Tenn., Nov. 15, 1892; treasurer, Aviation Writers Association; vice-president, The Albert Woodley Co. Address: 155 E. 44th St., New York 17, N.Y.

SPERBER, Alex, production manager born Nov. 10, 1902; factory manager, Sikorsky Aircraft. Address: 422 West Ave., Bridgeport, Conn.

SPRAGUE, Thomas Lamison, Naval officer born in Lima, O., Oct. 2, 1894; Admiral (Ret.). Address: 22 Ascut Court, Oakland 11, Calif.

Squier, Carl B., vice-president, assistant to the president, Lockheed Aircraft Corp. Address: 2555 N. Hollywood Way, Burbank, Calif.

STANTON, Charles L., aviation executive born in Medford, MASS., July 28, 1893; director, School of Airways, Aeronautical Institute of Technology of Brazil. Address: COCTA, Edificio Nova Estacao de Passageiros, Aeroporto Santos Dumont, Rio de Janeiro, Brazil.

STARKE, G. S., vice president for sales, Sperry Gyroscope Co., Div. of Sperry Corp. Address: Great Neck, L.I., N.Y.

STEFANO, Nicholas M., aeronautical engineer born in Sea Cliff, L.I., N.Y., May 26, 1912; chief engineer, American Helicopter Div., Fairchild Engine and Airplane Corp. Address: 11840 Stanwood Dr., Los Angeles, Calif.
STEFFEN, W. M., chemical engineer born in Kenton, Ohio, Jan. 18, 1916; General Supervisor, materials and process engineering, Northrop Aircraft, Inc. Address: 221 Anderson St., Manhattan Beach, Cal.

STERN, Ben, publicist born in Boston, Mass., Mar. 19, 1904; director, Office of Aviation Information, Civil Aeronautics Administration. Address: Rm. 1716, T-4 Bldg., Washington 25, D. C.

STERN, E. Theodore, public relations counsel. Address: 230 Park Ave., New York 17, N. Y.

STEWART, William H., business executive born in Kingston, N. Y., Apr. 13, 1880; president, Stewart Technical Co. Address: 253-7 W. 64th St., New York 23, N. Y.

STINE, Samuel S., aircraft engineer born July 8, 1894, in Moorsville, N. C.; general manager, Kansas City Works, Aviation Gas Turbine Div., Westinghouse Electric Corp. Address: 1212 West 73rd, Kansas City, Mo.

STOTTS, Eugene R., pilot born in Aurora, Mo., Aug. 19, 1903; pilot, American Airlines. Address: 4146 Don Luis Dr., Los Angeles 8, Cal.

STOVALL, W. R., chief medical division, Civil Aeronautics Administration. Address: T-4 Bldg., Washington, D. C.

STOWE, Lewis J., engineer born in Braham, Minn., Nov. 16, 1915; assistant chief engineer, Stratton Aircraft Corp., West Trenton, N. J.

STRAHAN, Duane, manufacturer born in Brookline, Mass., Sept. 25, 1903; vice-president, Champion Spark Plug Co. Address: 577 E. Front St., Perrysburg, O.

STRATTON, William F., general sales manager born in Englewood, N. J., March 29, 1915; manager, contract administration, Transco Products, Inc. Address: 12910 Nebraska Ave., Los Angeles, Calif.

STREETT, St. Clair, Air Force officer born in Washington, D. C., Oct. 6, 1893; Major General (permanent). Address: Lasby P. O., Md.

STROHMEIER, William D., advertising and public relations counsel born in Newton, Mass., Mar. 20, 1916; vice president, Davis, Pascone and Strohmeier, Inc. Address: 52 Vanderbuilt Ave., New York 17, N. Y.

STROUFOFF, Michael, engineer born in Ekaterinoslav, Russia, Jan. 29, 1883; graduate, Kiev Polytechnic Institute; president and chief engineer, Stroukoff Aircraft Corp. Address: West Trenton, N. J.

STUART, Donald M., electrical engineer born in Des Moines, Ia., Aug. 15, 1905; director technical development, Civil Aeronautics Administration. Address: 4709 Overbrook Rd., Washington, D. C.

STUART, Harold C., attorney born in Oklahoma City, Okla.; chairman of the board, Air Force Association; former Assistant Secretary of the Air Force. Address: Doerner, Blashart, Squire & Glammer, 1001 Connecticut Ave., N. W., Washington 6, D. C.

STUBERLAKER, Ford, aviation executive born in Pensacola, Fla., May 18, 1899; vice-president, operations, and development, Hawaiian Airlines, Ltd. Address: 3204 Haskell Dr., Burlingame, T. H.

STUMP, Felix Budwell, Naval aviator born in Pensacola, Fla., Dec. 15, 1942; Rear Admiral. Address: c/o Navy Dept., Washington 25, D. C.

SULLIVAN, Gladys M., editor born in Brooklyn, N. Y.; aviation and travel editor, Brooklyn Eagle. Address: 43 Fourth St., Brooklyn, N. Y.

SULLIVAN, Edward Chester, aviation executive born in Newark, N. J., Mar. 26, 1909; vice president and general sales manager, Jack & Holats, Inc. Address: Jackson Rd., Chagrin Falls, O.

SWIRBUL, Leon A., president, Grumman Aircraft Engineering Corp. Address: Bethpage, L. I., N. Y.

SWISHER, L. N., manager of aeronautical sales, Sperry Gyroscope Sales Division, General Electric Co. Address: 230 W. 41st St., New York 18, N. Y.

TALBERT, Ansel E., aviation and military editor The New York Herald Tribune. Address: 230 W. 41st St., New York 36, N. Y.

TALBOT, C. G., engineer born in Plymouth, Ill., June 16, 1913; manager of Flight Test Laboratory, General Electric Co. Address: 1 River Rd., Schenectady 5, N. Y.

TALBOTT, The Hon. Harold E., government official born in Dayton, Ohio, March 31, 1888; Secretary of the Air Force. Address: 3108 F St., N.W., Washington, D. C.

TAYLOR, J. Francis Jr., air force officer born in Columbus, Indiana, Apr. 12, 1912; Colonel (USAF), Director, Air Navigation Development Board. Address: 6106 23rd St., N., Arlington, Va.

TERRY, George A., tool manufacturer born in Stafford, N. Y., Jan. 12, 1879; general manager, George A. Terry Co. Address: 856 S. Elmwood Ave., Buffalo 1, N. Y.

THAYER, Eleanor, editor born in Cumberland, Md., Nov. 26, 1921; associate editor, Aero Digest and coeditor, Aircraft Year Book (Lincoln Press, Inc.). Address: 4034 1st St., S.W., Washington 24, D. C.

THAYER, Paul, test pilot born in Henryetta, Okla., Nov. 23, 1919; sales and service manager, Chance Vought Aircraft Inc. Address: P.O. Box 5907, Dallas, Tex.

THOMAS, Charles S., government official born in Independence, Missouri, Sep. 28, 1897; Secretary of the Navy. Address: The Westchester, Washington 16, D. C.

THOMPSON, E. S., engineer born in Washington, D. C., Feb. 4, 1906; manager—aircraft industry commercial relations study, Apparatus Sales Division, General Electric Company. Address: Cinncinnati 15, Ohio.

THOMSON, Alan C., aviation executive born in Monaco, Cal., Dec. 7, 1920; Division of Fairchild Engine and Airplane Corp. Address: 531 N. Brimhall St., Mesa, Ariz.

THORNTON, Charles Bates, business executive born in Knox County, Tex., July 22, 1915; vice president and assistant general manager, Hughes Aircraft Co. Address: 130 Ashdale Ave., Los Angeles 49, Cal.

THORP, John W., aeronautical engineer born in San Joaquin Co., Cal., June 20, 1912; president, Thorp Aircraft Co.; Airplane Project Engineer, Fletcher Aviation Corp. Address: 354 E. Cypress, Burbank, Cal.

TIDMARSH, George P., aircraft executive born in Tacoma, Wash., Jan. 11, 1906; vice president, Marquardt Aircraft Co. Address: 655 Park Lane, Santa Barbara, Calif.

TILLINGHAST, T. E., aviation executive born in Providence, R. I., May 29, 1893; president, United Aircraft Service Corp.; sales manager, Pratt and Whitney Aircraft Div. of United Aircraft Corp. Address: 61 Ledyard Road, West Hartford, Conn.

TILLSCH, Jan Henrik, physician born in Canby, Minn., Sept. 16, 1908; assistant professor, Mayo Foundation, University of Minn.; medical director, Northwest Airlines. Address: 102-110 2nd Ave., S. W., Dorchester, Minn.

TRACY, Charles Louis, newspaperman born in Bellevue, O., Sept. 30, 1916; aviation editor, Cleveland Press. Address: 1636 Blossom Park Ave., Lakewood 7, O.

TREMAN, S. Michael, aeronautical engineer born in Silver Creek, N. Y., Mar. 1, 1913; manager, missiles div., piloted plane div., Fairfield Engine and Airplane Corp. Address: 122 Powell Pl., Hempstead, N. Y.

TRIPPE, Juan Terry, airline executive born in Seabright, N. J., June 27, 1899; president, Pan American World Airways System. Address: 135 E. 42nd St., New York 17, N. Y.

TROST, Norman F., aviation executive born in Vandalia, Ohio, June 3, 1917; manager, inspection and quality control, aeroplane operations, Allison Div., General Motors Corp. Address: Indianapolis, Ind.

TROVILLO, J. A., director of personnel, Compass Aircrater Co. Address: 5800 Pennsylvania Road, Wichita 1, Kans.

TROUZELL, Clyde W., Jr., aviation executive born in Detroit, Michigan, Oct. 8, 1908; director, engineering and manufacturing, aeroproducts operations, Allison Div., General Motors Corp. Address: Indianapolis, Ind.

TSONEFF, Stephen, consultant: aeronautical engineer. Address: 15849 Stagg St., Van Nuys, Calif.

TUCKER, Harrison R., aircraft engineer born in Fairmont, W. Va., 1891; president, Tucker Industries, Inc. Address: 1900 E. 24th St., Cleveland, O.

TURNER, Recess, aviator and aviation executive born in Carinth, Miss., Sept. 29, 1895; president, president Turner Aviation, Terre Haute, Ind. Address: Weir Cook Airport, Indianapolis, Ind.

TURNER, Newton V., aviation executive born in Pettus, Tenn., June 26, 1910; divisional controller, Chance Vought Aircraft, Inc. Address: P.O. Box 5907, Dallas, Tex.

TUTTLE, M. W., aviation executive born in Los Angeles, Calif., Aug. 23, 1913; vice president, Radioplane Co. Address: 6655 Jumilla Ave., woodland Hills, Calif.

TWINING, Nathan F., USAF officer, General; Chief of Staff. USAF. Address: The Pentagon, Washington 25, D. C.

ULI, Joseph A., airline executive born in Cincinnati, O., Aug. 1, 1906; vice president and treasurer, Continental Air Lines, Inc. Address: 30 Crenshaw Dr., Denver, Colo.

UPHAM, S. W., engineer born in Thompson, Conn., October 4, 1907; marketing manager of the Aircraft Products Div., Aerostat and Ordinance Systems Div., General Electric Co., 630 Main St., Johnson City, N. Y.

WAGNER, William, public relations counsel born in Boise, Idaho, July 28, 1909; director, public and employee relations, Ryan Aeronautical Co. Address: 3544 Emerson St., San Diego 6, Cal.

WALKER, Franklin D., aviation journalist born in Forest City, Pa., Dec. 29, 1908; editorial director, Henry Publishing Co. (Skyways). Address: Little Falls, N. J.

WALKER, Randolph C., president and general manager, Audio Products Corp. Address: 2265 Westwood Blvd., Los Angeles 64, Cal.

WALLACE, William J., Major General, born in Church Hill, Md., Aug. 6, 1895; Commanding General, Aircraft, Fleet Marine Force, Pacific, MCAS, El Toro, Santa Ana, Cal.

WALTER, Don L., engineer born in Pelican Lake, Wis., Nov. 28, 1918; vice-president—engineering, member, board of directors, Marquardt Aircraft Co. Address: 18096 Borsa Dr., Encinita, Calif.

WARD, Harry DeG., treasurer, American Meteorological Society. Address: 3 Joy St., Boston 8, Mass.

WARD, Robert C., public relations counsel born in Camden, N. J., Mar. 20, 1911; director of public and industrial relations, Stroukoff Aircraft Corp. Address: West Trenton, N. J.

WATSON, David, airline executive born in Glasgow, Scotland, Jan. 3, 1907; treasurer, Hawaiian Airlines, Ltd. Address: 2104 Huns- well St., Honolulu 14, T. H.

WATSON, William O., aviation executive born in Sunol, California, Oct. 23, 1904; manager, sales and contracts, aircraft engines operations, Allison Div., General Motors Corp. Address: Indianapolis 6, Ind.
BIOGRAPHICAL BRIEFS

WAITS, Robert B., lawyer born in Portland, Me., May 26, 1901; vice president and legal counsel, Convair Div., General Dynamics Corp. Address: 7949 Princess St., La Jolla, Cal.

WAUGH, John D., industrial publicist born in Herington, Kans., June 26, 1919; director of Information, Nitrogen Division, Allied Chemical & Dye Corp., 40 Rector St., New York 6, N. Y.

WEBER, Donald B., Col., past president National Aeronautic Association and past commanding officer of the National Capital wing of the Civil Air Patrol; gen. mgr., NAA. Address: NAA, Washington, D. C.

WECKEL, A. R., vice president and general sales manager, Sperry Gyroscope Co. Div. of Sperry Corp. Address: Great Neck, L. I., N. Y.

WEILER, J. F., director of flying, Continental Air Lines. Address: Stapleton Airport, Denver 7, Colo.

WELLS, Edward C., aeronautical engineer born in Boise, Idaho, Aug. 26, 1910; vice president, engineering, Boeing Airplane Co. Address: Box 3107, Seattle 14, Wash.

WELLS, Lester A., aviation executive born in Baltimore, Md., May 28, 1900; president, Engineering and Research Corp. Address: 10 L. Blackthorne St., Chevy Chase, Md.

WELSH, William W., aviation executive born in Alma, Colo., Sept. 16, 1902; technical assistant to the president, Fairchild Engine & Airplane Corp. Address: 1022 Cafritz Bldg., Washington 6, D. C.

WENDT, Charles W., executive born in New York, N. Y., 1893; president, All American Engineering. Address: Wilmington, Del.

WENIGMANN, Ernest, aircraft executive born in New York, N. Y., April 22, 1897; factory superintendent, Republic Aviation Corp. Address: Kirk Ln., Media, Pa.

WENTZ, Daniel S., Jr., aviation writer born in Hanover, Pa., Dec. 15, 1919. Address: NACA, Ames Aeronautical Laboratory, Moffett Field, Calif.

WES, C. C., Jr., airline executive born in Arcadia, Calif., May 9, 1906; vice president, Continental Air Lines, Inc. Address: 545 Jersey, Denver, Colo.

WELLAND, Otto Paul, Air Force officer born in Riverside, Calif., Sept. 17, 1892; General Commander, Tactical Air Command. Address: Langley AFB, Va.

WHARTON, J. B., Jr., accountant born in Ellwood City, Pa., Mar. 21, 1914; vice president-finance, Glenn L. Martin Co. Address: 106 Thicket Rd., Baltimore 12, Md.

WHARTON, R. E., lawyer born in Birmingham, Ala., June 10, 1915; assistant to president—employee relations, Delta Airlines. Address: Municipal Airport, Atlanta, Ga.

WHELAN, Bernard L., aviation executive born in Cleveland, O., Nov. 19, 1890; general manager Sikonazy Aircraft, and vice president, United Aircraft. Address: Bridgeport 1, Conn.

WHITAKER, Sidney E., pilot born in Phoenix, Ariz., Oct. 25, 1906; assistant chief pilot, Delta-C&S Airlines. Address: Box 166, Airport Branch, Miami, Fla.

WHITE, H. Lee, government official; Assistant Secretary of the Air Force. Address: The Pentagon, Washington 25, D. C.

WHITEHEAD, Richard Francis, Naval Officer born in Fall River, Mass., Jan. 1, 1894; Rear Admiral. Address: Navy Dept., Washington 25, D. C.

WILLIS, Charles F. Jr., born in Beaumont, Texas, July 23, 1918; assistant to the president of the United States. Address: 3040 P St., N.W., Washington, D. C.

WILSON, GillRobb, newspaperman born in Clarion County, Pa., Sept. 18, 1893; editor and publisher, Flying Magazine. Address: 366 Madison Ave., New York, N. Y.

WILSON, Ray M., aviation executive born in Newton, Ill., 1900; vice president in charge of operations, Frontier Airlines. Address: Stapleton Airfield, Denver, Colo.

WOHL, E. P., aviation executive born in Chicago, Ill., Dec. 7, 1917; executive assistant to the president, Convair division, General Dynamics Corp. Address: 5187 Bedford Dr., San Diego, Calif.

WOLFE, Thomas, aircraft executive born in David City, Neb., June 12, 1901; president and chairman of the board, The Aircraft Service Assn. 2940 N. Hollywood Way, Burbank, Calif. Address: 873 Linda Vista, Pasadena, Calif.

WOOD, Charles R., Jr., executive born in Kokomo, Ind., June 8, 1906; president, Charles Wood Corp. Address: Box 354, Marion, Ill.
WOOD, Lysle Austin, aeronautical engineer born in Renville, Minn., Feb. 23, 1904; director, pilotless aircraft, Boeing Airplane Co. Address: Seattle, Wash.

WOODWARD, Harper, attorney born in Rochester, N. Y., Nov. 26, 1909; counsel and aviation advisor to Laurence S. Rockefeller. Address: Rm. 5606, 30 Rockefeller Plaza, New York, N. Y.

WOOLMAN, C. E., president and general manager, Delta C. & S Air Lines. Address: Miami, Fla.

WRIGHT, Theodore Paul, aircraft engineer and executive born in Caledburg, Ill., May 28, 1895; vice-president for research, Cornell University, president, Cornell Aeronautical Laboratory, Inc., and chairman, Executive Committee, Guggenheim Aviation Safety Center at Cornell University. Address: Cornell University, Ithaca, N. Y.

YEAGER, Charles; Major, USAF. Address: Hq. 12th AF (A-3), APO 12, c/o PM, New York, N. Y.

YEASTING, John O., aircraft executive born in Helena, Ohio, Dec. 1, 1905; vice president-finance, Boeing Airplane Co. Address: Box 3167, Seattle 14, Wash.

YOUNG, Ora W., government official born in Greenville, O., Mar. 25, 1892; regional administrator, region one, Civil Aeronautics Administration. Address: Federal Bldg., International Airport, Jamaica, L. I., N. Y.

YOUNG, Raymond W., mechanical engineer born in St. Joseph, Mo., April 9, 1899; president and general mgr., Reaction Motors, Inc. Address: Box 85, Rohokus, N. J.

ZACHAROFF, Lucien, economist and journalist, editor and publisher, Payload and The Air Shipper. Address: GPO Box 778, Brooklyn 1, N. Y.

ZEVELY, J. C., aviation executive born in Morgantown, W. Va., May 16, 1908; director of sales and contracts, Convair Division, General Dynamics Corp. Address: La Jolla, Calif.

ZIPP, Harold W., aircraft engineer born in Lincoln, Neb., Sept. 10, 1906; staff engineer, office vice president engineering, Boeing Airplane Co. Address: 8710 Overlake Dr., Bellevue, Wash.

ZISCH, W. E., vice president and general manager, Aerojet-General Corp. Address: Azusa, Calif.

ZWICKY, Fritz, Dr., born in Varna, Bulgaria, Feb. 14, 1889; chief research consultant, Aerojet-General Corp. Address: Azusa, Calif.
The following chronology has been compiled and edited by Ernest J. Jones, (Lt. Col., ret.), secretary of The Early Birds, now residing in Clifton, Virginia.

Although this chronology has been expanded considerably over previous editions, it still represents only brief excerpts from Colonel Jones' vast store of air data. Space has forced us to deal only with the highlights.

We are deeply indebted—as is aeronautics in the United States—to Colonel Jones for his thorough knowledge of aeronautics in this country and the generosity with which he shares it.

We also wish to thank the National Air Museum, Smithsonian Institute for providing the photographs used in this section.

Wright 1911 Glider, Kitty Hawk, N. C.
1784, Jan. 16—Airborne troops proposed by Benjamin Franklin in reporting on the first balloon ascent.
1784, July 17—First U.S. balloon flight in Peter Carnes' captive balloon, Baltimore, Md.
1784, Nov. 30—First ascent by an American abroad, by Dr. John Jeffries, physician, with French aeronaut Blanchard, at London. On Jan. 7, 1785, they make the first Channel crossing by air.
1793, Jan. 9—Balloon flight by Jean Pierre Blanchard from Philadelphia, Pa., to Woodbury, N. J. (Letter from George Washington reported on this flight.)
1837, Sept. 18—First parachute demonstration in America when John Wise drops animals from a balloon at Philadelphia.
1833, Aug. 11—John Wise safely lands with his parachute balloon at Easton, Pa.
1840, Sept. 8—Col. John H. Sherburne urges Secretary of War to use night balloons to locate Seminoles.
1842, Oct. 22—John Wise proposes to capture Vera Cruz by air.
1844, Oct. 16—America's first air patent to Muzio Mussi on direction of balloons.
1845, Sept. 18— Rufus Porter proposes steam airship line from New York-California, to carry gold seekers at $100 a trip. Stock sales unaffected.
(His 1849 booklet illustrates a jet-propelled passenger rocket.)
1839, July 1—World record balloon trip, 309 miles, St. Louis to Henderson, N. Y., by John Wise and three companions.
1839, Aug. 16—Airmail carried by John Wise in balloon flight from Lafayette to Crawfordsville, Ind.
1861, June 10—Military flight by James Allen, First Rhode Island State Militia, in balloon over Washington, D.C.
1861, June 16—Balloon telegraph demonstrated by T. S. C. Lowe. (Message to Abraham Lincoln.)
1861, June 22-24—Military reconnaissance by T. S. C. Lowe and Army officers from balloon using telegraph, over Arlington and Falls Church, Va. Military air operation continues into 1863.
1861, Aug. 3—Civilian aeronaut La Mountain inaugurates aircraft carrier operations with his war balloon. Lowe follows.
1861, Sept. 24—Air artillery adjustment from Lowe's Army balloon near Washington.
1861, Nov. 7—Helicopter proposed for Union Army. After experiments, a machine is partly built before Appomattox ends the project.
1862, Mar. 9—War helicopter bomber designed and urged by William C. Pauwars of Mobile, Ala.
1866, May 25—Solomon Andrews' airship makes first flight over New York with 4 passengers.
1873, Oct. 7—Unsuccessful trans-Atlantic flight by W. H. Donaldson, Alfred Ford and George A. Lunt in balloon, Graphite, from Brooklyn, N.Y. to New Canaan, Conn.
1877—Prof. William H. Pickering, Harvard University, begins experiments with model helicopters. In 1903, a rabbit is sent aloft.
1936—Thomas A. Edison conducts helicopter experiments for James Gordon Bennett.
1885, Jan. 7—Russell Thayer, C.E., a graduate of West Point, urges on Secretary of War Robert T. Lincoln a compressed-air airship of his design. No action.
1887, Jan. 30—Thomas E. Baldwin makes his first parachute jump at San Francisco.
1937—American altitude record made by aeronaut Moore and Prof. H. A. Hazen of U. S. Signal Service 13,140 feet, in balloon of St. Louis Post Dispatch.
1939, July 31—During the month, L. Gaimmann, of Chicago, explodes a shell at high altitude in attempt to produce rain.
1939, Oct. 1—President Harrison approves legislation creating the Weather Bureau and re-establishing the Signal Corps which is charged with collection and transmission of information, among other duties. Military aeronautics is then considered as among such means, and Army aeronautics is revived.
1942, Oct. 10—Balloon section is being organized with each telegraph train by Chief Signal Officer, General A. W. Greely, who anticipates military airships and airplanes.
1943, Nov. 29—Wingless aerial torpedos suggested by Prof. A. E. Zahn.
1939, Aug. 1-4—International Conference on Aerial Navigation held at Chicago: Octave Chanute, Chairman, Prof. A. E. Zahn, Secretary.
1883, Oct. 9—The Chief Signal Officer, General Greely reports the purchase of a La chambre balloon for the Signal Corps balloon section. First ascents since the war are made at the Chicago exposition in 1893.
1933, Apr. 29—First American wind tunnel begins operation at N.I.T.
1926, May 6—Steam-powered airplane model flown by Samuel Langley, Washington, D.C.
1923, Apr. 29—War and Navy Departments examine Langley's work, approve, and Board of Ordinance and Fortification makes two allotments of $25,000 each to build his airplane.
1928, Dec. 22—The Secretary of War approves a Fort Myer site for barracks, officer quarters, administrative building, and a balloon house to accommodate Signal Corps schools at one point.
1921, Sept. 1—Simon Newcomb, Ph.D., LL.D., writes in McClure for September: "The first successful flight will be the handiwork of a watchmaker and will carry nothing heavier than an insect."
In December, Rear Admiral Melville, USN says in the North American Review: "A calm survey ... leads the engineer to pronounce all confident speculations at this time for future success as wholly unwarranted, if not absurd."
1932, Sept. 13—A. Lee Stevens sails his airship Pagans over Manhattan Beach in a race with Edward C. Bumet in the latter's Santos Dumont airship.
The AIRCRAFT YEAR BOOK

apply for patent on their flying machine. (Patent issued May 22, 1906.)

1903, Dec. 8—Samuel Langley's flying machine, piloted by Charles Manly, plunges in the Potomac River and is wrecked on its second test, Washington, D. C.

1903, Dec. 17—First sustained controlled flight of powered heavier-than-air machine by Orville and Wilbur Wright, Kitty Hawk, N. C.

1904, Aug. 3—Circuit flight in airship (Cur- tiss motor) by Capt. Thomas S. Baldwin at Oakland, Cal.

1904, Wright brothers make 104 flights, covering 20 miles. British representatives visit the Wrights in November.

1905, Jan. 18—Wright brothers open negotiations with U. S. War Department for disposition of their invention. Correspondence is had through 1907.

1905, Apr. 29—Daniel Maloney begins series of glides with Montgomery glider, taking off from captive balloon. Later killed.

1905, Aug. 5—Charles K. Hamilton begins series of kite flights, towed by cars and boats.

1905, Sept. 26-Oct. 1—Wright brothers make 55 flights of 55.8 miles in 36 minutes, the longest being 24 miles in 33 minutes. 3 sec. Frank S. Lahm, in France, obtains report on Wrights' flying from Ohio relative. French remain neutral. In October the French government is negotiating along with British.

1905—Lt. Frank P. Lahm becomes first Army balloon pilot.

1906, May—French and British visit Wright brothers at Dayton.

1907, June 6—Building devoted exclusively to aeronautics dedicated at Jamestown (Va.) Exposition.

1907, Aug. 1—Aeronautical Division established, Army Office of Chief Signal Officer.

1907, Sept. 2—Walter Wellman airship America fails in polar attempt.

1907, Sept. 30—Ornithopter of H. G. Gammeter, multigraph inventor, lifts temporarilly.

1907, Oct. 1—Aerial Experiment Association formed by Dr. A. Graham Bell, F. W. Baldwin, J. A. D. McCurdy, Glenn H. Curtiss and Thomas E. Selfridge.

1907, Oct. 3—Record altitude of 23,110 feet by U. S. Weather Bureau meteorological kite.

1907, Oct. 18—Air bombing prohibition signed at second Hague conference.

1907, Oct. 21—Second Bennett international balloon race, St. Louis, won by Oscar Erbloh of Germany. Airship races are held Oct. 22-23.

1907, Oct. 28-29—International Aeronautical Congress held in New York.

1907, Oct. 29—Admiral C. M. Chester urges antisubmarine airships and shipboard airplanes at International Aeronautical Congress.

1907, Dec. 6—Seven-minute towed flight from motor boat tug in Dr. Bell's kite, flown by Lt. J. F. Baldwin.

1907, Dec. 16—Chief Signal Officer advertises for airship bids, resulting in purchase of Baldwin airship.

1907, Dec. 23—Chief Signal Officer advertises for airplane bids, after visit of Wrights.

1908, Feb. 10—First Army plane contract signed by Signal Corps with Wright Brothers. (Other contracts signed with A. M. Herring and J. F. Scott.)

1908, Mar. 12—First Aerial Experiment Association's plane, Red Wing, flown by F. W. Baldwin. Later, three other machines fly.

1908, May 6-18—Wright brothers renew flying preliminary to delivery of Army airplane. Charles Furnas is first airplane passenger.

1908, May 13—Balloon radio reception demonstrated by Signal Corps.

1908, June 10—Aeronautical Society formed in New York and Morris Park Airfield shortly obtained—first of kind in U.S.

1908, June 20—Anthony radio-controlled airship model demonstrated.

1908, July 4—Scientific American Trophy awarded Glenn H. Curtiss for first public flight of one kilometer circuit in his biplane, June Bug, Hammondsport, N. Y.

1908, July 17—First air ordinance passed by Kissemmee, Fla., with registration and regulation.

1908, Aug. 8—Demonstration flights under French syndicate control begin near LeMans, France, by Wilbur Wright, continuing through December, making a number of astounding records. Training of students follows.

1908, July 31-Aug. 8—Henry Farman of France makes first exhibition airplane flights in U.S.

1908, Aug. 22—First Army Baldwin airship accepted.

1908, Sept. 17—First plane fatality, killing Signal Corps Lt. Thomas E. Selfridge and severely injuring Orville Wright, in delivery of first Army airplane, Fort Myer, Va.

1908, Dec. 28—Matthew B. Sellers makes several flights with 7 hp quadreplane.

1909, Jan. 22—Commercial airplane, built by Glenn Curtiss, sold to Aeronautical Society of New York.

1909, April 16-22—Wilbur Wright delivers an airplane in Italy and teaches pupils.

1909, June 10—President Taft presents Aero Club of America medal to Wright brothers. Congressional gold medal presented at a celebration at Dayton, June 17-18.

1909, July 17—Curtiss flies 52 mins. in longest U.S. flight except Wrights and wins Scientific American trophy for second time. On this success in the Mineola flights the Aero Club of America names him as America's entry in the Bennett International race.

1909, Aug. 22-29—Glenn H. Curtiss wins first Bennett international airplane race and other events of first International Flying meet, Rheims, France. Speed: 45.7 mph.

1909, Aug. 25—First Army airfield leased at College Park, Md.

1909, Aug. 28—After instruction by Glenn H. Curtiss and subsequent practice in the machine constructed by the Aeronautical Society, Charles F. Willard gives his first exhibition at
A CHRONOLOGY OF U. S. AVIATION

Searsborough Beach, Toronto—America's first exhibition pilot. His exhibitions continue over several years.

1909, Sept. 7-Oct. 15—At Berlin, Orville Wright makes flights under German contract, with more records.

1909, Sept. 30—Inception of Wright-Curtiss patent litigation.

1909, Sept. 30—Emile Berliner describes a proposed guided missile.

1909, Oct. 3—At Zurich, Switzerland, E. W. Mix wins the Bennett International balloon race the second time for America.

1909, Oct. 4—Wilbur Wright makes sensational flight, Governors Island to Grant's Tomb and return. Glenn H. Curtiss makes a short flight Sept. 29 and Oct. 3.

1909, Oct. 7—Glenn H. Curtiss files his first exhibition at St. Louis, Chicago is next. The same month, Charles K. Hamilton and Otto Breddie learn to fly, followed by others. An exhibition company is formed and Curtiss returns to his development work.

1909, Oct. 8-Nov. 5—First Army machines taught to fly by Wilbur Wright, College Park, Md.; Lt. Frank P. Lahm, Lt. Frederic E. Humphreys, and Lt. B. D. Foulco. 1909, Nov. 27—Anti-aircraft firings begin at Sandy Hook by Ordnance Department.

1909, Nov. 22—The Wright Co. formed with $1,000,000 capital. In 1914, Orville Wright buys the company back. On Oct. 13, 1915, a syndicate buys the company and adds the Simplex Co. In 1916 it becomes the Wright-Martin Co.

1910, Jan. 10-20—First flying meet held at Los Angeles; Louis Paulhan, of France, the star performer.

1910, May 29—Record flight from Albany to New York by Glenn Curtiss, 142.50 mi. in 2 hr., 50 min.

1910, Mar. 25—Wright patent condemnation urged by William M. Page, attorney for C. F. Bishop, president, Aero Club of America.

1910, June 13—Charles K. Hamilton files New York-Philadelphia and return for N.Y. Times and Philadelphia Public Ledger and $10,000 prize—149.2 miles in flying time 3 hr. 27 min.; elapsed time, 6 hr. 57 min.

1910, June 13-18—First show of Wright exhibition team, Indianapolis, Ind., where Walter Brookins is star and makes new records. Exhibitions by single pilots or groups continue about the country until the Wright exhibition business is discontinued in Nov. 1911.

1910, June 30—Dummy bomb demonstration made by Glenn H. Curtiss to Army and Navy officers.

1910, Aug. 4—Plane-ground radio demonstrated by E. N. Pickerill.

Fokker C-2 Question Mark being refueled by Douglas C-1 Jan. 7, 1929

1910, Aug. 8—Tri-cycle landing gear installed by Lt. B. D. Foulco on Army Wright at San Antonio.

1910, Aug. 27—Air-land plane radio used by J. A. B. McCordy, Sheephead Bay, N. Y.

1910, Oct. 8-16—Former President Theodore Roosevelt is flown at St. Louis exhibition by Arch Hoxsey.

1910, Oct. 14-16—Wright-Patton airship, America, abandons transatlantic trip after some 800 miles.

1910, Oct. 22-31—Second Bennett international airplane race won by C. G. White (Sierist) at 61 mph during Belmont Park meet where numerous records are made.

1910—Night flights by Walter R. Brookins.
The AIRCRAFT YEAR BOOK

(Montgomery, Ala., Apr. 18) and Charles Hamilton (Camp Dickenson, Nashville, Tenn., June 21).......

1911, Jan. 7—Didier Masson flies Los Angeles-San Bernardino to deliver Times newspapers. Mail and papers delivered Feb. 17 by Fred Wiseman.

1911, Jan. 7-25—Dive bombing, aerial photography, airplane radio demonstrated by Army officers in San Francisco meet.

1911, Jan. 27-28—Lt. T. G. Ellyson, U.S.N., is first U.S. naval aviator when he takes his Curtiss off at San Diego during Curtiss exhibitions.

1911, Jan. 30—I. A. D. McCurdy attempts Key West-Havana flight but lands in water ten miles short and is rescued by Navy destroyer. In 1913 Domingo Rosillo makes the distance.

1911, Feb. 17—Curtiss flies tractor seaplane from North Island to cruiser Pennsylvania. Plane hoisted on board and return flight later made.

1911, Mar. 3—Lt. B. D. Foulois and P. O. Parmalee fly record cross-country Laredo-Eagle Pass, Tex., 106 mi. in 2 hr. 10 min. In Wright plane Isaac Newton in 1 hr. 27 min. by R. J. Coller. Messages dropped on route, radio received and sent.

1911, Mar. 13—Capt. W. Irving Chambers, U.S.N., is assigned the Bureau of Navigation to devote exclusive efforts to naval aeronautics.

1911, Mar. 27—About this date Missouri National Guard Signal Corps establishes air section and members taught flight and ballooning.

1911, May 8—First Navy airplane ordered, Curtiss Triad, amphibian. By July the three 1911 planes of the Navy are delivered—Curtiss A-1, A-2; Wright B-1.

1911, June 8—Connecticut state air regulation is first state air law.

1911, June 12—Short-lived Aeronautical Manufacturers Assoc. incorporated; Ernest L. Jones, president.

1911, June 30-July 11—Boston-Washington flown by Harry N. Atwood, Charles K. Hamilton flies with him most of way—longest continuous air journey to this date.

1911, July 1—Third Bennett plane race won for U. S. Navy Charles T. Weyman (Nieuport-Gnome 100) at 78 mph.

1911, July 31—During the month, Frank E. Boland begins flying his tailless, allegedly non-infringing airplane.

1911, Aug. 5—Lincoln Beachy wins over Eugene Hy and Hugh Robinson in New York-Philadelphia race for Gimbel $5000 purse. Elapsed time: 1 hr. 59 min. 18 sec.; one stop for fuel.

1911, Aug. 14-25—Harry N. Atwood flies St. Louis-New York, 1155 miles by route; longest non-stop air flight to this date.

1911, Aug. 20—World altitude record set at 11,642 ft. by Lincoln Beachy in Curtiss biplane.

1911, Sept. 4—Earle L. Ovington (Bleriot-Gnome 70) wins over Lieut. T. D. Milling (Burgess-Wright-Wright 30) in 160-mile tri-state race during Boston meet, in 3 hr. 6 min. 22 sec.

1911, Sept. 7—Lt. T. G. Ellyson, U.S.N., demonstrates shipboard launching by taking off from aerial cable at Hammondsport, N. Y.

1911, Sept. 17-Nov. 5—Transcontinental flight by Calbraith P. Rodgers from New York to Pasadena, Calif.—3,390 mi., 49 days.

1911, Sept. 23-30—Earle L. Ovington appointed Airmail Pilot No. 1, flying mail from Nassau Boulevard to Mineola, L. I., N. Y.

1911, Sept. 30—Lt. H. H. Arnold is "stunt man" for the lead in pioneer air movies at Nassau Boulevard meet where Army pilots complete.

1911, Oct. 9—Demonstration of Tarbox automatic pilot made before officers at College Park. Other similar inventions follow.

1911, Oct. 10—Bombighting and dropping device demonstrated by Riley Scott, College Park, Md.

1911, Oct. 19-Feb. 12, 1912—Eastbound transcontinental flight of Robert G. Fowler (Wright B), Los Angeles-Palos Beach, Fla., 2520 mi. in 116 days.

1911, Oct. 21—Orville Wright makes soaring record of 9 min. 45 sec. at Kitty Hawk.

1912, Feb. 12—Frank T. Coffyn takes automatic movie aerials over New York harbor.

1912, Mar. 1—Attached type parachute jump by Bert Berry from Benoist pusher plane, St. Louis.

1912, Apr. 16—First U. S. licensed woman pilot, Harriet Quimby, flies English Channel. (Killed at Boston Aviation Meet, July 1.)

1912, May 24—Paul Peck makes American duration record of 4 hr. 23 min. 5 sec. in biplane with Berliner Gyro engine.

1912, May 30—Death of Wilbur Wright by typhoid.

1912, June 7-8—Machine gun fired from Wright biplane by Capt. Charles DeForest Chandler, College Park, Md.

1912, July 2—Vaniman airship Akron crashes off Atlantic City in renewed trans-Atlantic attempt.

1912, July 31—Plane launched from sea wall by catapult, Navy Lt. T. G. Ellyson in Curtiss AII-3.

1912, Oct. 5—In night flight, Lt. J. H. Towers, U.S.N. (Curtiss A-2) makes world seaplane duration record, 6 hr. 10 min. 35 sec. at Annapolis; American record for any plane.

1912, Oct. 5—First Navy physical exam for pilots published by Bureau of Medicine and Surgery.

1912, Oct. 9—First competition for Mackay Trophy won by Lt. H. H. Arnold.

1912, Nov. 6-Dec. 15—Antony Jannus (Benoist seaplane Roberts 2-cylinder 100 hp.) flies Omaha-New Orleans, with mail and merchandise, carrying passengers at stops en route 1835 mi., flying time: 31 hr. 43 min.

1913, Jan. 13-Mar. 31—Air parcel post flight, Boston-New York, by Harry M. Jones (Wright B).

1913, Feb. 11—James Hay bill in Congress...
inaugurates the project of a separate air service.
1913, Feb. 13—Langley Field Aerodynamical Laboratory project inaugurated.
1913, Apr. 27—First cross-Isthmus flight by Robert G. Fowler and cameraman R. A. Duhem, Panama-Cristobal; publication of story and pictures results in arrest.
1913, May 10—Didier Masson and bomber Dean attack Mexican federal gunboats in Guayamas Bay. A number of other Americans fly for Villa in this and subsequent years.
1913, May 28—Lt. T. D. Milling and Lt. W. C. Sherman make 2-man duration and distance record of 4 hr. 22 min. and 220 miles (Burgess tractor-Renault 70), Texas City-San Antonio.
1913, May 30—About this date is instituted M.E.'s aerodynamics course under Aust. Naval Constructor Jerome C. Hunsaker.
1913, June 20—First Naval aviator killed when Ens. W. D. Billingsley is thrown from seaplane.
1913, July 19—Sky writing initiated by Milton J. Bryant over Seattle.
1913, Nov. 27—First exhibition loop by Lincoln Beachy in Curtiss biplane, Corona, Cal.
1913, Dec. 4—Tactical Air Unit, First Aero Squadron, set up as provisional organization, San Diego, Cal.
1913, Dec. 12—Wright pilot Oscar Brindley reports at San Diego as Army's first civilian instructor. Scores of others subsequently employed through 1915.
1913, Dec. 31—Orville Wright demonstrates automatic pilot; awarded Collier Trophy.
1914, Jan. 1—First scheduled airline begins operations with Benoist flying boat between St. Petersburg and Tampa, Fla.; Tony Jannus, pilot.
1914, Jan. 31—During the month first U.S. Navy air station established at Pensacola, following temporary camps at San Diego and Annapolis, 1911-1912.
1914, Feb. 17—Seaplanes and flying boats classed as "vessels" by the Department of Commerce and the license No. 1 is issued to Antony Jannus.
1914, Feb. 24—Army Board condemns all pusher-type airplane.
1914, Apr. 15—Electric self starter fitted to Anzani 200-hp engine of Collier flying boat.
1914, June 23—Curtiss' Wannamaker trans-Atlantic flying boat tested. With outbreak of World War I the project is abandoned.
1914, July 2—Lawrence Sperry wins French War Dept. prize for "stable airplane" flown by early automatic pilot over Seine River in Paris.
1914, July 18—Aviation Section of Signal Corps created by Congress, authorizing 60 officers and 260 enlisted men.
1915, Mar. 3—National Advisory Committee for Aeronautics established by Congress.
1915, May 14—Contract let for first Navy airship tender to Connecticut Aircraft Co. in July is contracted a floating airship shed.
1915, June 22—Wisconsin State Forester, Signal Corps Dirigible #1 in flight at Ft. Myer, Va., 1908
E. M. Griffith, flown by Jack Villas, in first air forest patrol.
1916, Feb. 9—Cpl. A. D. Smith (Martin S-Hall Scott 125) makes world seaplane duration record of 8 hr. 42 min.
1916, Feb. 12—Invitation for bids on airmail issued by Post Office in Massachusetts and Alaska.
1916, Mar. 15—First Aero Squadron, under command of Capt. R. D. Fouloux, begins operations at Columbus, N. M., with Gen. Pershing's Punitive Expedition.
1916, Apr. 5—The Governors Island Training Corps organized by Phillip A. Carell.
1916, Apr. 13—A power-driven turret is proposed without result by Col. E. F. Cobham.
1916, June 3—Naval Defense Act increases strength of Aviation S. C. from 60 to 148 officers over 5-year period. President may fix increase of enlisted men from old figure of 260.
1916, June 18—U.S. aviator H. Clyde Balsley shot down. (Member of Lafayette Escadrille, flying for France.)
1916, Aug. 29—First U.S. Coast Guard Aviation Division organized.
1916, Oct. 2—Allocation airship development to Army or Navy decided by Chief Signal Officer, rigid later assigned Navy.
1916, Nov. 14—More than 60 civilians are to Curtiss contract school at Newport News, Va., beginning this date and before Apr. 6, 1917. Others are sent to Curtiss school at Miami. Gen. Mitchell learns to fly here at this period.
1916, Nov. 19-20—U.S. aviator W. A. Cousins flies her 1914 Curtiss pusher Chicago-New York, with 2 stops on route, for new cross-country record.
1916, Dec. 17—To this date the Aero Club of America has certified 636 airplane pilots. In addition are many other pilots who have
never flown for the Aero Club certificate. On Dec. 31, the Army has graduated 122 pilots since 1909.

1916, Dec. 12—Non-exclusive licenses are offered by Wright-Martin Aircraft Corp. on royalty basis. Terms are considered prohibitory and in 1917 Congress appropriates $1,000,000 to acquire basic patents. Solution is the cross-license agreement of the Aircraft Manufacturers Association.

1917, Feb. 13—Capt. Francis T. Evans, U.S.-M.C., loops and spins a seaplane at Pensacola.

1917, Feb. 15—Aircraft Manufacturers Association completes organization.

1917, Apr. 6—U.S. declares war on Germany.

1917, Apr. 6—Official strength of the Aviation Section, S.C., is 131, including regular and reserve. Of these, 112 are airplane pilots or student pilots. Enlisted strength is given variously from 1087-1800. At armistice the figures are: total officers, 20,708; pilot and student pilots, 12,449; enlisted, 174,315. Airplane strength, “less than 300.” Produced in U.S., Apr. 6, 1917—13,594; received from Allies, 5,229; total, 18,823.

1917, May 10—Arrangements made for eight ground schools for theoretical training Reserve officers or candidates.

1917, May 23—French Premier Ribot asks U.S. to furnish 5,000 pilots, 50,000 mechanics, 4,500 planes for active service by spring 1918.

1917, June 1—Barlow robot bomber urged. Armistice ends project.

1917, July 15—Flieke torpedo plane tested with dummy missile. Experiments continue.

1917, July 24—First great U.S. air appropriation, $640,000,000. Act also provides for increase in organization of Aviation Section, S.C., July 27.

1917, July 27—Secretary of Navy authorizes a Naval Aircraft Factory at Philadelphia.

1917, July 27—First British DH-4 arrives to be the first American service plane put into production, with Liberty engine. First American DH-4 completed is flown Oct. 29 by civilian test pilot H. M. Rimchart.

1917, Aug. 5—Original First Aero Squadron leaves Columbus, N.M., for overseas under Maj. Ralph Royce.

1917, Dec. 12—First AEF squadron program calls for 89 wings and 508 squadrons. One wing equals six squadrons (5 airplanes, 2 balloons). A brigade comprises two or more wings.

1917, Sept. 5—Bristol fighter project started. Condemned July 20, 1918, after 27 planes are built.

1917, Sept. 22—Montgomery heirs sue Wright-Martin Aircraft Corp. for infringement. Suit withdrawn June 6, 1921. Suit of same date against U.S. is dismissed May 28, 1928.

1917, Oct. 16—Airplane to airplane radio phone demonstrated.

1917, Oct. 18—McCook Field established as Signal Corps Experimental Laboratory.

1917, Oct. 18—Aviation Medical Research Board established by Signal Corps.

1917, Nov. 15—J. Newton Williams’ helicopter proposal results in recommendation of N.A.C.A. for Government price of $20,000, not accomplished.

1917, Nov. 21, Robot bomber demonstrated to Army and Navy officers.

1917, Nov. 27—Brig. Gen. R. D. Foulouls made Medal of Air Service, AEF.

1917—Gen. William Mitchell claimed as first officer to fly over enemy lines.

1918, Jan. 19—U.S. School of Aviation Medicine begins operations under Signal Corps Maj. William H. Wilmer, Hazelhurst Field, Minoa, L.I., N.Y.

1918, Feb. 28—Under President Wilson’s proclamation, licenses are required for civilian pilots or owners; more than 800 are issued.

1918, Mar. 8—Maj. Edward C. Schneider and Maj. James L. Whitney, in simulated altitude flight, reach artificial altitude of 34,000 ft. In 24 min. at Signal Corps, Mineola, N.Y., laboratory.

1918, Mar. 11—First D.S.C. awarded Army air service personnel goes to Lt. Paul Baer of 103rd Squadron for his performance this date.

1918, Mar. 14—Two pilots of First Pursuit Group (95th Squadron) go on patrol.

1918, May 9—Flight Surgeons are organized at flying fields.

1918, May 11—U.S.-built DH-4 Liberty planes received by AEF.

1918, May 15—Congress establishes Air Mail Flyer’s Medal of Honor. First award is to M. F. Freeburg, 1932.

1918, May 15—Regular airmail service flown by Army between New York and Washington, D.C.

1918, May 20—Army aeronautics severed from Signal Corps; two departments created: Bureau of Military Aeronautics and Bureau of Aircraft Production.

1918, June 26—A trans-Atlantic flight is urged by Gen. William L. Kenly, Director Military Aeronautics as “most necessary.” On Aug. 8, Roy N. Francis is assigned to study project. Experiments continue to 1919 when Navy’s NC4 makes the flight.

1918, Sept. 2—First D.H. Liberty patrol by 135th Aero Squadron.

1918, Aug. 17—First Martin bomber flown at Cleveland by Thomas Eric Springer.

1918, Sept. 7—First U.S. demonstration of troop transport by air.

1918, Sept. 12-13—Greatest air concentration of history at St. Mihiel under Gen. William Mitchell—1,431 planes.

1918, Sept. 16—German attached type parachutes being in use at least as early as May 1, 1918, the AEF cables need and suggests Floyd Smith, test pilot, proceeds development. Smith develops tree type parachute. Leslie L. Irving makes first free jump Apr. 28, 1919.

1918, Sept. 25—First Congressional Medal of Honor awarded for air activity voted 1st Lt. Edward V. Rickenbacker of 94th Aero Squadron.

1918, Sept. 26—First phase of Mense-Argeonne attack.
A CHRONOLOGY OF U. S. AVIATION

1918, Sept. 28—Pilothless airplane manuevered from another airplane by radio, after some months of experiment. Various automatic pilots and radio controllers tried over the years.

1918, Oct. 2—First successful flights of Army's guided missile. Its prototype had been flown by H. M. Rinehart in July, substituting for the explosive load and the automatic controls.

1918, Oct. 12—Use of oxygen tanks ordered all pilots over German lines.

1918, Oct. 25—Charles E. Hughes reports on his investigation of dishonesty in aircraft production.

1918, Nov. 11—Armistice signed.

1918, Dec. 4—First Army trans-continental flight made by Major Albert D. Smith's group of JN4 planes, San Diego-Jacksonville-New York-San Diego. Major Smith's plane alone completes the full round trip.

1919, Jan. 24—At Issoudun, France, 1st Lt. Temple M. Joyce (Morane) makes 300 consecutive loops.

1919, Mar. 3—U. S.-Canada airmail flown by Edward Hubbard in Boeing seaplane, Type C.

1919, Apr. 25—Leslie L. Irving makes first free type manually operated airplane parachute jump over McCook Field. (See 9/16/18).

1919, May 6-31—Trans-Atlantic crossing by Lt. Albert C. Read and crew from Rockaway Beach, N. Y., to Plymouth, England, in NC-4, 53 hr. 56 min.

1919, May 14—Navy airship C-5 makes American non-stop record of 25 hr. 50 min., Mussanlk Ft., L. I. to St. Johns, N.F.

1919, May 18—in first trans-Atlantic takeoff, H. C. Hawker and McKenzie Grieve alight in ocean 1200 miles and 14½ hours out with engine trouble. Rescued.

1919, May 19—First award of DFC made to M. Sgt. Ralph W. Bottrell for first jump by Army personnel with free-type 'chute.

1919, June 1—First organized and sustained forest fire patrol inaugurated at Rockwell.

1919, June 26—Treaty of peace with Germany signed at Versailles.

1919, July 1—Aerial ship patrols inaugurated at San Diego by Comdr. E. W. Spencer, Jr., U.S.N.

1919, July 4—First U. S. airmail service over the world, 1918, Oct. 16—Flood relief provided by four U.S.A.F. C-1s from Corpus Christi to stranded inhabitants.

1919, Sept. 18—Roland Rohrs (Curtiss triplane-K12 Curtiss 400) makes world altitude record of 31,430 ft.

1919, Oct. 31—Army transcontinental reability and endurance test New York-San Francisco and return. Forty-four complete
The AIRCRAFT YEAR BOOK

westbound; 15 eastbound. Ten planes make round trip.

1919, Oct. 30—Reversible pitch propeller tested at McCook Field, Dayton, Ohio.

1919, Nov. 12-June, 1920—Six Navy F-5L's cruise New York to West Indies and return, covering 12,731 nautical miles.

1920—Moon eclipse observed by Lt's. J. H. Tilton and W. D. Coney, from Washington Naval air station from height of some three miles.

1920, Feb. 27—World altitude record of 33,113 feet set by Maj. R. W. Schroeder (Le Pere-Liberty).

1920, Mar. 29-Apr. 22—Marine Corps group flight Washington-San Domingo and return, 4842 miles.

1920, June 7—Lt. John H. Wilson makes transatlantic world parachute jump record of 19,800 ft.

1920, June 4—Army Reorganization Bill approved by Congress. Service in Army.

1920, July 7—F-5L Navy seaplane flown by radio compass from Hampton Roads, Va., to U.S.S. Ohio, at sea.

1920, Sept. 8—Transcontinental mail route, combination plane-train, New York-Chicago-San Francisco, completed.

1920, Nov. 1—U. S. international passenger service started by Aeromarine West Indies Airways between Key West, Fla., and Havana, Cuba.

1920, Nov. 25—1st Lt. C. C. Mosely (Verville-Packard 600) wins first Pulitzer race at 156.54 mph; 24 contestants finish, 13 others start but do not finish.

1921, Feb. 18—First U. S. airplane parachute escape by C. C. Eversole, airmail pilot.

1921, Feb. 22-23—Night airmail flown by Jack Knight from North Platte, Neb., to Chicago, Ill.

1921, Feb. 24—Lt. W. D. Coney completes transcontinental flight, San Diego-Jacksonville, 2180 mi. in 22 hr. 27 min.; 57 hr. 24 min. elapsed time.

1921, Mar. 23—Lt. A. C. Hamilton drops 23,700 ft. by parachute, Chanute Field.

1921, June 21—Navy F-5L planes sink German sub U-117 in demonstration.

1921, July 18-21—Sinking of captured German cruiser, Frankfurt, and battleship, Ostfriesland, by U. S. bombs proves vulnerability of naval craft to aerial attack.

1921, Aug. 10—Navy Bureau of Aeronautics formed with Rear Admiral W. A. Moffett as Chief.

1921, Sept. 28—New world altitude record of 34,508 ft. set by Lt. J. A. Macready.

1921, Nov. 5—Bert Acosta (Curtiss Navy-C12 Curtiss 400) wins Pulitzer race at 176.7 mph.

1921, Nov. 12—Refueling in air: Earl S. Daugherty transfers Wesley May with can of gasoline from wing of another plane.

1921, Nov. 15—Italian airship Roma makes tidal ascent in U. S. at Langley Field.

1921, Dec. 1—Helium airship, Navy dirigible C-7, flown from Hampton Roads, Va., to Washington, D. C.

1921, Dec. 29—World endurance record of 26 hr. 18 min. 35 sec. made at Roosevelt Field by Edw. Stinson and Lloyd Bertaud (C16 BW 185).

1922, Jan. 1—Underwriters Laboratories starts registration of aircraft for benefit of insurance companies.

1922, Jan. 1—Aeronautical Chamber of Commerce organized, New York, with I. M. Uppercu, president.

1922, Feb. 21—Airship Roma destroyed.

1922, Mar. 20—Airplane carrier U.S.S. Langley commissioned at Norfolk, Va.

1922, June 16—Helicopter demonstrated by Henry Berliner, Washington, D. C.

1922, July 14—Aeromarine Airways starts Detroit-Cleveland flying boat service.

1922, Aug. 5-7—Lt. Clayton Bissell completes first model airway flight, Washington-Dayton.

1922, Aug. 16—Sperry airway light beacon demonstration, McCall Field.

1922, Sept. 4-5—Transcontinental speed flight by Lt. James H. Doolittle, Pablo Beach, Fla.-San Francisco, Cal., in 22 hr. 35 min. elapsed time.

1922, Sept. 14-23—Transcontinental Army airship flight with Maj. H. A. Straus commanding crew of Capt. G. W. McEntire and others, from Langley Field, Va., to Arcadia, Cal.

1922, Oct. 5-6—World endurance record, 35 hr. 18 min. 30 sec. Rockwell Field, by Lt. J. A. Macready and O. G. Kelly (Fokker T2 Liberty 375).

1922, Oct. 23—American Propeller Co. demonstrates reversible propeller at Balling Field.

1922, Dec. 18—Army's Do Bothzeit helicopter makes first successful flight, 1 min. 42 sec., Dayton, Ohio.

1922, Mar. 29—Lt. R. L. Maughan makes world speed record 236.38 mph (Curtiss-B3 Cor, Dayton, Ohio).

1922, Apr. 16-17—World duration—distance records by Lts. J. A. Macready and O. G. Kelly (Fokker T2 Liberty 375), 36 hr. 4 min. 34 sec., 2816.53 miles.

1922, May 2-3—Cross-country non-stop flight by Lts. J. A. Macready and Oakley G. Kelly in Fokker T-2, from New York to San Diego, 2,820 miles in 26 hr. 50 min. 3 sec.

1923, Sept. 5—Smoke screen demonstrated by Thomas Buck Hine during naval bombing maneuvers, Cape Hatteras, N. C.

1923, Sept. 5—Langley Field bombers sink naval vessels New Jersey and Virginia.

1923, Oct. 10—Lt. A. S. Williams, U.S.N., wins Pulitzer race (Curtiss R5C1-D12 Curtiss 460) at 243.68 mph.

1923, Oct. 25-27—Ballooning bomb series weight-carrying records with greatest weight 5000 lb., duration, altitude records, 1 hr. 19 min. 11.8 sec., 5,344 ft.
1923, Nov. 4—Lt. A. J. Williams, U.S.N. (Curtiss R2C1-D12A Curtiss 500) makes world speed record 266.59 mph.

1923, Dec. 19—For $100,000 the Christmas Aeroplane Co. assigns its aileron patent to U. S. Government.

1924, Jan. 16—Naval airship Shenandoah tears loose from mast in storm and rides it out during the night.

1924, Feb. 21—Alaskan airmail flown by Carl B. Eielson from Fairbanks to McGrath.

1924, Feb. 22—Lt. J. A. Macready (Lepere-supercarged Liberty 400) reaches 41,000 ft. indicated altitude.

1924, Apr. 6-Sept. 28—Round-the-world flight by Lt. Smith, Nelson, Arnold, and Harding, Seattle to Seattle, 26,445 miles, 175 days (360 hours flying time).

1924, June 2—Lt. James T. Neely and storm-riding meteorologist Dr. C. L. Meisinger, Weather Bureau, killed by lightning in balloon near Monticello, Ill.

1924, July 1—Through transcontinental airmail service begun by U. S. Post Office.

1924, Oct. 4—Lt. H. H. Mills wins Pulitzer trophy (Verville Sperry-Curtiss HC D12A) at 216.55 mph.

1924, Oct. 7-25—Naval airship Shenandoah makes record cross-country cruise over 7080 miles in 252 hr. 01 min. Air hours total of 422 hr. 23 min. includes time moored.

1924, Oct. 29—Fog dispersal by electrified silica and sand demonstrated at Belling Field.

1925, Jan. 29—Eclipse pictures and astronomic data secured at high altitudes by Air Service pilots.

1925, Feb. 2—Kelly Bill signed by President Coolidge authorizing/ private contract air transport of mail.

1925, Apr. 7—Naval carrier Saratoga launched.

1925, May 21-July 6—Amundsen-Ellsworth polar flight.

1925, July 15—Dr. A. Hamilton Rice Expedition, first to employ planes in exploration, returns from Amazon; Lt. Walter Hinton, pilot in Curtiss Seagull.

1925, Aug. 4—MacMillan polar expedition, with Navy assistance.

1925, Aug. 5—Seven American pilots leave Paris to fly for the French in the Rif campaign in Africa. Others follow to a total of 17 pilots, 5 observers.

1925, Aug. 31-Sept. 2—In Navy's attempt ed San Francisco-Honolulu flight, Commander John Rodgers and crew (PN9-2 Packard 500 flying boat) alight short of mark, making non-stop cross-country seaplane record of 1,841 miles.

1925, Sept. 3—Navy dirigible Shenandoah, collapsed in storm over Ava, O., killing 14 of 43 on board.

1925, Sept. 12—Marrow Beard appointed by President Coolidge. (Laid down U. S. air policy.)

1925, Oct. 12—Lt. Cyrus Betlis wins 6th Pulitzer race (Curtiss R3C1-V1400 Curtiss 619) at 248.97 mph.

1925, Oct. 26—Lt. J. H. DoLittle wins 8th international Schneider Seaplane Trophy race in first contest in America (Curtiss R3C2—V1400 Curtiss 619) at 232.57 mph.

1925, Dec. 17—Gen. William Mitchell found guilty of violating 96th Article of War; had risked insubordination by demanding unrestricted use of air power. Sentenced five years suspension of rank, pay and command. Resigned.

1926, Jan. 15—A $2,500,000 air promotion fund established by Daniel Guggenheim.

1926, Jan. 29—Lt. J. A. Macready (Curtiss Liberty 400) makes American altitude record: 38,704 ft.

1926, Feb. 17—Strip bombing tests made at Kelly Field.

1926, Apr. 16—First cotton dusting plane purchased by Department of Agriculture.

1926, May 8—Flight over North Pole by...
Richard Byrd, navigator, and Floyd Bennett, pilot, in a monoplane.
1925, May 21-July 6-Amundsen-Ellsworth bile airship Norge crosses Pole in voyage Spitzbergen-Teller, Alaska in 71 hours.
1925, May 6-May 20-Ground Crew Act (Bingham-Parker Bill) signed by President Coolidge at Aeronautics Branch, Department of Commerce, established.
1926, July 2-Army Air Service renamed Army Air Corps.
1926, July 2-First reoresting by airplane, Hawaii.
1926, July 14-Armstrong seadrome model demonstrated at Wilmington, Del. to Air Service.
1926, Aug. 18-Metal-clad airship contract let at not over $300,000.
1926, Aug. 25-JN training plane dropped by parachute, San Diego Naval Air Station.
1926, Dec. 7-Airway beacon erected by Aeronautics Branch, Department of Commerce, on Appleton, Ind.
1926, Dec. 21-May 2 (172)-Mass amphibian good will flight from San Antonio, Tex. through Mexico, Central and South America and West Indies, Airler Maj. H. A. Dargue.
1927, Apr. 12-New American duration record of Clarence D. Chamberlin and B. B. Acosta (Bellanca-15 Wright 200) 51 hr. 11 min. 25 sec.
1927, May 4-Record balloon altitude attempt by Capt. H. C. Gray, 42,470 ft.
1927, May 20-21—Non-stop trans-Atlantic solo flight by Charles A. Lindbergh, New York-Paris, 3,610 miles, 33 hr. 30 min. (13th aircraft to make completed crossing.)
1927, June 4-First nonstop flight to Germany, Clarence D. Chamberlin and passenger (Bellanca-15 Wright 200), 3,911 miles, 43 hr. 49 min. 33 sec.
1927, Sept. 2—Air express operations begun by American Railway Express and major airlines.
1927, Sept. 10—Bennett international balloon race, Dearborn, Mich., won by E. J. Hillard and A. C. Schlepper with 745 miles; 16 contestants.
1927, Oct. 12—Wright Field dedicated.
1928, Feb. 3-Dec. 28—Lt. H. A. Sutton conducts a series of spin tests; awarded Mackay Trophy.
1928, Mar. 28-30—Edw. A. Stinson and George Holderman (Stinson-Wright 200) make endurance record of 53 hr. 36 min. 30 sec.
1928, May 24—Gen. Uebert’s airship is over the Pole in trip from Spitzbergen. It is wrecked May 25, with loss of lives of crew and rescuers.
1928, May 31-June 8—First U. S.-Australian flight, by Capt. C. Kingsford-Smith, Capt. C. T. P. Ulm, H. W. Lyon and James Warner (Fokker-3 Wright 200) Oakland-Brisbane, 7,410 miles, 81 hr. 19 min.
1928, June 11-12—Mexico-Washington flight by Capt. Emilio Carranza (Bryan-Wright 200).
1928, June 17-18—First woman to fly Atlantic, Amelia Earhart with Wilmer Stultz, pilot, from Trepassey Bay, N.F., to Burureport, England, in trimerotored Fokker, 2,140 miles, 20 hr. 40 min.
1928, July 30-31—Twenty-second Bennett international balloon race, Detroit, won by Capt. W. E. Keppner and Lt. W. O. Fareeckson; 460 miles, 43 hr.
1928, Sept. 19—First Diesel engine to power heavier-than-air craft; designed by L. M. Woolson, manufactured by Packard Motor Car Co.; flight-tested at Utica, Mich.
1928, Oct. 19—Parachute troop demonstration at Brooks Field.
1928, Nov. 11—First Antarctic flight made by Lt. C. B. Eielson and Sir Hubert Wilkins (Lockheed-Wright 22). Other flights subsequently.
1928, Nov. 23-Dec. 30—New York-Caribou, Colombia, flight by Capt. Benjamin Mender; 4,650 miles.
1929, Apr. 3—Floyd Smith trap-door parachute demonstrated.
1929, Apr. 30—Jack Barstow makes duration glider record of 15 hr. 13 min. at Point Loma, Cali.
1929, July 13-30—World endurance record of 420 hr. 17 min. by Forrest O’Brien and Dale Jackson (Curtais Robin-Curtiss 70).
1929, July 18-20 — N. Y.-Alaska flight by Capt. Russ G. Hoyt. Return flight ends at Edmonton, after covering 6,000 miles out of 8,469 itinerary.
1929, Aug. 5-6—Group transcontinental flight of 9 Keystone bombers under Major Hugh J. Kneer.
1929, Oct. 21—Air Ambulance Service organi-
1929, Nov. 17—Glider, piloted by Capt. Frank Hawks, released from seaplane, Port Washington, N. Y.

1930, Jan. 30—Glider, piloted by Capt. Frank Hawks; San Diego to New York; 2,860 miles in 36 hr., 47 min.

1930, June 4—New world altitude record of 38,560 ft. set by Navy Lt. Apollo Soucek, Anacostia, Md.

1930, June 11-July 4—World endurance record of 553 hr. 41 min. 30 sec. established by John and Kenneth Hunter (Stinson-Wright 200).

1930, July 21-Aug. 17—Refueling endurance raised to 647 hr., 28 min. by Forrest O'Brien and Dale Jackson in a Curtiss Robin, St. Louis, Mo.

1930, July 22—German air mail plane catapulted 250 miles out en route to New York; 198 such ship-shore flights 1929-1933.

1930, Sept. 1—Bennett international balloon race again won for U. S. by W. T. Van Orman and aide, 542 miles.

1931, Mar. 30—Airplane-airship mail transfer at Scott Field.

1931, Apr. 10—Airship sub-cloud observation ear demonstration by Lt. W. J. Paul.

1931, May 14-22—Transcontinental airship flight by John M. Miller, from Philadelphia to San Diego.

1931, June 4—Rocket glider flown by William C. Spalding; remained aloft for 30 min. with 10 rockets, Atlantic City, N. J.

1931, July 25-26—Glider duration record of 16 hr. 38 min. by 2nd Lt. John C. Crain, Honolulu.

1931, Oct. 3—Trans-Pacifique non-stop airplane flight by Clyde Pangborn and Hugh Herndon, Samisho Behach, Japan, to Wenatchee, Wash.

1931, Dec. 3—Herdon and Pangborn (Bellanca-PW 420) left New York July 28 on world trip and had reached Japan Aug. 6, abandoning attempt to better Post-Gatty record.

1931, Oct. 6-9—Navy bomber tests on U.S.S. Pittsburgh in Chesapeake Bay.

1931, Nov. 3—Dirigible, Akron, carried record number of 207 persons in flight over New York City.

1931, Dec. 17-18—Glider duration record of 21 hr. 34 min. by Lt. Wm. A. Coeke, Honolulu.

1932, May 9—First solo blind flight, by Capt. Albert F. Hegenberger, Wright Field, Dayton, O.

1932, Aug. 25—First woman to complete non-stop transcontinental flight, Amelia Earhart, Los Angeles to Newark.

1932, Dec. 1—Telegraphwriter weather map service inaugurated by Department of Commerce.

1933, Jan. 19—Rocket guided by sound waves from enemy aircraft proposed.

1933, Jan. 25—Steam airplane project launched by Great Lakes Aircraft and General Electric Co. Later Bessey brothers fly their steam airplane.

1933, Apr. 4—Navy dirigible, Akron, crashes into sea, killing 76; Comdr. Herbert V. Wiley, commanding.

1933, May 5-26—Airborne troop logistics port of West Coast maneuvers, with 283 aircraft.

1933, July 15-22—Solo round-the-world flight by Wiley Post in Lockheed Vega monoplane, Annie Mae, in 7 days, 13 hr., 19 min.

1933, Sept. 4—World speed record for land planes set at 304.98 mph by James R. Wedell in Wasp-powered Wedell-Williams racer.

1933, Nov. 20-21—World balloon altitude record set at 61,627 ft. by Lt. Comdr. T. G. W. Settle and Maj. C. L. Forney over Akron, O.

1933, Feb. 9—Postmaster General Farley cancels certain mail contracts. Air Corps flies the mail Feb. 19-Mar. 10; Mar. 19-May 5.

1934, June 12—Hollway commission to study airmail act and report on all phases of aviation by Feb. 1, 1935.

1934, Dec. 31—War Department announces instruction governing GHQ Air Force organization and operations.

1935, Jan. 3—Antarctic flight by Ellsworth and Kenyon (Northrop-PW 600).

1935, Feb. 12—Navy dirigible, Macon, crashes into sea, killing 2.

1935, Aug. 15—Will Rogers and Wiley Post killed in take-off crash near Point Barrow, Alaska.

1935, Nov. 11—Balloon altitude record of 72,484 ft. by Capt. O. A. Anderson and Capt. Albert Stevens.

1935, Nov. 21-Dec. 3—Antarctic flights renewed by Ellsworth and Kenyon (Northrop-PW 600).

1935, Nov. 22-29—Trans-Pacific airplane flight by Capt. Edwin C. Musiek, Pan American Airways, from San Francisco to Honolulu, Midway Island, Wake Island, Guam and Manila, in Martin China Clipper.

1936, June 7—All-instrument transcontinental flight by Maj. Ira H. Baken, between New York and Los Angeles.

The AIRCRAFT YEAR BOOK

1937, May 6—German dirigible, Hindenburg, burns on Lakehurst, N. J.

1937, June 25—Non-stop transcontinental amphibious flight by Richard Archbold in PBY-1, Catalina, from San Diego to New York.

1937, July 3—Regular trans-Atlantic service test by Pan American Airways, Imperial Airways also similarly operate July 5-Aug. 2 and continue in 1938.

1937, Aug. 12—In joint coast defense exercise, Navy patrol planes locate target ship Utah 300 miles off San Francisco; Air Corps planes attack.

1937, Aug. 25—Wholly automatic landings made, Apr. 30, at history, at Wright Field by Capt. Carl J. Crane with 2 passengers; awarded DFC.

1938, Feb. 26—Government acquires monopoly on helium by purchasing production facilities at Dexter, Kan.

1938, June 23—Civil Aeronautics Authority with five members, an administrator, and a three-man Safety Board, created under Civil Aeronautics Act signed by President. This supercedes Aeronautics Branch, Department of Commerce.

1938, July 10-14—Howard Hughes and crew of four fly short northern course around world in 3 days, 19 hr., 8 min.

1938, Aug. 3-12—Miami-Bogota-Miami goodwill flight of 3 bombers under Major Vincent J. Moloy.

1938, Aug. 10-11—First Berlin-New York nonstop flight by Capt. Alfred Henke and crew (Pocke-Wulf Condor 200), 4,577 miles, 24 hr, 54 min.

1938, Aug. 22—Civil Aeronautics Act becomes effective.

1939, Feb. 4-6—Langley Field-Santiago Red Cross flight by Major C. V. Haynes in XB bomber with medical supplies.

1939, Mar. 5—Non-stop airmail system by pick-up demonstrated by Norman Rintoul and Victor Yesulantes in Stinson Relean planes, Coatville, Pa.

1939, Apr. 30—The National Defense Act, providing for aerial rearmament, signed by President Roosevelt.

1939, Apr. 17—Inclined runways for assisted takeoff studied by Air Corps Board.

1939, May 20—North Atlantic air mail service begins between Fort Washington, L. I., the Azores, Portugal and Marseille, France.

1939, June 27—Bill authorizing Civilian Pilot Training Program signed by President.

1939, Sept. 13—Germany invades Poland, England and France declare war on Germany.

1940, Mar. 26—U. S. commercial airplanes complete a full year of flying without a fatal accident or serious injury to a passenger or crew member.

1940, July 1—Air Safety Board abolished with its functions delegated to the Civil Aeronautics Board, and Civil Aeronautics Administration transferred to Department of Commerce.

1940, Sept. 23—House committee asks $80 million for airport development, in $500 million program; $40 million voted.

1941, Mar. 17—Milwaukee renames its airport as General Mitchell Field.

1941, Apr. 15—First officially-recorded rotor helicopter flight in western hemisphere, Vought-Sikorsky VS-300A, piloted by Igor I. Sikorsky; flight time, 1 hr., 5 min., 14.5 sec., Stratford, Conn.

1941, May—Barrage balloon defense transferred from Air Corps to Coast Artillery.

1941, June 5—Ferry Command, for delivery of planes to Britain, organized by Army Air Corps.

1941, June 20—Army Air Force, comprising office of Chief of Air Corps and Air Force Command, created.

1941, June—First women to ferry bombers across Atlantic, Jacqueline Cochran, Canada to British Isles.

1941, Sept. 5—Mass trans-Pacific flight of heavy bombers completed by nine Army B-17 Flying Fortresses.

1941, Dec. 7—Pearl Harbor.

1942, Apr. 8—First flight of Ferry Command over Himalayan "Hump" made by Lt. Col. William D. Old, between Assam, India and Kunming, China.

1942, May 4-9—Battle of Coral Sea.

1942, June 3-7—Battle of Midway.

1942, June 17—AAF tow planes successfully pick up gliders in tests at Wright Field.

1942, Sept.—Fifty American Eagle squadron pilots, RAF, all Americans, transferred to Eighth Air Force. (Fourth Fighter Group.)

1942, Oct. 1—Jet plane built and flown by Robert M. Stanley; Bell Airaeeom (XP-59A), Murac Dry Lake, Cal.

1943, Mar. 1-4—Battle of Bismarck Sea.

1943, Mar. 19—Lt. Gen. Henry H. Arnold, commanding general of the AAF, advanced to full four-star general, the first in air history.

1943, June 11—First ground victory by air power when Pantelleria, Italy, surrenderers unconditionally to Lt. Gen. Carl Spaatz. First case in history of a well-fortified island being defeated without aid of ground forces.

1943, Oct.—World's longest freight line opened by Capt. J. L. Okenfus and crew of five in 28,000-mile round-trip flight, Office to India.

1944, June—Army Air Force reaches peak with 78,757 aircraft.
<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
<th>Location</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1945, May 8</td>
<td>War in Europe ends.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1945, Aug. 6</td>
<td>Atomic bomb dropped on Hiroshima from B-29, Enola Gay, under command of Col. Paul W. Tibbets, Jr.</td>
<td>Japan's surrender ends World War II.</td>
<td></td>
</tr>
<tr>
<td>1945, Sept. 22-25</td>
<td>Round-the-world air service begun by Air Transport Command Douglas C-54E, Globester, 9 passengers, 23,147 miles in 149 hr., 49 min.</td>
<td>Washington, D. C. from Moses Lake, Wash., in 3 hr. 46 min.</td>
<td>The first stop completed, the Douglas C-54s were flown by Col. William H. Councill.</td>
</tr>
<tr>
<td>1946, Mar. 12</td>
<td>First commercial helicopter flight operated by Civil Aeronautics Administration for Bell 2-place Model 47.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1946, Aug. 6</td>
<td>Two B-17 radio-controlled bombers with stand-by crews, fly non-stop, Hill, Hardin to Missouri, 643 miles.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1947, July 18</td>
<td>Air Policy Commission established by President.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1947, July 26</td>
<td>Army-Navy Merger Bill signed by President, making Department of Air Force co-equal with Army and Navy, and creating Department of Defense.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1948, June 18</td>
<td>Air parcel post system established by Congress; to begin Sept. 1.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1948, June 26</td>
<td>Berlin Airlift begins "Operation Vittles, 14 hr., 31 min. 89 sec. of supplies the first day. During first five months, Airlift tops cargo volume of all U.S. air-planes by flying 93,000,000 tons-miles.</td>
<td>Berlin, Germany</td>
<td></td>
</tr>
<tr>
<td>1948, July 1</td>
<td>Air Transport Command and Naval Air Transport Service consolidated into Military Air Transport Service (MATS) under command of Air Force Chief of Staff.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1948, Nov. 10</td>
<td>Northrop's YB-49 Flying Wing, first eight-jet bomber in the U.S. Air Force, makes longest jet-propelled flight on record of approximately 3,400 miles at average speed of 302 mph.</td>
<td>Edwards AFB, Calif.</td>
<td></td>
</tr>
<tr>
<td>1949, Jan. 7</td>
<td>Air Force announces a new unofficial climbing speed record set by the Bell X-1 at Muroc Air Force Base with Capt. Charles E. Yeager at the controls, climbing more than 13,000 ft. per min., compared with 8-10,000 ft. per min. for jet planes.</td>
<td>Edwards Air Force Base, Calif.</td>
<td>The X-1 set a new speed record of 670.984 mph.</td>
</tr>
</tbody>
</table>

A CHRONOLOGY OF U.S. AVIATION

1949, Feb. 7 | Eastern Air Lines reports new transcontinental speed record for transport aircraft set Feb. 5 by new-type Lockheed Constellation on delivery flight from Los Angeles to New York Field, in 6 hr. 17 min. 39-2/3 sec. | Los Angeles, Calif. | The Constellation set a new speed record of 473.9 mph. |
1949, Mar. 2 | Air Force completes the first nonstop round-the-world flight in history, as a Boeing B-50 bomber, Eddy Lady II, lands at Carwell AFB, Ft. Worth, Tex. at 9:30 CST, after a 94-hour trip piloted by Capt. James Gallagher, assisted by a crew of 13, the B-50 flew a total of 23,452 miles at an average speed of 249 mph. Four refueling contacts were made with B-29 tankers. | Edwards AFB, Calif. | The B-50 set a new speed record of 473.9 mph. |
1949, May 3 | The Martin Flying, 45-ft. research rocket, is fired successfully at White Sands Proving Ground, Las Cruces, N. M., reaching an altitude of 314.2 miles and a speed of 2,250 mph. | White Sands Proving Ground, Las Cruces, N.M. | The Flying set a new speed record of 473.9 mph. |
1949, May 6 | Sikorsky X-5-21 helicopter sets new international speed record of 122.75 mph. | Sikorsky X-5-21 helicopter | The X-5 set a new speed record of 122.75 mph. |
1949, Oct. 28 | Navy jet-powered XFB-1 search plane, the Douglas D-558-II Skyrocket, reaches a top speed of slightly over 700 mph at an altitude of 25,000 ft. in test flight at Muroc, Calif. | Edwards AFB, Calif. | The Skyrocket set a new speed record of 700 mph. |
1950, Sept. 3 | North American Aviation announces successful completion of tests at Edwards AFB in which heavy bombs were dropped for first time at speeds over 500 mph with a B-45 Tornado (GE-347). | Edwards AFB, Calif. | The B-45 set a new speed record of 500 mph. |
1950, Nov. 10 | A Lockheed F-80 shoots down a Russian-built MIG-15 in first jet aerial combat, Korea. | South Korea | The F-80 set a new speed record of 550 mph. |
1951, Jan. 17 | Convair RB-36D reconnaissance bomber makes 31 hr. 20 min. non-stop flight without refueling. | Muroc AFB, Calif. | The RB-36D set a new duration record of 31 hr. 20 min. |
1951, Feb. 2 | First successful air-to-air refueling of a U.S. jet bomber is carried out by a North American RB-45C Tornado and a Boeing KB-29F tanker at Edwards AFB, Calif. | Muroc AFB, Calif. | The KB-29F set a new speed record of 550 mph. |
1951, Apr. 24—Piper Super Cub, piloted by Mrs. Anna Louisa Branger, sets an international altitude record of 26,320 feet in the minus 1,103-pound category.

1951, May 15—Max Conrad sets non-stop lightplane record in Piper Paero (125 hp Lycoming), crossing the country in 23 hr. 4 min. 31 sec.

1951, Aug. 8—Navy’s Martin Viking VII sets new altitude record for single stage missiles, flying 135 miles up from White Sands Proving Ground, N. M., reaching a top speed of 4,100 mph.

1951, Aug. 18—North American F-86A Sabre jet, piloted by Col. Keith K. Compton, flies from Edwards AFB, Calif., to Detroit, Mich., in 3 hr. 27 min. 56 sec. at an average speed of 533.761 mph.

1952, Jan. 2—A Sikorsky H-19 helicopter completes 1,800-mile flight from Great Falls, Mont., to Ladd AFB, Fairbanks, Alaska, in five days—probably the longest flight ever made by rotary wing craft.

1952, Mar. 18—Two Republic F-84 Thunderjets land in Neubiberg, Germany, after a 2,806 mile flight without refueling—believed to be the longest sustained jet fighter flight in history. The jets crossed seven countries, averaged 505 mph, and were in the air 4 hr. 48 min.

1952, Apr. 30—For the first time in aviation history, air passenger-miles (10,679,281,000) in 1951 exceeded the total passenger-miles traveled in Pullman cars (10,224,714,000).

1952, May 10—Transcontinental lightplane record is set by Max Conrad in a Piper Paero, traveling from Los Angeles to New York (2,461 mi.) nonstop in 24 hr. 54 min.

1952, Aug. 1—Two Sikorsky H-19 helicopters complete first trans-Atlantic helicopter crossing and break non-stop distance record for rotary wing aircraft.

1953, Jan. 26—Chance Vought Aircraft completes final F4U Corsair, bringing to an end the longest production record of any airplane ever built.

1953, May 18—Jacqueline Cochran Odlum flies at record speed of 652.337 mph over a 100 km. course, in a Canadian F-86 swept-wing Sabre.

1953, Oct. 20—TWA Lockheed Super Constellation completes first scheduled nonstop transcontinental passenger trip from Los Angeles to New York in 8 hr. 17 min.

1953, Dec. 12—Maj. Charles E. Yeager, USAF pilot, establishes new world speed record of more than 1600 mph in the Bell X-1A.

1954, Mar. 1—Peak is reached in number of U.S. airports: 6,760.

1954, May 24—Martin Viking II, single stage rocket, sets altitude record soaring 158 miles high (484,240 feet) at 4300 mph, at White Sands Proving Ground, New Mexico.

1954, Aug. 27—Adm. DeWitt C. Ramsey, president of Aircraft Industries Association, reports that U.S. aircraft manufacturers are now building 900 to 1,000 military planes per month.
Twenty-five Years

Service to Aviation

EXECUTIVE OFFICES — SANTA MONICA, CALIFORNIA
GRAND RAPIDS DIVISION — GRAND RAPIDS, MICHIGAN
LEARCAL DIVISION — SANTA MONICA, CALIFORNIA
LEAR-ROMEC DIVISION — ELYRIA, OHIO
AIRCRAFT ENGINEERING DIVISION — SANTA MONICA, CALIFORNIA
RESEARCH AND DEVELOPMENT DIVISION — SANTA MONICA, CALIFORNIA
The Federation Aeronautique Internationale, Paris, France, better known as the FAI, currently composed of the national aero clubs of forty-nine nations, is the governing body of the world for official aircraft records and sporting aviation contests. The FAI was organized in Paris in October, 1905, by representatives from Belgium, France, Germany, Great Britain, Italy, Spain, Switzerland, and the United States. Representing the FAI in the United States is the National Aeronautic Association, organized in 1922.

The rules for all official world and international aircraft records are proposed initially by the various national aero clubs who are members of FAI. Later they are evaluated by the International Sporting Aviation Commission of FAI and then submitted, for final approval, to the delegates of the many national aero clubs who attend each annual FAI conference. Developed over a period of forty-four years, the rules are markedly complete. All attempts to establish official aircraft records must meet identical FAI standards.

NAA also rules on the best national performances and on many records of strictly national interest, such as inter-city speed times of transport aircraft.

FAI-NAA rules have these goals: (1) an equal opportunity to every competitor, (2) competent, unbiased judging, and (3) scientifically accurate records.

The NAA Contest Board enforces FAI-NAA regulations in the United States.

OFFICIAL F.A.I. WORLD AIR RECORDS

Note: International Records are now designated World Class Records by F.A.I.

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
</table>
HERE'S VAPOR-SAFE CIRCUIT PROTECTION
AT ANY OVERLOAD LEVEL!

THIS M.P. Trip-Free Circuit Breaker completely eliminates the danger of explosion from high level fault currents produced by large aircraft power systems. It's a precision built device...engineered to provide positive circuit protection under all flight conditions from sea level to 50,000 feet altitude. It safely and consistently interrupts maximum currents encountered on 120 KVA, 115 volt, 400 cycle A.C. systems...with a margin of interrupting capacity to handle even larger systems now projected for future aircraft. It's highly resistant to shock, vibration and corrosion. And its single pole, double break, push-pull type trip mechanism is permanently enclosed with a special arc resistant case that assures vapor-safe protection at any overload level.

Produced in all standard ratings from 5 to 50 amperes for use on all 28-30 volt D.C. and 115 volt, 400 cycle A.C. circuits. Write for complete technical information and specifications today!

M.P. SERIES 80AE
TRIP-FREE BREAKER
Explosion-proof, arc resistant Melamine-Formaldehyde case. Yellow button, and fluorescent trip indication. Extended collar for edge lighted panels.

M.P. SERIES 80
NON-TRIP-FREE BREAKER
OFFICIAL F.A.I. INTERNATIONAL AND NATIONAL "CLASS" RECORDS

AIRPLANES—(Class C) Group II

RECIPROCATING ENGINES

<table>
<thead>
<tr>
<th>Category</th>
<th>World Class Record</th>
<th>National (U.S.) Record</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISTANCE, CLOSED CIRCUIT</td>
<td>8,854.308 mi.</td>
<td>Same as above.</td>
</tr>
<tr>
<td>DISTANCE IN A STRAIGHT LINE</td>
<td>11,235.600 mi.</td>
<td>Same as above.</td>
</tr>
<tr>
<td>Comdr. Thomas D. Davies, USN.; Comdr. Eugene P. Rankin, USN.; Comdr. Walter S. Reid, USN.; and Lt. Comdr. Ray A. Tabeling, USN; United States, Lockheed P2V-1 monoplane, 2 Wright R-3500 engines of 2,300 hp each, from Pearce Field, Perth, Australia, to Port Columbus, Columbus, O., Sept. 29 - Oct. 1, 1946.</td>
<td>Same as above.</td>
<td></td>
</tr>
<tr>
<td>ALTITUDE</td>
<td>56,046 ft.</td>
<td>47,910 ft.</td>
</tr>
<tr>
<td>Mario Pesi, Italy, Caproni 161 biplane, Piaggio XI R.C. engine, Montecelio, Oct. 22, 1938.</td>
<td>Maj. F. F. Ross, pilot; Lt. D. M. Davis, co-pilot; Lt. C. B. Webster, Lt. L. B. Barrier, F/O Pamphile Morissette, Sgt. W. S. George, crew; USAAF, Boeing B-29 monoplane, 4 Wright R-3350-23 A 2,000 hp engines, Harmon Field, Guam, M. I., May 15, 1946.</td>
<td>Same as above.</td>
</tr>
<tr>
<td>MAXIMUM SPEED OVER A 1.86 MI. MEASURED COURSE</td>
<td>469.220 mph.</td>
<td>412.022 mph.</td>
</tr>
<tr>
<td>Fritz Wendel, Germany, Messerschmitt B. F. 109R, Daimler Benz 601 1,000 hp engine, Augsburg, Apr. 26, 1939.</td>
<td>Jacqueline Cochran, North American F-51 monoplane, Packard built Rolls Royce Merlin 1,450 hp engine, Thermal, Cal., Dec. 17, 1947.</td>
<td>Same as above.</td>
</tr>
<tr>
<td>MAXIMUM SPEED AT HIGH ALTITUDE</td>
<td>464.374 mph.</td>
<td>Same as above.</td>
</tr>
<tr>
<td>Jacqueline Cochran, United States, North American F-51 low wing monoplane, Packard built Rolls Royce Merlin 1,450 hp engine, near Indio, Calif., Apr. 9, 1951.</td>
<td>Same as above.</td>
<td>Jacqueline Cochran, United States, North American F-51, Rolls Royce Merlin 1,450 hp engine, Coachella Valley, Calif., Dec. 10, 1947.</td>
</tr>
<tr>
<td>SPEED FOR 621.369 MI. WITHOUT PAYLOAD</td>
<td>491.949 mph.</td>
<td>Same as above.</td>
</tr>
<tr>
<td>Jacqueline Cochran, United States, North American F-51, Packard Rolls Royce Merlin 1,450 hp engine. Start and finish near Palm Springs, Cal., May 24, 1948.</td>
<td>Same as above.</td>
<td>Jacqueline Cochran, United States, North American F-51, Packard Rolls Royce Merlin 1,450 hp engine. Desert Center—Mt. Wilson Course, Dec. 29, 1949.</td>
</tr>
<tr>
<td>SPEED FOR 310.685 MI. WITHOUT PAYLOAD</td>
<td>436.995 mph.</td>
<td>Same as above.</td>
</tr>
<tr>
<td>SPEED FOR 621.369 MI. WITHOUT PAYLOAD</td>
<td>431.094 mph.</td>
<td>Same as above.</td>
</tr>
</tbody>
</table>
PRECISE CONTROL

Target Flight Control Systems
Missile Flight Control Systems
Fire Control Systems

Avoid a miss! Assure a HIT! Use the proven best—American Gyro Corporation control systems and components. Informed engineers everywhere rely on American Gyro Corporation for controls, instrumentation and automation in everything from the smallest target drone to the mightiest carrier. Don't let the success of YOUR project depend on control and guidance components of the past—Put American Gyro Corporation on YOUR team—Look ahead with instrumentation designed and built in and for the age of automation.

Write TODAY! — Let us assist you with complete control systems and reliable, qualified components. Let's hit the target together with PRECISE CONTROL.

CONTROL SYSTEMS
STABLE PLATFORMS
RATE GYROs
FREE AND DIRECTIONAL GYROs
SENTING AND ACTUATING COMPONENTS

VERTICAL GYROs
ACCELEROMETERS
INTEGRATORS
INTERVAULMETERS

Openings available for qualified engineers

AMERICAN GYRO
Division of Daystrom Pacific Corporation

3030 Nebraska Ave. Santa Monica, California
SPEED FOR 1,242.739 MI. WITHOUT PAYLOAD

World Class Record
GO...OR NO-GO?

...the question that must be answered!

Hycon automatic test instruments are in the field...to be sure missiles are ready — for defense!

YOU CAN DEPEND ON HYCON...FOR FIELD AND FACTORY TEST EQUIPMENT...FOR COMPLETE AERIAL RECONNAISSANCE SYSTEMS...FOR CAMERAS, ORDNANCE, AND AERIAL SURVEY.

Hycon Mfg. Company

PLANTS THROUGHOUT PASADENA
MAIN OFFICE: 2961 East Colorado Street
Pasadena II, California
"WHERE ACCURACY COUNTS"
SPEED FOR 621,369 MI.

World Class Record

National (U.S.) Record

369.692 mph.

SPEED FOR 1,242,739 MI.

World Class Record

National (U.S.) Record

365.649 mph.

SPEED FOR 3,106,849 MI.

World Class Record

Lt. E. M. Grabowski, pilot; Capt. J. F. Cotton, co-pilot; M/Sgt. Angelo Quees, T/Sgt. Richard McDonald and Cpl. Raymon Ross, crew; USAAF, United States, Boeing B-29 monoplane, 4 Wright 2,200 hp engines, Dayton, O., June 28, 1946.
National (U.S.) Record

338.392 mph.

WITH PAYLOAD OF 11,023 LB.

ALTITUDE

World Class Record

National (U.S.) Record

45,253 ft.

SPEED FOR 621,369 MI.

World Class Record

National (U.S.) Record

369.692 mph.

SPEED FOR 1,242,739 MI.

World Class Record

National (U.S.) Record

365.649 mph.

SPEED FOR 3,106,849 MI.

World Class Record

National (U.S.) Record

2,200 hp engines, Dayton, O., June 21, 1946.

366.023 mph.

WITH PAYLOAD OF 22,046 LB.

ALTITUDE

World Class Record

National (U.S.) Record

41,562 ft.

SPEED FOR 621,369 MI.

World Class Record

National (U.S.) Record

357.731 mph.
Eyes in the night... certain as a pendulum... to pierce the veil of time and distance. Thus we have the moving eye—symbol of knowledge—on the ever predictable pendulum.

eyes in the night

The victory over time and darkness is certain with Kollsman instruments. Certain because of our quarter century dedication to accuracy in controls and instrumentation.

Today our activities encompass four fields:

AIRCRAFT INSTRUMENTS AND CONTROLS
OPTICAL PARTS AND DEVICES
MINIATURE AC MOTORS
RADIO COMMUNICATIONS AND NAVIGATION EQUIPMENT

Our manufacturing and research facilities... our skills and talents, are available to those seeking solutions to instrumentation and control problems.

kollsman INSTRUMENT CORP.

ELMHURST, N. Y. • GLENDALE, CALIF. • SUBSIDIARY OF Standard COIL PRODUCTS CO. INC.
SPEED FOR 1,242.739 MI.

World Class Record

National (U.S.) Record

Same as above.

SPEED FOR 3,106.849 MI.

World Class Record

National (U.S.) Record

Same as above.

ALTITUDE

World Class Record

National (U.S.) Record

Same as above.

WITH PAYLOAD OF 33,069 LB.

SPEED FOR 621.369 MI.

No official record.

SPEED FOR 1,242.739 MI.

No official record.

SPEED FOR 3,106.849 MI.

No official record.

GREATEST PAYLOAD CARRIED TO AN ALTITUDE OF 6,561,660 FT.

World Class Record

National (U.S.) Record

Same as above.

CIRCUIT OF THE WORLD

No official record.

AIRPLANES—(Class C) Group I

JET ENGINES

DISTANCE, CLOSED CIRCUIT

No official record.

DISTANCE IN A STRAIGHT LINE

No official record.

ALTITUDE

World Class Record

Walter F. Gibb, Great Britain, English Electra Canberra B. Mark II, two Bristol "Olympus", 9,750 pounds static thrust jet engines, Bristol, May 4, 1953.

National (U.S.) Record

MAXIMUM SPEED OVER A 1.8 MI. STRAIGHTAWAY COURSE

World Class Record

752.943 mph.

National (U.S.) Record

Same as above.

MAXIMUM SPEED OVER A 9.3 MI. STRAIGHTAWAY COURSE

World Class Record

755.149 mph.

National (U.S.) Record

Same as above.

SPEED FOR 62,137 MI. WITHOUT PAYLOAD

World Class Record

728.114 mph.

National (U.S.) Record

Same as above.
SUPRAMICA 555
A superior grade of glass-bonded mica, precision-molded for fired silver paste printed circuits and thermal endurance applications. Minimum distortion under no load at 950°F.

Mycalex 410X
Precision-molded, primarily intended for electronic applications. Possesses high arc resistance and dielectric strength — an all-purpose, dimensionally stable low loss insulator. For continuous operation at 650°F.

SUPRAMICA 500
A superior grade of glass-bonded mica available in sheet or rod form for fired silver paste printed circuits and thermal endurance applications. Minimum distortion under no load at 1000°F.

Mycalex 400
Glass-bonded mica of the machinable type available in sheet or rod form — or as insulators machined to specifications. Possesses low dielectric loss, high arc resistance and total dimensional stability. For continuous service at 700°F.

Mycalex KM
Moldable but not readily machinable general capacitor dielectric with dielectric constant indicated by KM number such as 10, 20, 30 or 40.

Mycalex Corporation of America
General Offices and Plant, Dept. 688
Clifton Boulevard, Clifton, N. J.

Commutators and commutator plates by Mycalex Electronics Corporation
Under exclusive license of Mycalex Corporation of America

Executive offices: 30 Rockefeller Plaza
New York 20, N. Y.

MYCALEX CORPORATION
OF AMERICA
World's largest manufacturer of glass-bonded mica products

finest of all insulating materials!

for MOLDED products

for MACHINED products

the only CERAMOPLASTICS

Mycalex glass-bonded mica and Supramica, a superior grade of glass-bonded mica, are the only ceramoplastics — the versatile basic materials that combine the outstanding features of ceramics and plastics.

They offer, too, very special qualities found in neither ceramics nor plastics. Here are a few of the outstanding characteristics of these materials:

- total and permanent dimensional stability
- low electrical loss factor
- high dielectric strength
- impervious to water, oil and organic solvents
- very high arc resistance
- complete freedom from carbonization
- resistance to radiation
- thermal expansion coefficient that matches steel

We've prepared an invaluable reference, our Engineers Handbook and Catalog — and, for experimental and test purposes, an introductory Mycalex Parts Kit containing more than 30 typical products. The Catalog is yours for the asking; the Mycalex Parts Kit is available at $10.00. Write for these aids:

Mycalex Corporation of America
General Offices and Plant, Dept. 688
Clifton Boulevard, Clifton, N. J.
SPEED FOR 310.685 MI. WITHOUT PAYLOAD
World Class Record
National (U.S.) Record Same as above.

SPEED FOR 621.369 MI. WITHOUT PAYLOAD
World Class Record
J. Reginald Cooksey, Great Britain, Gloster Meteor F. 8, VZ 496, 2 Rolls Royce Derwent 3,500 lb. thrust jet engines, Moreton, Valence, Campo Ness Course, May 12, 1950.
National (U.S.) Record

SPEED FOR 1,242.739 MI. WITHOUT PAYLOAD
World Class Record
National (U.S.) Record Same as above.

SPEED FOR 3,106.849 MI. WITHOUT PAYLOAD
No official record.

SPEED FOR 6,213.698 MI. WITHOUT PAYLOAD
No official record.

WITH PAYLOAD OF 2,204.622 LB.

ALTITUDE

SPEED FOR 621.369 MI.
World Class Record
Lt. Col. T. P. Gerrity, pilot; Capt. Wm. Rickert, co-pilot, USAAF, United States, Douglas XA-26F monoplane, 2 Pratt and Whitney R-2800, 2,000 hp and 1 General Electric J-16 jet engine, Dayton, O., June 20, 1946.
National (U.S.) Record Same as above.

SPEED FOR 1,242.739 MI.
No official record.

SPEED FOR 3,106.849 MI.
No official record.

CLIMB TO 9,842.5 FT.
World Class Record
Richard Bellingham, Great Britain, Gloster Meteor Mark 8 W.A. 820, two Armstrong Siddeley Sapphire Mark 2 jet engines, Moreton Valence airport, Gloucestershire, Aug. 31, 1951.
National (U.S.) Record No official record

CLIMB TO 19,685 FT.
World Class Record
Richard Bellingham, Great Britain, Gloster Meteor Mark 8 W.A. 820, two Armstrong Siddeley Sapphire Mark 2 jet engines, Moreton Valence airport, Gloucestershire, Aug. 31, 1951.
National (U.S.) Record No official record

CLIMB TO 29,527.5 FT.
World Class Record
Richard Bellingham, Great Britain, Gloster Meteor Mark 8 W.A. 820, two Armstrong Siddeley Sapphire Mark 2 jet engines, Moreton Valence airport, Gloucestershire, Aug. 31, 1951.
National (U.S.) Record No official record

CLIMB TO 39,370 FT.
World Class Record
Richard Bellingham, Great Britain, Gloster Meteor Mark 8 W.A. 820, two Armstrong Siddeley Sapphire Mark 2 jet engines, Moreton Valence airport, Gloucestershire, Aug. 31, 1951.
National (U.S.) Record No official record.
Leadership demands constant achievement

Lockheed paces aircraft industry with six exciting new models in one year

This unique new fighter poised for vertical takeoff is a very special airplane—built to Navy specifications by Lockheed to fill a very special need. It can take off straight up from the deck of a ship and return aboard by backing down on its tail. It gives fast fighter performance in level flight.

This XFV-1 vertical-rising airplane is just one of six new models from Lockheed in 1954.

The others: the F-104 Day Superiority Jet Fighter for the U.S. Air Force; the C-130, new U.S.A.F. turbo-prop assault transport, now in production at Government Aircraft Plant No. 6 in Marietta, Georgia, operated for the Air Force by Lockheed's Georgia Division; the P2V-7, newest jet-powered version of the Navy's anti-submarine patrol bomber; the all-new T2V-1 Navy Jet Trainer, first jet trainer for both carrier and airstrip operation; the R7V-2 turbo-prop Super Constellation for the Navy, fastest propeller transport in the world, now undergoing flight tests.

Lockheed
Aircraft Corporation
Burbank, California, and Marietta, Georgia

Look to Lockheed for Leadership
LIGHT AIRPLANES—(Class C-1.a)

FIRST CATEGORY (AIRCRAFT WEIGHING LESS THAN 1,102.3 LB., IN FLYING ORDER)

DISTANCE IN A CLOSED CIRCUIT, WITHOUT REFUELING

<table>
<thead>
<tr>
<th>Description</th>
<th>World Class Record</th>
<th>National (U.S.) Record</th>
</tr>
</thead>
<tbody>
<tr>
<td>World Class Record</td>
<td>1,242.74 mi.</td>
<td>No official record.</td>
</tr>
<tr>
<td>Albert Revilleon, France, Minicab, Type G-Y 20, Continental 65 hp engine; gross weight 499.5 kilograms, Toussus-le-Noble-Tour-Bourges course, May 10, 1952.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AIRLINE DISTANCE

<table>
<thead>
<tr>
<th>Description</th>
<th>World Class Record</th>
<th>National (U.S.) Record</th>
</tr>
</thead>
<tbody>
<tr>
<td>World Class Record</td>
<td>1,361.485 mi.</td>
<td>Same as above.</td>
</tr>
</tbody>
</table>

ALTITUDE

<table>
<thead>
<tr>
<th>Description</th>
<th>World Class Record</th>
<th>National (U.S.) Record</th>
</tr>
</thead>
<tbody>
<tr>
<td>World Class Record</td>
<td>27,152 ft.</td>
<td>No official record.</td>
</tr>
</tbody>
</table>

SPEED FOR 621.369 MI. IN A CLOSED CIRCUIT

<table>
<thead>
<tr>
<th>Description</th>
<th>World Class Record</th>
<th>National (U.S.) Record</th>
</tr>
</thead>
<tbody>
<tr>
<td>World Class Record</td>
<td>154.770 mph.</td>
<td>No official record.</td>
</tr>
</tbody>
</table>

SPEED FOR 310.885 MI. IN A CLOSED CIRCUIT

<table>
<thead>
<tr>
<th>Description</th>
<th>World Class Record</th>
<th>National (U.S.) Record</th>
</tr>
</thead>
<tbody>
<tr>
<td>World Class Record</td>
<td>158.918 mph.</td>
<td>No official record.</td>
</tr>
</tbody>
</table>

SPEED FOR 1,242.74 MI. IN A CLOSED CIRCUIT

<table>
<thead>
<tr>
<th>Description</th>
<th>World Class Record</th>
<th>National (U.S.) Record</th>
</tr>
</thead>
<tbody>
<tr>
<td>World Class Record</td>
<td>119.442 mph.</td>
<td>No official record.</td>
</tr>
<tr>
<td>Albert Revilleon, France, Minicab, Type G-Y 20, Continental 65 hp engine; gross weight 499.5 kilograms, Toussus-le-Noble-Tour-Bourges course, May 10, 1952.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SPEED FOR 1,242.74 MI. IN A CLOSED CIRCUIT

<table>
<thead>
<tr>
<th>Description</th>
<th>World Class Record</th>
<th>National (U.S.) Record</th>
</tr>
</thead>
<tbody>
<tr>
<td>World Class Record</td>
<td>113.979 mph.</td>
<td>No official record.</td>
</tr>
<tr>
<td>Albert Revilleon, France, Minicab, Type G-Y 20, Continental 65 hp engine; gross weight 499.5 kilograms, Toussus-le-Noble-Tour-Bourges course, May 10, 1952.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LIGHT AIRPLANES—(Class C-1.b)

SECOND CATEGORY (ALL AIRCRAFT WITH A TOTAL WEIGHT, IN FLYING ORDER, BETWEEN 1,102.3 AND 2,204.6 LB.)

DISTANCE IN A CLOSED CIRCUIT WITHOUT REFUELING

<table>
<thead>
<tr>
<th>Description</th>
<th>World Class Record</th>
<th>National (U.S.) Record</th>
</tr>
</thead>
<tbody>
<tr>
<td>World Class Record</td>
<td>1,553.425 mi.</td>
<td>No official record.</td>
</tr>
</tbody>
</table>

AIRLINE DISTANCE

<table>
<thead>
<tr>
<th>Description</th>
<th>World Class Record</th>
<th>National (U.S.) Record</th>
</tr>
</thead>
<tbody>
<tr>
<td>World Class Record</td>
<td>2,462.330 mi.</td>
<td>Same as above.</td>
</tr>
<tr>
<td>Maximilian A. Conrad, United States, Piper Pacer, Lycoming 0-290-D 125 hp engine; gross weight 988.4 kilograms, Los Angeles, Cal. to New York, N. Y., Apr. 30-May 1, 1952.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LEADERSHIP...
Proven By The Record

The leadership of REACTION MOTORS, INC. in the field of rocket power is affirmed by an impressive list of achievements. RMI rocket engines were the

- **FIRST** permanently-installed liquid-propellant assist-takeoff units.
- **FIRST** to power piloted aircraft to supersonic speeds in level flight.
- **FIRST** liquid-propellant rocket units for propulsion of guided missiles.
- **FIRST** to use liquid-propellant rocket techniques for aircraft launching devices.
- **FIRST** liquid-propellant rocket systems to be successfully applied as the sole power source for helicopters.

Various classified projects now in progress assure RMI of continued leadership in the field of rocket power.

Other typical applications for RMI rocket power:
- **TAKEOFF ASSISTANCE**
- **LAUNCHING AND EJECTION DEVICES**
- **AUXILIARY POWER UNITS**
- **BOUNDARY LAYER CONTROL**
- **MECHANICAL FLIGHT CONTROL**
The AIRCRAFT YEAR BOOK

ALTITUDE

World Class Record

National (U.S.) Record

Same as above.

SPEED FOR 62.137 MI. IN A CLOSED CIRCUIT

World Class Record

R. R. Paine, Great Britain, Miles Hawk Speed Six, de Havilland Gipsy Major 205 hp engine; gross weight 1,843 lb., at Wolverhampton, June 17, 1950.

National (U.S.) Record

No official record.

SPEED FOR 310.685 MI. IN A CLOSED CIRCUIT

World Class Record

Miss Marie Nicolas, France, Norecrin, Regnier engine; gross weight 2,082 lb., Montpellier-Frejorgues course, Dec. 5, 1951.

National (U.S.) Record

No official record.

SPEED FOR 621.369 MI. IN A CLOSED CIRCUIT

World Class Record

Guido Ferrari, Italy, Super S.7 Ambrosini airplane, Gipsy Queen 330 hp engine, Punto X-Faro di Fiumicino-Faro di Anzio Torre Valanica course, Dec. 5, 1953.

National (U.S.) Record

No official record.

SPEED FOR 1,242.747 MI. IN A CLOSED CIRCUIT

World Class Record

Guido Ferrari, Italy, Super S.7 Ambrosini airplane, Gipsy Queen 330 hp engine, Punto X course, Dec. 5, 1953.

National (U.S.) Record

No official record.

LIGHT AIRPLANES—(Class C-1.c)

THIRD CATEGORY (ALL AIRCRAFT WITH A TOTAL WEIGHT, IN FLYING ORDER, BETWEEN 2,204.6 AND 3,858 LB.)

AIRLINE DISTANCE

World Class Record

National (U.S.) Record

Same as above.

ALITUDE

World Class Record

National (U.S.) Record

No official record.

SPEED FOR 62.137 MI. IN A CLOSED CIRCUIT

World Class Record

Guido Ferrari, Italy, Super S.7 Ambrosini airplane, Gipsy Queen 330 hp engine, Punto X-Faro di Fiumicino-Faro di Anzio Torre Valanica course, Dec. 5, 1953.

National (U.S.) Record

No official record.

SPEED FOR 310.685 MI. IN A CLOSED CIRCUIT

World Class Record

National (U.S.) Record

No official record.

SPEED FOR 621.369 MI. IN A CLOSED CIRCUIT

World Class Record

National (U.S.) Record

No official record.

SPEED FOR 1,242.739 MI. IN A CLOSED CIRCUIT

World Class Record

Paul Burnat, Belgium, Beechcraft Bonanza, Continental 185 hp engine, gross weight 3,556 lb., Keerbergen-Ostende-Gosselies-Bierset course, June 8, 1952.

National (U.S.) Record

No official record.
Today's supersonic speeds leave no time for second-guessing... or black-outs in power dives and turns. That's why Alar Pressure Regulating Valves, for the control of Anti-G equipment, are recommended for installation in present day craft. Manufactured in exact accordance with Defense Department specifications, Alar Anti-G Valves operate from any compressed gas source, and automatically reduce the pressure to properly operate a pilot's Anti-G suit during periods of positive accelerations. They "think for the pilot" at a time when peak alertness is vital. Featuring direct, in-line action, Alar design completely eliminates all levers and pivots, to insure absolute operating dependability. Write for details.

ALAR PRODUCTS • INC.
1071 POWER AVENUE • CLEVELAND 14, OHIO

Specialists in the design and development of dependable pressure regulating instruments
LIGHT AIRPLANES—(Class C-1.d)

FOURTH CATEGORY (ALL AIRCRAFT WITH A TOTAL WEIGHT, IN FLYING ORDER, BETWEEN 3,858.1 AND 6,613.9 LB.)

AIRLINE DISTANCE

No official record.

ALTITUDE

No official record.

SPEED FOR 62.137 MI. IN A CLOSED CIRCUIT

World Class Record

322.789 mph.

National (U.S.) Record

No official record.

SPEED FOR 310.685 MI. IN A CLOSED CIRCUIT

National (U.S.) Record

No official record.

SPEED FOR 1242.739 MI. IN A CLOSED CIRCUIT

National (U.S.) Record

No official record.

SEAPLANES—(Class C-2)

DISTANCE, CLOSED CIRCUIT

World Class Record

3,231.123 mi.

Mario Stroppani and Carlo Tonini, Italy, Cant Z I-LER0 seaplane, 3 Alfa Romeo 126 RC.34 750 hp engines, May 27-28, 1937.

National (U.S.) Record

1,569 mi.

AIRLINE DISTANCE

World Class Record

5,997.462 mi.

Capt. D. C. T. Bennett and First Officer L. Harvey, pilots; Great Britain, Short-Mayo Mercury seaplane, 4 Napier Rapier J.1 370 hp engines, from Dundee, Scotland to near Port-Nolloth, S. Africa, Oct. 6-8, 1938.

National (U.S.) Record

3,281.402 mi.

ALTITUDE

World Class Record

44,429 ft

National (U.S.) Record

38,560 ft

DURING THE DESIGN PERIOD TOO!

the most experienced men in their field can help you...

Production problems are best resolved in the designing stage. That is why we recommend consulting us during the design period.

when designing your

EDGE-LIGHTED

PANELS and DIALS

...our engineers and consultants can save time for your design department and assure the optimum in lighting uniformity, appearance, ruggedness, and simplicity.

Edge-lighted panels and dials for Specification MIL-P-7788, produced by the "Lackcon Process" and backed by years of experience in the lighting field, are your assurance of the ultimate in appearance and functional characteristics.

For worthwhile information on edge-lighting, send for a copy of "Radiations" Vol. 1, No. 3.

UNITED STATES RADUUM CORPORATION

Executive and Sales Offices - 535 Pearl Street, New York 7, N. Y.

Plants and Laboratories at:

The AIRCRAFT YEAR BOOK

MAXIMUM SPEED

<table>
<thead>
<tr>
<th>World Class Record</th>
<th>440.681 mph.</th>
</tr>
</thead>
<tbody>
<tr>
<td>National (U.S.) Record</td>
<td>245.713 mph.</td>
</tr>
<tr>
<td>Lt. James H. Dolittle, USAF, Curtiss R3C-2, Curtiss V-1400, 600 hp engine, Bay Shore, Baltimore, Md., Oct. 27, 1925.</td>
<td></td>
</tr>
</tbody>
</table>

SPEED FOR 62.137 MI. WITHOUT PAYLOAD

<table>
<thead>
<tr>
<th>World Class Record</th>
<th>391.072 mph.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guglielmo Cassinelli, Italy, Mâcchi C. 72 seaplane, 2,400 hp Fiat A8 6 engine, Palomara-Pesaro permanent course, Oct. 8, 1933.</td>
<td></td>
</tr>
<tr>
<td>National (U.S.) Record</td>
<td>241.679 mph.</td>
</tr>
<tr>
<td>Lt. G. T. Cuddihy, USN, Curtiss R3C-2, Curtiss V-1500, 700 hp engine, Bay Shore, Baltimore, Md., Oct. 27, 1925.</td>
<td></td>
</tr>
</tbody>
</table>

SPEED FOR 310.685 MI. WITHOUT PAYLOAD

| No official record. |

SPEED FOR 621.369 MI. WITHOUT PAYLOAD

<table>
<thead>
<tr>
<th>World Class Record</th>
<th>250.676 mph.</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. Stoppani and G. Gorini, pilots; Ing. Luzzatto and E. Accomolli, passengers; Italy, Cant Z 509 seaplane, 3 Fiat A80 RC 41 1,000 hp engines, Mar. 30, 1938.</td>
<td></td>
</tr>
<tr>
<td>National (U.S.) Record</td>
<td>165.040 mph.</td>
</tr>
</tbody>
</table>

SPEED FOR 1,242.739 MI. WITHOUT PAYLOAD

<table>
<thead>
<tr>
<th>World Class Record</th>
<th>246.351 mph.</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. Stoppani and G. Gorini, pilots; Ing. Luzzatto and E. Accomolli, passengers; Italy, Cant Z 509 seaplane, 3 Fiat A80 RC 41 1,000 hp engines, Mar. 30, 1938.</td>
<td></td>
</tr>
<tr>
<td>National (U.S.) Record</td>
<td>157.319 mph.</td>
</tr>
<tr>
<td>Edwin Musick, Boris Sergievsky and Charles A. Lindbergh, Sikorsky S-42 Seaplane, 4 Pratt and Whitney 570 hp Hornet engines, Aug. 1, 1934.</td>
<td></td>
</tr>
</tbody>
</table>

SPEED FOR 4,106.849 MI. WITHOUT PAYLOAD

<table>
<thead>
<tr>
<th>World Class Record</th>
<th>191.534 mph.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mario Stoppani and Carlo Tonini, Italy, Cant Z 1-LERO seaplane, 3 Alfa Romeo 126 RC3.34 750 hp engines, May 27-28, 1937.</td>
<td></td>
</tr>
<tr>
<td>National (U.S.) Record</td>
<td>No official record.</td>
</tr>
</tbody>
</table>

SPEED FOR 6,213.928 MI. WITHOUT PAYLOAD

| No official record. |

WITH PAYLOAD OF 2,204.622 LB.

ALTITUDE

<table>
<thead>
<tr>
<th>World Class Record</th>
<th>34,085 ft.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nicola di Mauro and Mario Stoppani, Italy, Cant Z 506 B. seaplane, 3 Alfa Romeo RC.55 700 hp engines, at Monfalcone, Nov. 12, 1937.</td>
<td></td>
</tr>
<tr>
<td>National (U.S.) Record</td>
<td>26,929 ft.</td>
</tr>
<tr>
<td>Boris Sergievsky, Sikorsky S-48 seaplane, 2 Pratt and Whitney Hornet, 575 hp each, at Bridgeport, Conn., July 21, 1930.</td>
<td></td>
</tr>
</tbody>
</table>

SPEED FOR 621.369 MI.

<table>
<thead>
<tr>
<th>World Class Record</th>
<th>250.676 mph.</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. Stoppani, and G. Gorini, pilots; Ing. Luzzatto and E. Accomolli, passengers; Italy, Cant Z 509 seaplane, 3 Fiat A80 RC 41 1,000 hp engines, Mar. 30, 1938.</td>
<td></td>
</tr>
<tr>
<td>National (U.S.) Record</td>
<td>165.040 mph.</td>
</tr>
</tbody>
</table>

414
Aeroprop's turboprops are used by the U. S. Navy and Air Force on aircraft built by Douglas, Convair, and other great names in American aviation.

Believing in the future of the gas turbine engine, Aeroprop's began work on propellers for turboprop aircraft over a decade ago. When a small turboprop aircraft was flown for the first time in the United States in 1945, it carried an Aeroprop's turbopropeller. Today, Aeroprop's turbopropellers are America's most widely used because they have proved their quality and stamina on military aircraft and the Allison Turboliner.

Turboprops are just part of Aeroprop's contribution to safer, more efficient flying. Aeroprop's for piston-driven engines, for instance, have long since proved themselves among the industry's finest. And Aeroprop's hydraulic and pneumatic self-locking actuators provide easy, accurate control of flight surfaces. A new air-driven emergency generator, now available, is another notable development by Aeroprop's.

The years of pioneering work which Aeroprop's and Allison have done are now paying off in the availability of turboprop engines and propellers that enable military and commercial aircraft to carry bigger payloads farther, faster and more economically than ever before.

Aeroprop's

ALLISON DIVISION • GENERAL MOTORS CORPORATION • DAYTON, OHIO
The AIRCRAFT YEAR BOOK

SPEED FOR 1,242.739 MI.

World Class Record
M. Stoppani and G. Gorini, pilots; Ing. Luzzatto and E. Accomolli, passengers; Italy, Cant Z 509 seaplane, 3 Fiat A80 RC 41, 1,000 hp engines, Mar. 30, 1938.

National (U.S.) Record

SPEED FOR 3,106.849 MI.

World Class Record
Mario Stoppani and Niccola di Mauro, Italy, Cant Z 506-B seaplane, 3 Alfa Romeo 126 RC 34 750 hp engines, May 27-28, 1937.

National (U.S.) Record
No official record.

WITH PAYLOAD OF 4,409.244 LB.

ALTITUDE

World Class Record
Mario Stoppani and Nicola di Mauro, Italy, Cant Z 506-B seaplane, 3 Alfa Romeo 700 hp engines, at Monfalcone, Nov. 3, 1937.

National (U.S.) Record

SPEED FOR 621.369 MI.

World Class Record
M. Stoppani and G. Gorini, pilots; Ing. Luzzatto and E. Accomolli, passengers; Italy, Cant Z 509 seaplane, 3 Fiat A80 RC 41 1,000 hp engines, Mar. 30, 1938.

National (U.S.) Record

SPEED FOR 1,242.739 MI.

World Class Record
M. Stoppani and G. Gorini, pilots; Ing. Luzzatto and E. Accomolli, passengers; Italy, Cant Z 509 seaplane, 3 Fiat A80 RC 41 1,000 hp engines, Mar. 30, 1938.

National (U.S.) Record

SPEED FOR 3,106.849 MI.

World Class Record
No official record.

WITH PAYLOAD OF 11,023.11 LB.

ALTITUDE

World Class Record
Mario Stoppani and Nicola di Mauro, pilots; Forlivesi, mechanic; Italy, Cant Z 506-B seaplane, 3 Alfa Romeo 700 hp engines, at Monfalcone, Nov. 7, 1947.

National (U.S.) Record
Boris Sergievsky and Raymond B. Quick, Sikorsky S-42 seaplane, 4 Pratt and Whitney 670 hp Hornet engines, Bridgeport, Conn., May 17, 1934.

SPEED FOR 621.369 MI.

World Class Record

National (U.S.) Record
No official record.

416
For Precision Checking of LARGE DIAMETERS and LENGTHS
Anywhere from 4" to 96"

WJZ Universal Diameter Gages may be equipped with dial indicators from .0001" to .001" with indicator travels from .025" to .250". Retractable mechanisms are optional. A choice of the Vertical, Horizontal, Adjustable Bridge or modified models can be had or made to your specifications. The WJZ Universal Set Master are adaptable to all models. All I.D. and O.D. standard gages and set masters have 1 inch diameter range and 1 1/4 inch depth range adjustments. Ready stock parts for standard or modified models are made up for economical set-up and speedier delivery.

Write for new literature, or for exact specifications send your Blueprints and Statements to us for quotation.

Telephone: HYDE PARK 2929

WJZ TOOL SPECIALTIES
EAST PARK ROAD HYDE PARK, NEW YORK

FLIGHT
INSTRUMENTATION

by RAHM

potentiometer type transducers

for use at temperatures between -60°C and +160°C.

Designs available permit single or multiple range linear output from non-linear input function, and operation over wide ranges of environmental conditions.

- ACCELERATION
- PRESSURE SWITCHING
- ALTITUDE CONTROL

RAHM INSTRUMENTS, INC.
12 WEST BROADWAY, NEW YORK 7, N.Y.
SPEED FOR 1,242.739 ML.
World Class Record
National (U.S.) Record
No official record.
SPEED FOR 3,106.849 ML.
WITH PAYLOAD OF 22,042.73 LB.
ALTIMET
World Class Record
National (U.S.) Record
No official record.
SPEED FOR 621.369 ML.
World Class Record
National (U.S.) Record
No official record.
SPEED FOR 1,242.739 ML.
WITH PAYLOAD OF 33,069.33 LB.
ALTIMET
World Class Record
National (U.S.) Record
No official record.
SPEED FOR 621.369 ML.
World Class Record
National (U.S.) Record
No official record.
SPEED FOR 1,242.739 ML.
WITH GREATEST PAYLOAD CARRIED TO AN ALTITUDE OF 6,561.660 FT.
ALTIMET
World Class Record
National (U.S.) Record
No official record.
SPEED FOR 1,242.739 ML.
WITH PAYLOAD OF 33,069.33 LB.
LIGHT SEAPLANES—(Class C-2.a)
FIRST CATEGORY (LIGHT SEAPLANES WEIGHING LESS THAN 1,322.8 LBS.)
ALTIMET
World Class Record
National (U.S.) Record
Same as above.
DISTANCE IN A STRAIGHT LINE
No official record.
SPEED FOR 621.369 ML IN A CLOSED CIRCUIT
World Class Record
National (U.S.) Record
Same as above.
beyond the sonic wall

precision spells performance!

- New heights of performance, demanded by supersonic flight, also demand new standards of precision... precision assured by the know-how and production facilities with which we have served the aviation industry in development work for many years.

We manufacture precision gear assemblies for accessory drive units, actuators, transmissions, computers and controls. And we also produce complete components such as bomb hoists, gun turrets, radar tracking and scanning assemblies, hydraulic actuators.

Make your development and production problems our problems. We’re qualified by long and proven performance to solve them... large or small.

A letter or telephone call will put us at your service.
The AIRCRAFT YEAR BOOK

SPEED FOR 310.635 MI. IN A CLOSED CIRCUIT
World Class Record
National (U.S.) Record
105.354 mph.
SPEED FOR 621.399 MI. IN A CLOSED CIRCUIT
No official record.
SPEED FOR 1,242.739 MI. IN A CLOSED CIRCUIT
No official record.

LIGHT SEAPLANES—(Class C-2.b)
SECOND CATEGORY (LIGHT SEAPLANES WITH A TOTAL WEIGHT, IN FLYING ORDER, BETWEEN 1,322.8 AND 2,645.6 LB.)

ALTITUDE
World Class Record
National (U.S.) Record
26,266 ft.

AIRLINE DISTANCE
World Class Record
Harold E. Mistele, United States, Cessna 170, Continental 145 hp engine, gross weight 1,117 kilograms, from near Brownsville, Tex. to near Rosedale, Ill., June 12, 1952.
National (U.S.) Record
946.732 mi.

SPEED FOR 310.635 MI. IN A CLOSED CIRCUIT
World Class Record
National (U.S.) Record
109.081 mph.

SPEED FOR 310.635 MI. IN A CLOSED CIRCUIT
World Class Record
National (U.S.) Record
102.274 mph.

SPEED FOR 621.399 MI. IN A CLOSED CIRCUIT
No official record.
SPEED FOR 1,242.739 MI. IN A CLOSED CIRCUIT
No official record.

LIGHT SEAPLANES—(Class C-2.c)
THIRD CATEGORY (LIGHT SEAPLANES WITH A TOTAL WEIGHT, IN FLYING ORDER, BETWEEN 2,645.6 AND 4,629.7 LB.)

AIRLINE DISTANCE
No official record.
ALTITUDE
World Class Record
Harold E. Mistele, United States, Cessna 180 seaplane, Continental 225 hp engine, Aug. 18, 1954. (Pending confirmation by F. A. I. as we went to press.)
National (U.S.) Record
20,523 ft.

SPEED FOR 621.399 MI.
World Class Record
Harold E. Mistele, United States, Cessna 180 seaplane, Continental 225 hp engine, Aug. 18, 1954.
National (U.S.) Record
131.307 mph.

SPEED FOR 310.635 MI. IN A CLOSED CIRCUIT
No official record.
SPEED FOR 621.399 MI.
No official record.
SPEED FOR 1,242.739 MI.
No official record.

LIGHT SEAPLANES—(Class C-2.d)
FOURTH CATEGORY (LIGHT SEAPLANES WITH A TOTAL WEIGHT, IN FLYING ORDER, BETWEEN 4,629.7 AND 7,495.7 LB.)

AIRLINE DISTANCE
No official record.
ALTITUDE
No official record.
SPEED FOR 621.399 MI.
No official record.
SPEED FOR 310.635 MI. IN A CLOSED CIRCUIT
No official record.
SPEED FOR 621.399 MI.
No official record.
SPEED FOR 1,242.739 MI.
No official record.

420
Look to SHERIDAN for the latest developments in STRETCH WRAP FORMING

For accurately and uniformly producing compound contoured parts from sheets, rolled sections, and extrusions

1. Table type horizontal extrusion
2. Combination bulldozer and extrusion
3. Horizontal longitudinal sheet and extrusion
4. Vertical longitudinal sheet and extrusion
5. Transverse with jaw positioning lead screws
6. Transverse with jaw positioning hydraulic cylinders
7. Transverse with jaw carriage position cylinders and tension cylinders
8. Combination transverse and longitudinal
9. Compression and retention type for tapered sections

ESTABLISHED 1835

T.W. and C.B. SHERIDAN COMPANY
135 Lafayette Street, New York 13, N. Y. • 183 Essex Street, Boston 11, Mass.
600 W. Jackson Blvd., Chicago 6, Ill. • 24701 Crenshaw Blvd., Torrance, Calif.
52-54 High Holborn, London W. C. 1, England
AIRLINE DISTANCE

<table>
<thead>
<tr>
<th>AIRLINE DISTANCE</th>
<th>DISTANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>World Class Record</td>
<td>1,855,610 mi.</td>
</tr>
<tr>
<td>Marquise Carina-Negrone and Sign, Ada Marchelli, Italy, Piaggio P. 156 L airplane, 2 Lycoming Go 435 C2 240 hp. engines, from Ghedi (Brescia) to Luxor, Egypt, June 18, 1934.</td>
<td>1,855,610 mi.</td>
</tr>
<tr>
<td>National (U.S.) Record</td>
<td>1,429,685 mi.</td>
</tr>
<tr>
<td>Maj. Gen. F. M. Andrews, pilot; Maj. John Whiteley, co-pilot; and crew, United States, Douglas YOA5 Amphibian, 2 Wright Cyclone 600 hp. engines, from San Juan, Puerto Rico, to Langley Field, Va., June 29, 1936.</td>
<td>1,429,685 mi.</td>
</tr>
</tbody>
</table>

ALTITUDE

<table>
<thead>
<tr>
<th>ALTITUDE</th>
<th>ALTITUDE</th>
</tr>
</thead>
<tbody>
<tr>
<td>World Class Record</td>
<td>24,951 ft.</td>
</tr>
<tr>
<td>National (U.S.) Record</td>
<td>Same as above.</td>
</tr>
</tbody>
</table>

MAXIMUM SPEED

<table>
<thead>
<tr>
<th>MAXIMUM SPEED</th>
<th>MAXIMUM SPEED</th>
</tr>
</thead>
<tbody>
<tr>
<td>World Class Record</td>
<td>230.413 mph.</td>
</tr>
<tr>
<td>National (U.S.) Record</td>
<td>Same as above.</td>
</tr>
</tbody>
</table>

SPEED FOR 62,137 MI. WITHOUT PAYLOAD

<table>
<thead>
<tr>
<th>SPEED FOR 62,137 MI. WITHOUT PAYLOAD</th>
<th>SPEED FOR 62,137 MI. WITHOUT PAYLOAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>World Class Record</td>
<td>241.883 mph.</td>
</tr>
<tr>
<td>R. R. Colquhoun, Great Britain, Vicker’s Supermarine Seagull 1, Rolls Royce Griffin Mark 29 730 hp engine, Marston Moor, July 22, 1950.</td>
<td>241.883 mph.</td>
</tr>
<tr>
<td>National (U.S.) Record</td>
<td>209.451 mph.</td>
</tr>
<tr>
<td>Major A. P. de Seversky, United States, Seversky Amphibian, Wright “Cyclone” 1,000 hp engine, Miami, Fla., Dec. 19, 1936.</td>
<td>209.451 mph.</td>
</tr>
</tbody>
</table>

SPEED FOR 621,369 MI. WITHOUT PAYLOAD

<table>
<thead>
<tr>
<th>SPEED FOR 621,369 MI. WITHOUT PAYLOAD</th>
<th>SPEED FOR 621,369 MI. WITHOUT PAYLOAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>World Class Record</td>
<td>186.076 mph.</td>
</tr>
<tr>
<td>Capt. W. P. Sloan and Capt. B. L. Boatiner, USA AC, pilots; United States, Grumman YOA-9 amphibian, 2 Pratt and Whitney engines, 400 hp. each, Dayton, O., July 31, 1939.</td>
<td>186.076 mph.</td>
</tr>
<tr>
<td>National (U.S.) Record</td>
<td>Same as above.</td>
</tr>
</tbody>
</table>

SPEED FOR 1,247,799 MI. WITHOUT PAYLOAD

<table>
<thead>
<tr>
<th>SPEED FOR 1,247,799 MI. WITHOUT PAYLOAD</th>
<th>SPEED FOR 1,247,799 MI. WITHOUT PAYLOAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>World Class Record</td>
<td>154,701 mph.</td>
</tr>
<tr>
<td>Giuseppe Burel and Enrico RossaldI, pilots; Gino Velati, passenger; Italy, Macchi C-94 1-NEP 1 amphibian, 2 Wright Cyclone 750 hp engines, Cavone Ansedonia-Faro Flumicino Antignano temporary course, May 6, 1937.</td>
<td>154,701 mph.</td>
</tr>
<tr>
<td>National (U.S.) Record</td>
<td>No official record.</td>
</tr>
</tbody>
</table>

SPEED FOR 3,106,849 MI. WITHOUT PAYLOAD

<table>
<thead>
<tr>
<th>SPEED FOR 3,106,849 MI. WITHOUT PAYLOAD</th>
<th>SPEED FOR 3,106,849 MI. WITHOUT PAYLOAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>World Class Record</td>
<td>No official record.</td>
</tr>
</tbody>
</table>

SPEED FOR 6,213,689 MI. WITHOUT PAYLOAD

<table>
<thead>
<tr>
<th>SPEED FOR 6,213,689 MI. WITHOUT PAYLOAD</th>
<th>SPEED FOR 6,213,689 MI. WITHOUT PAYLOAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>World Class Record</td>
<td>No official record.</td>
</tr>
</tbody>
</table>

WITH PAYLOAD OF 2,204,622 LB.

<table>
<thead>
<tr>
<th>WITH PAYLOAD OF 2,204,622 LB.</th>
<th>WITH PAYLOAD OF 2,204,622 LB.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airline Distance</td>
<td>23,405 ft.</td>
</tr>
<tr>
<td>Ivan Southkomyline, USSR, Tsaagui 44 D Amphibian, 4 M-87 840 hp engines, Katcha, near Sebastopol, June 17, 1940.</td>
<td>23,405 ft.</td>
</tr>
<tr>
<td>National (U.S.) Record</td>
<td>19,626 ft.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SPEED FOR 621,369 MI. WITH PAYLOAD</th>
<th>SPEED FOR 621,369 MI. WITH PAYLOAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>World Class Record</td>
<td>172.409 mph.</td>
</tr>
<tr>
<td>Ivan Southkomyline, USSR, Tsaagui 44 D Amphibian, 4 M-85, 750 hp engines, Katcha-Kersoness-Takanrog course, Sept. 28, 1940.</td>
<td>172.409 mph.</td>
</tr>
<tr>
<td>National (U.S.) Record</td>
<td>No official record.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SPEED FOR 1,247,799 MI. WITH PAYLOAD</th>
<th>SPEED FOR 1,247,799 MI. WITH PAYLOAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>World Class Record</td>
<td>No official record.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SPEED FOR 3,106,849 MI. WITH PAYLOAD</th>
<th>SPEED FOR 3,106,849 MI. WITH PAYLOAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>World Class Record</td>
<td>No official record.</td>
</tr>
</tbody>
</table>
In the AVQ-10, RCA offers to pilots a much-improved system for preventing costly detours due to storms across their routes. Its ability to "see" into storms from miles away and to pick non-turbulent paths through or between them, contributes greatly to passenger comfort and operational economy.

It is the first airborne weather radar to operate in "C"-Band (5.6 cm), the ideal radar frequency for storm detection and penetration.

RCA is proud to offer the AVQ-10 as a major contribution to commercial aviation's constant effort to improve passenger comfort and arrival-time dependability.

LIGHTER
Weight has been cut to under 125 pounds for the complete system including shock mounts.

SIMPLER
Both mechanically and electronically, the cleanliness of design of the AVQ-10 insures stable, trouble-free operation.

SURER
A new design with simplified circuitry, generously degated components and employing fewer tubes, rectifiers, and crystals assures a new high standard of performance and reliability.

Airline and executive operators are invited to ask for more complete information.

COMMERCIAL AVIATION SALES:
RADIO CORPORATION of AMERICA
ENGINEERING PRODUCTS DIVISION CAMDEN, N.J.
ALTITUDE

World Class Record

Ivan Soukhomline, USSR, Tsagui 44 D Amphibian, 4 M-87 840 hp engines, Katcha, near Sebastopol, June 19, 1940.

National (U.S.) Record

Boris Serfievsky, United States, Sikorsky S-43 Amphibian, 2 Pratt and Whitney, 750 hp engines, Stratford, Conn., Apr 25, 1936.

SPEED FOR 621.369 MI.

World Class Record

Ivan Soukhomline, USSR, Tsagui 44 D Amphibian, 4 M-87 750 hp engines, Katcha-Kersones-Taganrog course, Oct. 7, 1940.

National (U.S.) Record

No official record.

SPEED FOR 1,242.739 MI.

No official record.

SPEED FOR 3,106.849 MI.

No official record.

WITH PAYLOAD OF 4,409.244 LB.

ALTITUDE

World Class Record

20,617 ft.

National (U.S.) Record

19,625 ft.

SPEED FOR 621.369 MI.

Ivan Soukhomline, USSR, Tsagui 44 D Amphibian, 4 M-87 750 hp engines, Katcha near Sebastopol, June 19, 1940.

National (U.S.) Record

No official record.

SPEED FOR 1,242.739 MI.

No official record.

SPEED FOR 3,106.849 MI.

No official record.

WITH PAYLOAD OF 11,023.11 LB.

ALTITUDE

World Class Record

17,123 ft.

National (U.S.) Record

No official record.

SPEED FOR 621.369 MI.

Ivan Soukhomline, USSR, Tsagui 44 D Amphibian, 4 M-87 840 hp engines, Katcha, near Sebastopol, June 19, 1940.

National (U.S.) Record

No official record.

SPEED FOR 1,242.739 MI.

No official record.

SPEED FOR 3,106.849 MI.

No official record.

WITH PAYLOAD OF 22,046.22 LB.

GREATEST PAYLOAD CARRIED TO AN ALTITUDE OF 6,561.660 FT.

World Class Record

11,023 lb.

Ivan Soukhomline, USSR, Tsagui 44 D Amphibian, 4 M-87 840 hp engines, at Katcha, near Sebastopol, June 19, 1940.

National (U.S.) Record

No official record.

LIGHT AMPHIBIANS

FIRST CATEGORY, CLASS C-3.a (less than 1,322.7 lb.)

SECOND CATEGORY, CLASS C-3.b (1,322.8 to 2,645.4 lb.)

THIRD CATEGORY, CLASS C-3.c (2,645.6 to 4,629.7 lb.)

FOURTH CATEGORY, CLASS C-3.d (4,629.7 to 7,495.7 lb.)

AIRLINE DISTANCE — No official record.

ALTITUDE

DISTANCE IN A CLOSED CIRCUIT

No official record.

DISTANCE CLOSED CIRCUIT WITHOUT PAYLOAD

ROTORPLANES—(Class E)

DISTANCE IN A STRAIGHT LINE WITHOUT PAYLOAD

World Class Record

Elton J. Smith, United States, Bell 47D1 Helicopter, Franklin 200 hp engine, from Hurst, Ft. Worth, Tex., to Niagara Falls, N. Y. Sept. 17, 1952.

National (U.S.) Record

Same as above.

DISTANCE CLOSED CIRCUIT WITHOUT PAYLOAD

World Class Record

Jean Boulet, France, S.E.3 120 Helicopter, Salimson 9 NH 200 hp engine, Buc-Étampes-Rambouillet Course, July 2, 1951.

National (U.S. Record)

621,369 mi.

424
NORTH AMERICAN HAS BUILT MORE AIRPLANES THAN ANY OTHER COMPANY IN THE WORLD

There's adventure ahead for men who can qualify to fly the F-100. Contact your nearest U.S. Air Force Recruiting Center.

F-100... DESIGNED TO FLY AHEAD OF TIME

Once again North American has met the challenge: designed and produced an operational jet fighter that can do what no other fighter has ever done: fight at speeds faster than the speed of sound!

The engineering skill that created the World War II Mustang and the Korea-famed Sabre Jet met today's challenge with the history-making F-100 Super Sabre... first and only operational jet capable of breaking the sonic barrier in level and climbing flight. Today F-100's are being delivered to the Air Force, and Supersonic Squadrons are being formed to safeguard the free world's security in the skies.

This is one more example of the research and development that keeps North American ahead in aircraft, rocket engines, guided missiles, electronics and peaceful uses of atomic energy.

Engineers: North American offers unusual opportunities to qualified engineers seeking a challenging future. Please write: Engineering Personnel Office, Los Angeles or Downey, California, or Columbus, Ohio.

Engineering Ahead for a Better Tomorrow

NORTH AMERICAN AVIATION, INC.
ALTITUDE WITHOUT PAYLOAD

World Class Record
W/O Billy Wester, USA, United States, Sikorsky XH-39 Helicopter, Turbomeca 425 hp engine, Bridgeport, Conn., Oct. 17, 1954. (Pending F.A.I. confirmation as we went to press.)
National (U.S.) Record Same as above.

MAXIMUM SPEED WITHOUT PAYLOAD

World Class Record
National (U.S.) Record Same as above.

SPEED FOR 62,137 MI. IN A CLOSED CIRCUIT, WITHOUT PAYLOAD

World Class Record
Harold E. Thompson, United States, Sikorsky S-52-1 Helicopter, Franklin 0-425-1 engine, 245 hp, Milford, Conn., May 6, 1949.
National (U.S.) Record Same as above.

SPEED FOR 62,136.85 MI. IN A CLOSED CIRCUIT, WITHOUT PAYLOAD

World Class Record
Jean Boulet, France, S.E.3. 120 Helicopter, Salmsom 9 NH 200 hp engine, Buc-Etampes-Rambouillet course, July 2, 1952.
National (U.S.) Record No official record.

SPEED FOR 621,369 MI. IN A CLOSED CIRCUIT, WITHOUT PAYLOAD

World Record Class
National (U.S.) Record Same as above.

SPEED FOR 1,242,739 MI. IN A CLOSED CIRCUIT, WITHOUT PAYLOAD. No official record.

SPEED FOR 3,106,849 MI. IN A CLOSED CIRCUIT, WITHOUT PAYLOAD—No official record.

AIRSHIPS—(CLASS B)

World Class Record
National (U.S.) Record No official record.

GLIDERS—(CLASS D)

(Single-Place)

World Class Record
National (U.S.) Record Same as above.

DISTANCE TO A PREDETERMINED POINT WITH RETURN TO POINT OF DEPARTURE

World Class Record
National (U.S.) Record Same as above.

DISTANCE TO A PREDETERMINED DESTINATION

World Class Record
National (U.S.) Record

DURATION WITH RETURN TO POINT OF DEPARTURE

World Class Record
Charles Atger, France, Arsenal Air 100 glider, at Romanin les Alpilles (St. Remy de Provence), Apr. 2-4, 1952.
National (U.S.) Record

ALTITUDE GAINED

World Class Record
National (U.S.) Record Same as above.

ALTITUDE ABOVE SEA LEVEL

World Class Record
National (U.S.) Record
30,100 ft. 309.678 mi

The AIRCRAFT YEAR BOOK
Certified Woven Pile
WEATHERSEALS
for aircraft

You get positive sealing against weather leaks; provide safe, efficient comfort when you use Schlegel Certified Woven Pile Channel Lace and Channel Assemblies. Use rugged, long-life Schlegel Handle Assist Straps, too.

These are some prominent aircraft manufacturers who use Schlegel products:

- Aeroco	- Ford Kansas City
- Beech	- Goodyear Aircraft
- Beeing	- Grand Central Aircraft
- Cessna	- Grumman
- Consolidated Vision	- Kama
- Douglas	- Lockheed
- Fairchild	- Glenn L. Martin
- Boeing	- McDonald
- Consolidated Vision	- Piageki
- Grumman	- Piper
- Kama	- Rohr
- Rochester 7, N.Y.
- Oakville, Ont., Canada

Schlegel Manufacturing Company

Industrial Textiles
Since 1885

"Complete engineering service against weather"

AIRCRAFT RADIO CORPORATION
Boonton, New Jersey

A.R.C. means dependable VHF COMMUNICATIONS and NAVIGATIONAL EQUIPMENT

Type 15D navigational equipment for receiving Omni, V.A.R. and runway localizers. Write for newest literature; also on compact, lightweight A.R.C. receivers and transmitters.

ELECTRIC CABLES
for AIRCRAFT

Manufactured in accordance with latest Airforce and Navy Specifications

LIGHTING AND POWER CABLES
IGNITION CABLE
SHIELDGING AND ANTENNA WIRE
INSTRUMENT WIRES & CABLES

Special multiple conductor cable made to order — designed for particular applications on instruments and apparatus.

BOSTON INSULATED WIRE
AND CABLE COMPANY
BOSTON, MASSACHUSETTS
SPEED FOR 62.137 MI. OVER A TRIANGULAR COURSE

<table>
<thead>
<tr>
<th>Record</th>
<th>Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>World Class Record</td>
<td>59.475 mph.</td>
</tr>
<tr>
<td>National (U.S.) Record</td>
<td>52.766 mph.</td>
</tr>
</tbody>
</table>

DISTANCE IN A STRAIGHT LINE

<table>
<thead>
<tr>
<th>Record</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>World Class Record</td>
<td>515.636 mi.</td>
</tr>
<tr>
<td>Victor Itchenko, pilot; Grigory Petchnikov, passenger; USSR; A-10 Sailplane, from Kountsevo (Moscow) to Ilovila (Stalingrad), May 26, 1933.</td>
<td></td>
</tr>
<tr>
<td>National (U.S.) Record</td>
<td>309.678 mi.</td>
</tr>
<tr>
<td>Richard H. Johnson, pilot; R. A. Sparling, passenger; Schweizer TG-2 glider, NC-459903, from Prescott, Ariz. municipal Airport to the Ackerman Ranch approximately 11 miles west of Governor, N. M., Sept. 8, 1946.</td>
<td></td>
</tr>
</tbody>
</table>

DISTANCE TO A PREDETERMINED POINT WITH RETURN TO POINT OF DEPARTURE

<table>
<thead>
<tr>
<th>Record</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>World Class Record</td>
<td>336.349 mi.</td>
</tr>
<tr>
<td>Jerzy Popiel, pilot; Adolf Sienaskiewicz, passenger; Poland; Zuraw II S.P.-1211 Sailplane, from Lublin to Hrubieszow, July 20, 1953.</td>
<td></td>
</tr>
<tr>
<td>National (U.S.) Record</td>
<td>223.138 mi.</td>
</tr>
</tbody>
</table>

DISTANCE TO A PREDETERMINED DESTINATION

<table>
<thead>
<tr>
<th>Record</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>World Class Record</td>
<td>336.349 mi.</td>
</tr>
<tr>
<td>Jerzy Popiel, pilot; Adolf Sienaskiewicz, passenger; Poland; Zuraw II S.P.-1211 Sailplane, from Lublin to Hrubieszow, July 20, 1953.</td>
<td></td>
</tr>
<tr>
<td>National (U.S.) Record</td>
<td>Same as above.</td>
</tr>
</tbody>
</table>

DURATION

<table>
<thead>
<tr>
<th>Record</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>World Class Record</td>
<td>57 hr., 10 min.</td>
</tr>
<tr>
<td>Bertrand Daunin and Henri Couston, France, Franich III Sailplane, Romain les Alpilles, Apr. 6-8, 1954.</td>
<td></td>
</tr>
<tr>
<td>National (U.S.) Record</td>
<td>12 hr., 3 min.</td>
</tr>
</tbody>
</table>

ALTITUDE GAINED

<table>
<thead>
<tr>
<th>Record</th>
<th>Altitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>World Class Record</td>
<td>34,426 ft.</td>
</tr>
<tr>
<td>Laurence E. Edgar, pilot; Harold E. Klieforth, passenger, United States, Pratt-Reed PR-G1 Sailplane, Bishop, Cal., Mar. 19, 1952.</td>
<td></td>
</tr>
<tr>
<td>National (U.S.) Record</td>
<td>Same as above.</td>
</tr>
</tbody>
</table>

ALTITUDE ABOVE SEA LEVEL

<table>
<thead>
<tr>
<th>Record</th>
<th>Altitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>World Class Record</td>
<td>44,255 ft.</td>
</tr>
<tr>
<td>Laurence E. Edgar, pilot; Harold E. Klieforth, passenger, United States, Pratt-Reed PR-G1 Sailplane, Bishop, Cal., Mar. 19, 1952.</td>
<td></td>
</tr>
<tr>
<td>National (U.S.) Record</td>
<td>Same as above.</td>
</tr>
</tbody>
</table>

SPEED FOR 62.137 MI. OVER A TRIANGULAR COURSE

<table>
<thead>
<tr>
<th>Record</th>
<th>Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>World Class Record</td>
<td>49.920 mph.</td>
</tr>
<tr>
<td>Ernst-Gunter Haase, pilot; Reinaldo Picchio, passenger, Germany; Condor IV Sailplane, at Klippenneck, Aug. 13, 1952.</td>
<td></td>
</tr>
<tr>
<td>National (U.S.) Record</td>
<td>27.873 mph.</td>
</tr>
</tbody>
</table>

BALLOONS (CLASS A)

THIRD CATEGORY—(14,126-21,189 CU. FT.)

<table>
<thead>
<tr>
<th>Record</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>World Class Record</td>
<td>46 hr., 10 min.</td>
</tr>
<tr>
<td>Serge Sinoveev, USSR, VR 80 Balloon, 21,082.458 cu. ft., take-off near Dologprudnaia, Mar. 30, 1941.</td>
<td></td>
</tr>
<tr>
<td>National (U.S.) Record</td>
<td>No official record.</td>
</tr>
</tbody>
</table>

DISTANCE

<table>
<thead>
<tr>
<th>Record</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>World Class Record</td>
<td>499.69 mi.</td>
</tr>
<tr>
<td>Georges Cormier, France, July 1, 1922.</td>
<td></td>
</tr>
<tr>
<td>National (U.S.) Record</td>
<td>No official record.</td>
</tr>
</tbody>
</table>

428
ELECTRIC MOTOR-DRIVEN HYDRAULIC PUMPS
Models ranging in capacity from 0.1 to 7.0 gpm with pressures up to 3000 psi. DC motors, 6 to 36 volts. AC motors, 400 cycles, 440 volts.

ENGINE-DRIVEN HYDRAULIC PUMPS
Pressures up to 3000 psi. Capacities up to 12 gpm. Weights range from 2.5 to 10 lbs.

ELECTRIC MOTORS
Designed for maximum power with minimum size and weight. AC Induction, 1 or 3-phase, 400 cycle at various voltages, 0.01 to 9 hp. DC Series, Shunt, or Compound, 6 to 36 volts, 0.01 to 11 hp at various speeds. All types of enclosures, continuous or intermittent duty.

FUEL BOOSTER PUMPS
AC or DC, single or two-speed motors. Capacities up to 40,000 gph. Pressures up to 40 psi. Suitable for gasoline or JP4 fuel to 50,000 feet. Tank-mounted, submerged or external; or line mounted.

FUEL PUMPS
Vane type for reciprocating engines, flow to 700 gph, pressures to 55 psi. Gear type for jet engines, flow to 200 gpm, pressures to 1500 psi, designed to supply main, after-burner, and emergency fuel requirements.

CARTRIDGE PUMPS
Custom built integral components to serve the hydraulic power requirements of original design. They are designed to be installed without fittings or external connections.

BORG-WARNER CORPORATION
24700 NORTH MILES ROAD • BEDFORD, OHIO
ALTITUDE
World Class Record
Boris Nevernov, USSR, VR-80 Balloon, 13,984.344 cu. ft., at Dolgoproudnaia, Aug. 31, 1940.
National (U.S.) Record
No official record.

FOURTH CATEGORY—(21,224 - 31,783 CU. FT.)

DURATION
World Class Record
F. Bourlouzki and A. Aliochine, USSR, from Moscow to Charaboulski, Apr. 3-6, 1939.
National (U.S.) Record

DISTANCE
World Class Record
F. Bourlouzki and A. Aliochine, USSR, from Moscow to Charaboulski, region of Koustanai, Apr. 3-6, 1939.
National (U.S.) Record

ALTITUDE
World Class Record
National (U.S.) Record
No official record.

FIFTH CATEGORY—(31,818 - 42,376.8 CU. FT.)

DURATION
World Class Record
F. Bourlouzki and A. Aliochine, USSR, from Moscow to Charaboulski, Apr. 3-6, 1939.
National (U.S.) Record
E. J. Hill and A. G. Schlosser, Ford Airport to Montale, Va., July 4-5, 1927.

DISTANCE
World Class Record
F. Bourlouzki and A. Aliochine, USSR, from Moscow to Charaboulski, region of Koustanai, Apr. 3-6, 1939.
National (U.S.) Record
S. A. U. Rasmussen, Ford Airport to Hookerton, N. C., July 4-5, 1927.

ALTITUDE
World Class Record
National (U.S.) Record
No official record.

SIXTH CATEGORY—(42,411.6 - 56,562.4 CU. FT.)

DURATION
World Class Record
Boris Nevernov and Semion Gaiguerev, USSR, VR-73 Balloon, 50,357.764 cu. ft., from Dolgoproudnaia to Novosibirsk, Mar. 13-16, 1941.
National (U.S.) Record
E. J. Hill and A. G. Schlosser, Ford Airport to Montvale, Va., July 4-5, 1927.

DISTANCE
World Class Record
Boris Nevernov and Semion Gaiguerev, USSR, VR-73 Balloon, 50,357.764 cu. ft., from Dolgoproudnaia to Novosibirsk, Mar. 13-16, 1941.
National (U.S.) Record
S. A. U. Rasmussen, Ford Airport to Hookerton, N. C., July 4-5, 1927.

ALTITUDE
World Class Record
National (U.S.) Record
No official record.
SAFETY AT BOTH ENDS OF THE FLIGHT WITH AEROJET-GENERAL EQUIPMENT!

- Solid- and Liquid-Propellant Rocket Powerplants for Missile and Aircraft Applications
- Thrust Reversers (SNECMA)
- Auxiliary Power Units and Gas Generators

Aerojet-General pioneered the use of solid- and liquid-propellant rocket powerplants for assisted-takeoff, standby power and in-flight thrust augmentation. Over 300,000 have been produced by Aerojet-General.

Aerojet-General’s thrust reverser, the AeroBRAKE, provides up to 50% reverse thrust for turbojet-powered aircraft. The AeroBRAKE permits full engine RPM at reduced aircraft speeds for landing, maneuverability, or as a dive brake.

A Subsidiary of The General Tire & Rubber Company

AZUSA, CALIFORNIA
CINCINNATI, OHIO
SACRAMENTO, CALIFORNIA

MORE POWER FOR AIR POWER
SEVENTH CATEGORY—(56,537.7 - 77,600.8 CU. FT.)

DURATION
World Class Record 69 hr. 20 min.
Boris Neverynov and Semion Gaiguero, USSR, VR-73 Balloon, 50,357.764 cu. ft., from Dolgoproudnaia to Novosibirsk, Mar. 13-16, 1941.

National (U.S.) Record 51 hr. 00 min.

DISTANCE
World Class Record 1,719,215 mi.
Boris Neverynov and Semion Gaiguero, USSR, VR-73 Balloon, 50,357.764 cu. ft., from Dolgoproudnaia to Novosibirsk, Mar. 13-16, 1941.

National (U.S.) Record 963,123 mi.
T. G. W. Settle and Wilfred Bushnell, from Basle, Switzerland to Daugeliski, Poland, Sept. 25-27, 1932.

ALTITUDE
World Class Record 30,755 ft.

National (U.S.) Record No official record

EIGHTH CATEGORY—(77,706 - 150,942 CU. FT.)

DURATION
World Class Record 69 hr. 20 min.
Boris Neverynov and Semion Gaiguero, USSR, VR-73 Balloon, 50,357.764 cu. ft., from Dolgoproudnaia to Novosibirsk, Mar. 13-16, 1941.

National (U.S.) Record 51 hr. 00 min.

DISTANCE
World Class Record 1,719,215 mi.
Boris Neverynov and Semion Gaiguero, USSR, VR-73 Balloon, 50,357.764 cu. ft., from Dolgoproudnaia to Novosibirsk, Mar. 13-16, 1941.

National (U.S.) Record 963,123 mi.
T. G. W. Settle and Wilfred Bushnell, from Basle, Switzerland to Daugeliski, Poland, Sept. 25-27, 1932.

ALTITUDE
World Class Record 30,755 ft.

NINTH CATEGORY—(105,977 - 141,256 CU. FT.)

DURATION
World Class Record 69 hr. 20 min.
Boris Neverynov and Semion Gaiguero, USSR, VR-73 Balloon, 50,357.764 cu. ft., from Dolgoproudnaia to Novosibirsk, Mar. 13-16, 1941.

National (U.S.) Record 51 hr. 00 min.

DISTANCE
World Class Record 1,719,215 mi.
Boris Neverynov and Semion Gaiguero, USSR, VR-73 Balloon, 50,357.764 cu. ft., from Dolgoproudnaia to Novosibirsk, Mar. 13-16, 1941.

National (U.S.) Record 963,123 mi.
T. G. W. Settle and Wilfred Bushnell, from Basle, Switzerland to Daugeliski, Poland, Sept. 25-27, 1932.

ALTITUDE
World Class Record 32,811 ft.
Z. J. Burzynski, Poland, at Legjonowo, Mar. 29, 1936.

Steady Customers of Small Business

Last year, as for nearly 30 successive years, the three divisions of United Aircraft Corporation spent more than 50 per cent of their income buying from subcontractors and suppliers. Almost all of these 6,000 vendors—nearly 9 out of 10, in fact—are classed as small businesses.

We have found our traditional policy of extensive subcontracting to be good business. It is good for the communities where our plants are located, good for our civilian and military customers, and wise expansion insurance for the nation's vital aviation industry.
TENTH CATEGORY—(141.291.3 CU. FT. OR OVER)

DURATION

World Class Record
H. Kaulen, Germany, Dec. 13-17, 1913. 87 hr. 00 min.
National (U.S.) Record
Lt. Comdr. T. G. W. Settle and Lt. Charles H. Kendall, Gordon-Bennett Balloon Race, Chicago, Ill., Sept. 2-4, 1933. 51 hr. 00 min.

DISTANCE

World Class Record
Berliner, Germany, Feb. 8-10, 1914. 1,896.856 mi.
National (U.S.) Record
A. R. Hawley, St. Louis, Mo. to Lake Tschotogama, Canada, Oct. 17-19, 1910. 1,172.838 mi.

ALTITUDE

World Class Record
Capt. Orvill Anderson and Capt. Albert Stevens, United States, Explorer II, take-off approximately 11 miles southwest of Rapid City, S. D., landing on school reserve land approximately 12 miles south of White Lake, S. D., Nov. 11, 1935. 72,395 ft.
National (U.S.) Record
Same as above.

FEMININE RECORDS

AIRPLANES—(CLASS C) GROUP II

DISTANCE IN A CLOSED CIRCUIT

No official record.

AIRLINE DISTANCE

World Class Record
W. Grisodoubova and P. Ossipenko, pilots; M. Raskova, Navigatrix; USSR; Sukhoi Rodina airplane, 2 M-96 800 hp engines, Sept. 24-25, 1938. 3,671.432 mi.
National (U.S.) Record
Amelia Earhart, Lockheed Vega monoplane, Pratt and Whitney Wasp 450 hp engine, from Los Angeles, Cal., to Newark, N. J., Aug. 24-25, 1933. 2,447.728 mi.

ALTITUDE

World Class Record
Mrs. Maryse Hilsz, France, Potez 506 biplane, Gnome and Rhone 900 hp engine, at Villacoublay, June 23, 1936. 46,949 ft.
National (U.S.) Record
J. M. Finley, S. A. National N-1600, 1,896.856 ft., Sept. 24, 1938. 30,052 ft.

SPEED, MAXIMUM—1.8 MI. (3 KM.) COURSE

World Class Record
National (U.S.) Record
Same as above.

SPEED, MAXIMUM—9.3 MI. (15 KM.) COURSE

World Class Record
National (U.S.) Record
Same as above.

SPEED FOR 62.137 MI. WITHOUT PAYLOAD

World Class Record
National (U.S.) Record
Same as above.

SPEED FOR 310.685 MI. WITHOUT PAYLOAD

World Class Record
National (U.S.) Record
Same as above.

SPEED FOR 621.369 MI. WITHOUT PAYLOAD

World Class Record
National (U.S.) Record
Same as above.
Carrier Based Jets to have Radar Guided Missiles

NAVY'S AIR-TO-AIR SPARROW 1 IN PRODUCTION

THE STORY BEHIND THE STORY:

- On May 12, newspapers from coast to coast carried headlines like the ones above, announcing the Navy's newest weapon of defense—Sparrow I—and the beginning of volume production for operational use in the fleets.

- Ahead of these headlines were 7 years of intensive cooperative effort shared by the Navy's Bureau of Aeronautics and Sperry.

- Originally designated project HOT SHOT, Sparrow began back in 1947 when the Bureau of Aeronautics assigned to Sperry the full responsibility of creating an entirely new air-to-air missile system. It had to be light and compact — so multiple units could be carried by fighter-type jets. It had to be deadly accurate — capable of outmaneuvering the swiftest bombers an enemy could produce. And it had to be practical—suitable for large-scale production.

- The rocket-powered, radar-guided Sparrow I, coming off the production lines here and at the new Sperry Farragut plant in Bristol, Tennessee, meets these requirements—and more. It embodies the proved features of more than 100 different missiles designed, constructed and tested during a 7-year period—and the finest brains of an organization that has devoted more than 40 years creating and manufacturing automatic flight control and fire control systems.
The AIRCRAFT YEAR BOOK

SPEED FOR 1,242.739 MI. WITHOUT PAYLOAD
World Class Record
National (U.S.) Record

SPEED FOR 3,106.847 MI. WITHOUT PAYLOAD
No official record.

SPEED FOR 6,213.695 MI. WITHOUT PAYLOAD
No official record.

AIRPLANES—(CLASS C)—GROUP I
JET POWERED AIRCRAFT

DISTANCE IN A CLOSED CIRCUIT
Neither World Class nor National (U.S.) Record has been established.

DISTANCE IN A STRAIGHT LINE
Neither World Class nor National (U.S.) Record has been established.

ALTITUDE WITHOUT LOAD
World Class Record
Miss Jacqueline Cochran, United States, Canadair-built F-86E swept wing monoplane, Orenda jet engine, Edwards, Cal., May 24, 1953.
National (U.S.) Record

SPEED, MAXIMUM—18 MI. (3 KM.) STRAIGHTAWAY COURSE
Neither World Class nor National (U.S.) Record has been established.

SPEED, MAXIMUM—93 MI. (15 KM.) STRAIGHTAWAY COURSE
World Class Record
Miss Jacqueline Cochran, United States, Canadair-built F-86E swept wing monoplane, Orenda jet engine, Edwards, Cal., June 3, 1953.
National (U.S.) Record

SPEED FOR 62.137 MILES IN A CLOSED CIRCUIT WITHOUT PAYLOAD
World Class Record
Miss Jacqueline Cochran, United States, Canadair-built F-86E swept wing monoplane, Orenda jet engine, Edwards, Cal., May 18, 1953.
National (U.S.) Record

SPEED FOR 310.60 MILES IN A CLOSED CIRCUIT WITHOUT PAYLOAD
World Class Record
Miss Jacqueline Cochran, United States, Canadair-built F-86E swept wing monoplane, Orenda jet engine, Edwards, Cal., May 21, 1953.
National (U.S.) Record

SEAPLANES—(CLASS C2)

DISTANCE IN A CLOSED CIRCUIT
World Class Record
Lt. P. Ossipenko and Lt. V. Lomako, USSR, MP-1 monoplane seaplane, AM-34-750 hp engine, May 24, 1938.
National (U.S.) Record

DISTANCE, AIRLINE
World Class Record
Poline Ossipenko and Vera Lomako, pilots: Marina M. Raskova, navigatrice; USSR, MP-1 seaplane, AM-34 750 hp engine, from Sebastopol to Lake Khodskoe; July 2, 1938.
National (U.S.) Record

ALTITUDE
World Class Record
Poline Ossipenko, USSR Canot Volant monoplane seaplane, AM-34 750 hp engine, from Sebastopol, May 25, 1937.
National (U.S.) Record

MAXIMUM SPEED
World Class Record
Miss Crystal Mowry and Miss Edith McCann, United States, Kitty Hawk seaplane, Kitty 125 hp engine, Miami, Fla., Dec. 9, 1936.
National (U.S.) Record

SPEED FOR 310.685 MI. WITHOUT PAYLOAD
No official record.

SPEED FOR 621.369 MI. WITHOUT PAYLOAD
No official record.

SPEED FOR 1,242.739 MI. WITHOUT PAYLOAD
No official record.

SPEED FOR 3,106.847 MI. WITHOUT PAYLOAD
No official record.

SPEED FOR 6,213.695 MI. WITHOUT PAYLOAD
No official record.
Drill 'em
AT ANY ANGLE
Fast!

In the CLOSEST SPOTS
30° 45° 90° 360°

VERSATILE
DEPENDABLE
PRECISION BUILT

GEORGE A. TERRY CO.
352 S. ELMWOOD AVE.
BUFFALO 1, N.Y.

WYMAN-GORDON FORGINGS

• Aluminum
• Magnesium
• Steel
• Titanium

WORCESTER, MASSACHUSETTS
HARVEY, ILLINOIS
DETROIT, MICHIGAN
GLIDERS—(CLASS D)

(Single-Place)

DURATION WITH RETURN TO POINT OF DEPARTURE

<table>
<thead>
<tr>
<th>Record Type</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>World Class</td>
<td>35 hr. 3 min.</td>
</tr>
<tr>
<td>Miss Marcelle Choisnet, France, Air-100 glider, No. 5 Romarin les Alpilles, Nov. 17-19, 1948.</td>
<td></td>
</tr>
<tr>
<td>National (U.S.)</td>
<td>7 hr. 28 min.</td>
</tr>
</tbody>
</table>

DISTANCE IN A STRAIGHT LINE

<table>
<thead>
<tr>
<th>Record Type</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>World Class</td>
<td>465.532 mi.</td>
</tr>
<tr>
<td>O. Klepikova, USSR, Rot-Front 7 glider from Moscow to Otradnoie, region of Stalingrad, July 6, 1939.</td>
<td></td>
</tr>
<tr>
<td>National (U.S.)</td>
<td>201.450 mi.</td>
</tr>
</tbody>
</table>

ALTITUDE GAINED

<table>
<thead>
<tr>
<th>Record Type</th>
<th>Altitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>World Class</td>
<td>25,414 ft.</td>
</tr>
<tr>
<td>Mrs. Yvonne Gaudry, France, N-2000 glider No. 12, St. Auban sur Durance, Jan. 20, 1951.</td>
<td></td>
</tr>
<tr>
<td>National (U.S.)</td>
<td>14,496 ft.</td>
</tr>
</tbody>
</table>

ALTITUDE ABOVE SEA LEVEL

<table>
<thead>
<tr>
<th>Record Type</th>
<th>Altitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>World Class</td>
<td>27,342 ft.</td>
</tr>
<tr>
<td>Mrs. Yvonne Gaudry, France, N-2000 glider No. 12, St. Auban sur Durance, Jan. 20, 1951.</td>
<td></td>
</tr>
<tr>
<td>National (U.S.)</td>
<td>No official record.</td>
</tr>
</tbody>
</table>

DISTANCE TO A PREDETERMINED DESTINATION

<table>
<thead>
<tr>
<th>Record Type</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>World Class</td>
<td>315.067 mi.</td>
</tr>
<tr>
<td>Mrs. Mamie Choisnet-Gohard, France, Air-100 Sailplane No. 14, from Beynes-Thiverval to Bordeaux-Leognan, Apr. 17, 1954.</td>
<td></td>
</tr>
<tr>
<td>National (U.S.)</td>
<td>76.752 mi.</td>
</tr>
<tr>
<td>Miss Betsy Woodward, Briegeleb BG-7 Sailplane, from Grand Prairie, Tex. to Stephenville, Tex., Aug. 29, 1952.</td>
<td></td>
</tr>
</tbody>
</table>

DISTANCE TO A PREDETERMINED POINT WITH RETURN TO POINT OF DEPARTURE

<table>
<thead>
<tr>
<th>Record Type</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>World Class</td>
<td>180.320 mi.</td>
</tr>
<tr>
<td>Mrs. Mamie Choisnet-Gohard, France, Air 100 Gondolo Glider, Beynes-Romilly-Beynes course, May 12, 1953.</td>
<td></td>
</tr>
<tr>
<td>National (U.S.)</td>
<td>120.452 mi.</td>
</tr>
<tr>
<td>Miss Betsy Woodward, Briegeleb BG-7 Sailplane, from Grand Prairie, Tex. to Mineral Wells, Tex. and return, Aug. 21, 1952.</td>
<td></td>
</tr>
</tbody>
</table>

SPEED FOR 62.137 MI. OVER A TRIANGULAR COURSE

<table>
<thead>
<tr>
<th>Record Type</th>
<th>Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>World Class</td>
<td>46.953 mph.</td>
</tr>
<tr>
<td>National (U.S.)</td>
<td>28.635 mph.</td>
</tr>
</tbody>
</table>

GLIDERS—(CLASS D)

(Multi-Place)

DURATION

<table>
<thead>
<tr>
<th>Record Type</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>World Class</td>
<td>38 hr., 41 min.</td>
</tr>
<tr>
<td>Mrs. Jacqueline Mathe, pilot; Mrs. M. Garbarino, passenger; France, Castel Maubousin GM7 No. 02 Biplase Sailplane, Romanin les Alpilles, Jan. 11-12, 1954.</td>
<td></td>
</tr>
<tr>
<td>National (U.S.)</td>
<td>4 hr. 15 min.</td>
</tr>
<tr>
<td>Miss Betsy Woodward, pilot; Anna Saudek, passenger, Pratt Read Sailplane, from Adelanto, Cal. to Las Vegas, Nev., July 11, 1952.</td>
<td></td>
</tr>
</tbody>
</table>

DISTANCE IN A STRAIGHT LINE

<table>
<thead>
<tr>
<th>Record Type</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>World Class</td>
<td>275.711 mi.</td>
</tr>
<tr>
<td>O. Klepikova and V. Bardina, USSR, Stakanoetz glider, from Toula to Konotop, June 19, 1940.</td>
<td></td>
</tr>
</tbody>
</table>
UP FRONT

F-101A Voodoo

World's Most Powerful Fighter

This supersonic twin-jet fighter, now in production for the Air Force, will play a vital and lethal role on the front lines of the free world. Capable of carrying atomic weapons, the long-range Voodoo continues in the McDonnell tradition of providing the United States with the best of aerial power.

McDONNELL Aircraft Corporation
Manufacturers of AIRPLANES AND HELICOPTERS • ST. LOUIS 3, MO.
ALTITUDE ABOVE SEA LEVEL

World Class Record
Mrs. M. Choisnet-Gohard, pilot; Miss J. Queyrel, passenger; France, Castel Mauboussin CM glider No. 02, St. Auban sur Durance, Jan. 18, 1951.
National (U.S.) Record

ALTITUDE GAINED

World Class Record
Mrs. M. Choisnet-Gohard, pilot; Miss J. Queyrel, passenger; France, Castel Mauboussin CM glider No. 02, St. Auban sur Durance, Jan. 18, 1951.
National (U.S.) Record

DISTANCE TO A PREDETERMINED DESTINATION

World Class Record
Mrs. Wanda Ademak, pilot; Mrs. Marta Sitarska, passenger; Poland, Zuraw biplane glider, from Lisle Katty to Lublin, May 29, 1953.
National (U.S.) Record

DISTANCE TO A PREDETERMINED POINT WITH RETURN TO POINT OF DEPARTURE

World Class Record
Miss Betsy Woodward, pilot; Anna Saudek, passenger; United States, Pratt-Read Sailplane, from Adelanto, Calif. to Las Vegas, Nev., July 11, 1952.
National (U.S.) Record

SPEED FOR 62.137 MI. OVER A TRIANGULAR COURSE

World Class Record
National (U.S.) Record

BALLOONS—(CLASS A)

THIRD CATEGORY (21,188.4 CU. FT. OR LESS)

Duration
World Class Record
National (U.S.) Record

Distance
World Class Record
National (U.S.) Record

Altitude
SIXTH CATEGORY (10,629.514 - 56,502.4 CU. FT.)

Duration
World Class Record
Miss L. Ivanova and Miss S. Tonkova, USSR, take-off near the Central Aerology Observatory at Dolgoproudnaia, landing at Barachevo, Apr. 22-24, 1948.
National (U.S.) Record

Distance
No official record.

Altitude
SEVENTH CATEGORY (56,537.714 - 77,690.8 CU. FT.)

Duration
World Class Record
Miss L. Ivanova and Miss S. Tonkova, USSR, take-off near the Central Aerology Observatory at Dolgoproudnaia, landing at Barachevo, Apr. 22-24, 1948.
National (U.S.) Record

Distance
No official record.

Altitude
EIGHTH CATEGORY (77,726.114 - 103,942 CU. FT.)

Duration
World Class Record
Miss L. Ivanova and Miss S. Tonkova, USSR, take-off near the Central Aerology Observatory at Dolgoproudnaia, landing at Barachevo, Apr. 22-24, 1948.
National (U.S.) Record

Distance
No official record.

Altitude
Included in the Air Data provided by an AiResearch System are—TRUE AIRSPEED • FUNCTIONS OF MACH NUMBER • TRUE DYNAMIC PRESSURE • DENSITY ALTITUDE • INCREMENTAL MACH NUMBER • INCREMENTAL ALTITUDE • RATE ALTITUDE • TRUE ANGLE OF ATTACK • TRUE ANGLE OF YAW • ROCKET JUMP ANGLE • ROCKET MUZZLE VELOCITY • TRUE STATIC TEMPERATURE • ENGINE PRESSURE RATIO • MECHANICAL ADVANTAGE SHIFTER • CRUISE CONTROL COMPUTER • SUPersonic INLET COMPUTER CONTROL • BAllISTICS COMPUTER

X-ray a modern jet airplane and you'll find some kind of data gathering equipment to aid pilots in accurately delivering fire power.

AiResearch can build complete systems of this kind. They are called Central Air Data Computer Systems - integrating pneumatic, electrical and electronic components. These systems sense, measure and correct automatically for all air conditions affecting flight.

The combination of transducers, computers, and indicators is the simplest, most reliable system for gathering and interpreting air data. AiResearch has the skills and experience to create complete systems for any aircraft.

Also, if you have a problem involving equipment for temperature or pressure control, remote positioning, synchronizing, or analogue computing, consult AiResearch now.

AiResearch Manufacturing Company
A division of THE GARRETT CORPORATION

Los Angeles 45, California - Phoenix, Arizona

Designers and manufacturers of aircraft components:
- Refrigeration Systems
- Pneumatic Valves and Controls
- Turbine Motors
- Temperature Controls
- Cabin Air Compressors
- Gas Turbine Engines
- Cabin Pressure Controls
- Heat Transfer Equipment
- Electro-Mechanical Equipment
- Electronic Computers and Controls
The AIRCRAFT YEAR BOOK

THIRD CATEGORY (14,126 TO 21,189 CU. FT.)

DURATION
World Class Record
A. Kondratyeva, U.S.S.R., SSSR BP-31 Balloon, Moscow to Loukino
National (U.S.) Record
No official record.

DISTANCE
World Class Record
Mrs. Paulette Weber, France, F-AMAQ Balloon of the Rousaux
(Nord) at Villers, May 8-9, 1939.
National (U.S.) Record
No official record.

ALTITUDE
Neither World Class nor National (U.S.) Record has been established.

SIXTH CATEGORY (42,412-56,502 CUBIC FEET)

DURATION
World Class Record
Miss L. Ivanova and Miss S. Tonkova, U.S.S.R., take-off near the
Central Aerology Observatory at Dolgo proudnaiia, landing at Bara-
chevo, Apr. 22-24, 1948.
National (U.S.) Record
No official record.

DISTANCE
Neither World Class nor National (U.S.) Record has been established.

ALTITUDE
Neither World Class nor National (U.S.) Record has been established.

SEVENTH CATEGORY (56,538-77,691 CU. FT.)

DURATION
International Record
Miss L. Ivanova and Miss S. Tonkova, U.S.S.R., take-off near the
Central Aerology Observatory at Dolgo proudnaiia, landing at Bara-
chevo, April 22-24, 1948.
National (U.S.) Record
No official record.

DISTANCE
Neither International nor National (U.S.) Record has been established.

ALTITUDE
Neither International nor National (U.S.) Record has been established.

EIGHTH CATEGORY (77,706-105,942 CU. FT.)

DURATION
International Record
Miss L. Ivanova and Miss S. Tonkova, U.S.S.R., take-off near the
Central Aerology Observatory at Dolgo proudnaiia, landing at Bara-
chevo, April 22-24, 1948.
National (U.S.) Record
None established.

DISTANCE
Neither International nor National (U.S.) Record has been established.

ALTITUDE
Neither International nor National (U.S.) Record has been established.

NINTH CATEGORY (105,977.314 - 141,256 CU. FT.)

DURATION
World Class Record
Miss L. Ivanova and Miss S. Tonkova, USSR, take-off near the Cen-
tral Aerology Observatory at Dolgo proudnaiia, landing at Barachevo,
Apr. 22-24, 1948.
National (U.S.) Record
No official record.

DISTANCE
No official record.

ALTITUDE
No official record.

TENTH CATEGORY (141,291.314 CU. FT. OR OVER)

DURATION
World Class Record
Miss L. Ivanova and Miss S. Tonkova, USSR, take-off near the Cen-
tral Aerology Observatory at Dolgo proudnaiia, landing at Barachevo,
Apr. 22-24, 1948.
National (U.S.) Record
No official record.

DISTANCE
No official record.

ALTITUDE
No official record.
The Aircraft Year Book

ROTORPLANES—(Class E)

<table>
<thead>
<tr>
<th>Distance Airline</th>
<th>World Class Record</th>
<th>National (U.S.) Record</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miss Hanna Reitsch, Germany, FW. 61 V2, D-EKRA helicopter, from Tempelhof airport to Tan Son Nhut Airport, Nov. 27, 1947.</td>
<td>67.713 mi.</td>
<td>No official record.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Distance, Closed Circuit</th>
<th>Altitude</th>
<th>Speed for 12.43 Mi.</th>
</tr>
</thead>
<tbody>
<tr>
<td>No official record.</td>
<td>No official record.</td>
<td>No official record.</td>
</tr>
</tbody>
</table>

F.A.I. Course Records

<table>
<thead>
<tr>
<th>Los Angeles to New York</th>
<th>World Class Record</th>
<th>National (U.S.) Record</th>
</tr>
</thead>
<tbody>
<tr>
<td>Col. W. W. Millikan, ANGUS, United States, North American F-80F-25 swept wing monoplane, General Electric J-47-17 jet engine, from Washington National Airport to Floyd Bennett Field, Brooklyn, Jan. 2, 1954. Distance (Center to Center): 2,485 statute mi. Elapsed time: (Center to Center): 4 hr., 6 min., 16 sec.</td>
<td>595.910 mph.</td>
<td>Same as above.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Washington, D.C., to Havana, Cuba</th>
<th>World Class Record</th>
<th>National (U.S.) Record</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Havana, Cuba to Washington, D.C.</th>
<th>World Class Record</th>
<th>National (U.S.) Record</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Cape Town, Africa to London, England</th>
<th>World Class Record</th>
<th>National (U.S.) Record</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>London, England to Rome, Italy</th>
<th>World Class Record</th>
<th>National (U.S.) Record</th>
</tr>
</thead>
<tbody>
<tr>
<td>John Cunningham and P. O. Bugge, Great Britain, de Havilland Comet DH-106 Mark I, 4 de Havilland Ghost Mark I jet engines, Mar. 16, 1950. Elapsed Time: 1 hr. 58 min. 37 sec.</td>
<td>447.219 mph.</td>
<td>No official record.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rome, Italy to London, England</th>
<th>World Class Record</th>
<th>National (U.S.) Record</th>
</tr>
</thead>
<tbody>
<tr>
<td>John Cunningham and P. O. Bugge, Great Britain, de Havilland Comet DH-106 Mark I, 4 de Havilland Ghost Mark I jet engines, Mar. 16, 1950. Elapsed Time: 1 hr. 58 min. 04 sec.</td>
<td>453.308 mph.</td>
<td>No official record.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Paris, France to Saigon, French Indo-China</th>
<th>World Class Record</th>
<th>National (U.S.) Record</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miss Maryse Hilsz, France, Caudron Simoun C. 635 airplane, Renault engine, from Le Bourget Airport to Tan Son Nhut Airport, Dec. 19-23, 1923. Elapsed Time: 96 hr. 36 min. 15 sec.</td>
<td>67.926 mph.</td>
<td>No official record.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Paris, France to Hanoi, French Indo-China</th>
<th>World Class Record</th>
<th>National (U.S.) Record</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andre Japy, France, Caudron Simoun airplane, Renault 6001, number 71 motor, from Le Bourget, Paris to Gia Lam Airport, Hanoi, Nov. 15-18, 1936. Elapsed Time: 50 hr. 59 min. 49 sec.</td>
<td>111.976 mph.</td>
<td>No official record.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>New York, N.Y., to Los Angeles, Cal.</th>
<th>World Class Record</th>
<th>National (U.S.) Record</th>
</tr>
</thead>
</table>
fill your aluminum needs at

HARVEY Aluminum

Harvey's integrated team of research specialists, metallurgists and engineers is ready to help you solve problems of design, engineering, production or application. For the finest materials and the fastest service it's Harvey Aluminum... nation's largest independent facility.

HARVEY ALUMINUM SALES, INC.
TORRANCE, CALIFORNIA
BRANCH OFFICES IN PRINCIPAL CITIES

An independent producer of aluminum extrusions in all alloys and all sizes: special extrusions, press forgings, hollow sections, structural, rod and bar, forging stock, pipe, tubes, impact extrusions, aluminum screw machine products and related products. Also offers steel and titanium of similar products on application.
The AIRCRAFT YEAR BOOK

NEW YORK CITY, U.S.A. TO LONDON, ENGLAND
World Class Record
Henry T. Merrill and John S. Lambe, pilots, United States, Lockheed Electra monoplane, Pratt and Whitney SH-1 engine, May 9-16, 1937. Elapsed Time: 20 hr. 29 min. 45 sec.
National (U.S.) Record
Same as above

LONDON, ENGLAND TO MELBOURNE, AUSTRALIA
World Class Record
Capt. W. Hull and John H. Daily, pilots, Great Britain, de Havilland Comet monoplane, 2 D.H. Gipsy VI engines, Mar. 21-26, 1938. Elapsed Time: 80 hr. 56 min.
National (U.S.) Record
No official record.

NEW LONDON, ENGLAND TO SYDNEY, AUSTRALIA
World Class Record
F/O A. E. Clouston and Victor Ricketts, Great Britain, de Havilland Comet monoplane, 2 D.H. Gipsy VI engines, Mar. 21-26, 1938. Elapsed Time: 120 hr. 3 min.
National (U.S.) Record
No official record.

SYDNEY, AUSTRALIA TO LONDON, ENGLAND
World Class Record
National (U.S.) Record
No official record.

LONDON, ENGLAND TO WELLINGTON, NEW ZEALAND
World Class Record
National (U.S.) Record
No official record.

WELLINGTON, NEW ZEALAND TO LONDON, ENGLAND
World Class Record
National (U.S.) Record
No official record.

LONDON, ENGLAND TO CAPE TOWN, AFRICA
World Class Record
National (U.S.) Record
No official record.

LONDON, ENGLAND TO KARACHI, INDIA
World Class Record
National (U.S.) Record
No official record.

LONDON, ENGLAND TO DARWIN, AUSTRALIA
World Class Record
National (U.S.) Record
No official record.

PARIS, FRANCE TO TANANARIVO, MADAGASCAR
World Class Record
National (U.S.) Record
No official record.

TOKYO, JAPAN TO LONDON, ENGLAND
World Class Record
Masaaki Linuma and Kenji Tsukaloshi, Japan, Kamikaze monoplane, type Karigane, Mitsubishi Nakajima 550 hp engine, Apr. 6-9, 1937. Elapsed Time: 94 hr. 17 min. 56 sec.
National (U.S.) Record
No official record.

ROME, ITALY TO RIO DE JANEIRO, BRAZIL
World Class Record
National (U.S.) Record
No official record.
FLETCHER FACTS

Experienced Engineers

The original designers of the present standard external wing tank, Fletcher engineers, have devoted 320,120 man hours to wing tank design and production. This most experienced staff in the field is available to help you.

Production Record

Nearly 200,000 tanks produced since World War II makes Fletcher the world's largest manufacturer of jettisonable tanks. Fletcher has produced tanks since 1946 and has an on-time, ahead of time delivery record that means dependability to you.

Plant Facilities

This modern 123,000 sq. ft. plant is completely equipped to continue Fletcher's record for production efficiency—$31,000 worth of goods per man-second highest in nation. Such efficiency can save you time and money.

Matched Hole Tooling

A Fletcher concept unique in industry, permits use of 90° regular subcomponents and fast production of precision tools. Development of helical welding and pneumatic twin nozzles are other examples of Fletcher ingenuity at your disposal.

Continued Leadership has made Fletcher the largest, most experienced, most efficient supplier in its field.

For expert design assistance, or fast, accurate quotation, contact—

FLETCHER aviation corporation

World’s largest designer & manufacturer of external wing tanks

FLETCHER AIRPORT, ROSEMEAD, CALIFORNIA
SERVING OFFICES: DAYTON, OHIO, WASHINGTON, D.C.
OFFSHORE AFFILIATES: OSLO, NORWAY, TOKYO, JAPAN
ROME, ITALY TO ADDIS ABABA, ETHIOPIA

World Class Record

M. Lualdi, G. Mazzotti and E. Valente, pilots; S. Pinna, radio telegrapher and G. Guerrini, mechanic; Italy; Fiat BR. 20 L airplane, 2 Fiat Asso 80 1,000 hp motors, Mar. 6-7, 1939. Elapsed Time: 11 hr. 25 min. National (U.S.) Record

No official record.

BERLIN, GERMANY TO NEW YORK CITY, N. Y., U.S.A.

World Class Record

Alfred Henke and Rudolf Freiherr von Moreau, pilots; Paul Dierberg, radiomecanicien and Walter Kober, radiotelegraphiste; Germany; Focke-Wulf FW 200 Condor airplane, 4 BMW 132 L motors, 750 hp each, Aug. 10-11, 1938. Elapsed Time: 24 hr. 56 min. 12 sec.

National (U.S.) Record

No official record.

NEW YORK, N. Y., U.S.A., TO BERLIN, GERMANY

World Class Record

Alfred Henke and Rudolf Freiherr von Moreau, pilots; Paul Dierberg, radiomecanicien and Walter Kober, radiotelegraphiste; Germany; Focke-Wulf FW 200 Condor airplane, 4 BMW 132 L motors, 750 hp each, from Tempelhof to Tachikawa, Nov. 26-30, 1938. Elapsed Time: 46 hr. 18 min. 1 sec. National (U.S.) Record

No official record.

BERLIN, GERMANY TO TOKYO, JAPAN

World Class Record

Alfred Henke and H. R. Freiherr von Moreau, pilots; P. Dierberg, radiomecanicien; W. Kober, radiotelegraphiste, and G. Kohne, mechanic; Germany; Focke-Wulf FW 200 Condor airplane; 4 BMW 132 L motors, 750 hp each, from Tempelhof to Tachikawa, Nov. 26-30, 1938. Elapsed Time: 46 hr. 18 min. 19 sec. National (U.S.) Record

No official record.

BERLIN, GERMANY TO HANOI, FRENCH INDO-CHINA

World Class Record

151 mph.

Alfred Henke and H. R. Freiherr von Moreau, pilots; P. Dierberg, radiomecanicien; W. Kober, radiotelegraphiste, and G. Kohne, mechanic; Germany; Condor airplane; 4 BMW 132 L motors, 750 hp each, from Tempelhof to Gia Lam, Nov. 28-30, 1938. Elapsed Time: 34 hr. 17 min. 27 sec.

National (U.S.) Record

No official record.

LONDON, ENGLAND TO PARIS, FRANCE

World Class Record

National (U.S.) Record

No official record.

PARIS, FRANCE TO LONDON, ENGLAND

World Class Record

National (U.S.) Record

No official record.

LONDON, ENGLAND TO CAIRO, EGYPT

World Class Record

John Cunningham, D.S.O., D.F.C., Great Britain, de Havilland DH-106 Mark I Comet, 4 Ghost D. Gt. 3 jet engines, Apr. 24, 1950. Elapsed Time: 5 hr. 6 min. 35.3 sec.

National (U.S.) Record

No official record.

CAIRO, EGYPT TO LONDON, ENGLAND

World Class Record

National (U.S.) Record

No official record.

LONDON, ENGLAND TO COPENHAGEN, DENMARK

World Class Record

Janusz Zurakowski, Great Britain, Gloster Meteor Mk. F.8 V2468, 2 Rolls Royce Derwent V jet engines, Apr. 4, 1950. Elapsed Time: 1 hr. 5 min 5 sec.

National (U.S.) Record

No official record.

COPENHAGEN, DENMARK TO LONDON, ENGLAND

World Class Record

Janusz Zurakowski, Great Britain, Gloster Meteor Mk. F.8, 2 Rolls Royce Derwent V jet engines, Apr. 4, 1950. Elapsed Time: 1 hr. 11 min. 17 sec.

National (U.S.) Record

No official record.

GIBRALTAR TO LONDON, ENGLAND

World Class Record

National (U.S.) Record

No official record.

The AIRCRAFT YEAR BOOK

448
Here are three more reasons why tomorrow's finest aircraft, like today's, will fly with Continental power. Two of them represent further developments of the famous 0470 series—one supercharged, the other supercharged and fan-cooled expressly for helicopter use—while the third is a brand new power plant, engineered and built with the needs of multi-engine utility planes in mind. They have one thing in common: as products of the pioneer in power for utility aircraft, all three rate high in those qualities which go to make up dependability—qualities which have made Continental engines fliers' undisputed first choice.

<table>
<thead>
<tr>
<th></th>
<th>S0470</th>
<th>FS0470</th>
<th>GS0526</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horsepower</td>
<td>250</td>
<td>260</td>
<td>290</td>
</tr>
<tr>
<td>R.P.M.</td>
<td>2600</td>
<td>3000</td>
<td>3000</td>
</tr>
<tr>
<td>Alt. (ft.)</td>
<td>10,000</td>
<td>10,000</td>
<td>15,000</td>
</tr>
<tr>
<td>T.O. Power (Sea Level)</td>
<td>265</td>
<td>260</td>
<td>320</td>
</tr>
<tr>
<td>Length (in.)</td>
<td>37.73</td>
<td>39.64</td>
<td>52.28</td>
</tr>
<tr>
<td>Height (in.)</td>
<td>30.77</td>
<td>34.81</td>
<td>23.9%</td>
</tr>
<tr>
<td>Width (in.)</td>
<td>33.62</td>
<td>33.62</td>
<td>34.65</td>
</tr>
<tr>
<td>Bore (in.)</td>
<td>5.00</td>
<td>5.00</td>
<td>5.125</td>
</tr>
<tr>
<td>Stroke (in.)</td>
<td>4.00</td>
<td>4.00</td>
<td>4.25</td>
</tr>
<tr>
<td>Displ. (cu. in.)</td>
<td>471</td>
<td>471</td>
<td>526</td>
</tr>
<tr>
<td>Comp. Ratio</td>
<td>6.0:1</td>
<td>6.0:1</td>
<td>6.0:1</td>
</tr>
<tr>
<td>Total Dry Wt. with Accessories (lbs.)</td>
<td>512</td>
<td>550</td>
<td>570</td>
</tr>
<tr>
<td>Type of Prop. Drive</td>
<td>Direct</td>
<td>Direct</td>
<td>Geared</td>
</tr>
<tr>
<td>Recom. Fuel Octane</td>
<td>91/96</td>
<td>91/96</td>
<td>91/96</td>
</tr>
<tr>
<td>Supercharger Ratio</td>
<td>12.45:1</td>
<td>10.12:1</td>
<td>12.0:1</td>
</tr>
<tr>
<td>Supercharger Drive</td>
<td>Belt</td>
<td>Belt</td>
<td>Gear</td>
</tr>
</tbody>
</table>

Continental Motors Corporation
Aircraft Engine Division
MUSKOGON, MICHIGAN
The AIRCRAFT YEAR BOOK

LONDON, ENGLAND TO LA VALETTE, FRANCE
World Class Record
National (U.S.) Record
No official record.

LONDON, ENGLAND TO KHARTOUM, EGYPT
World Class Record
National (U.S.) Record
No official record.

BELFAST, IRELAND TO GANDER, NEWFOUNDLAND
World Class Record
Roland P. Beaumont, pilot; D. A. Watson, navigator; R. Rylands, radio operator, Great Britain, English Electric Canberra B. Mark 2, WD 940 aircraft, two Rolls Royce Avon RA 3 jet engines, Aug. 31, 1951. Distance: 2,071.7 mi.; Duration: 4 hr. 18 min. 24.4 sec.
National (U.S.) Record
No official record.

LONDON, ENGLAND TO STOCKHOLM, SWEDEN
World Class Record
National (U.S.) Record
No official record.

LONDON, ENGLAND TO BRUSSELS, BELGIUM
World Class Record
National (U.S.) Record
No official record.

LONDON, ENGLAND TO TRIPOLI, LYBIA
World Class Record

GANDER, NEWFOUNDLAND TO BELFAST, IRELAND
World Class Record

BELFAST-GANDER-BELFAST
World Class Record

LONDON, ENGLAND, TO CHRISTCHURCH, NEW ZEALAND
World Class Record
National (U.S.) Record
No official record.

LOS ANGELES, CALIFORNIA, TO PARIS, FRANCE
World Class Record
Capt. Charles Billet, pilot; Philippe Wertheimer, co-pilot; Robert Girard, radio operator; Pierre Lemaître, mechanic, France; Douglas DC-6, Pratt & Whitney R-2800 engine on May 28-29, 1953. Elapsed time: 20 hr., 26 min.
National (U.S.) Record
No official record.

LONDON, ENGLAND, TO BASRA, IRAQ
World Class Record
National (U.S.) Record
No official record.

LONDON, ENGLAND, TO COLOMBO, CEYLON
World Class Record
National (U.S.) Record
No official record.
Bell Aircraft's engineering and production forces are making important contributions to today's needs for National Defense and are providing the basic research from which will come the technically competent weapons of tomorrow.

Bell's programming is one of the most diversified in the entire industry. It spans the wide range from guided missiles to helicopters and includes:

- B-63 Rascal guided missile for the USAF
- Navy's HSL-1 anti-submarine warfare helicopter
- Electronics
- Servomechanisms
- Rocket engines
- Remote control systems
- Supersonic X-1A and other special research aircraft
- World's leading commercial helicopters
- Major components for high priority bombers

The concentrated type of research and development, which was the forerunner of current projects, is being applied by Bell to scientific advances which will fulfill the commercial and military requirements of tomorrow.
The AIRCRAFT YEAR BOOK

OFFICIAL NATIONAL TRANSCONTINENTAL AND INTER-CITY RECORDS

WEST TO EAST TRANSCONTINENTAL (JET PROPELLED)
Col. W. W. Millikan, ANGUS, United States, North American F-86F-25, General Electric J-47-17 jet engine, from International Airport to Floyd Bennett Field, Brooklyn, N. Y., Jan. 2, 1954. Distance (Center to Center): 2,445.90 mi.; Elapsed time (Center to Center): 4 hr., 06 min., 16 sec. Average speed: 596.910 mph.

WEST TO EAST TRANSCONTINENTAL (MULTI-ENGINE MILITARY AIRCRAFT)

LOS ANGELES, CAL. TO MEXICO CITY, D. F.

WEST TO EAST TRANSCONTINENTAL (SINGLE RECIPROCATING ENGINE-SOLO)

WEST TO EAST TRANSCONTINENTAL (COMMERCIAL TRANSPORT AIRCRAFT)
Capt. Joseph B. Glass, pilot; J. W. Hayes, 1st officer; H. W. Hornbach, flight engineer; and 39 passengers; American Airlines' Douglas DC-7, 4 Wright Turbo Compound 3,230 hp engines, from Los Angeles International Airport to Idlewild, N. Y., Mar. 29, 1954. Distance: 2,469.92 mi. Elapsed time: 5 hr., 10 min. Average speed: 400.528 mph.

EAST TO WEST TRANSCONTINENTAL (SINGLE RECIPROCATING ENGINE-SOLO)

EAST TO WEST TRANSCONTINENTAL (MULTI-ENGINE MILITARY AIRCRAFT)

LOS ANGELES, CAL. TO WASHINGTON, D. C.

LOS ANGELES, CAL. TO MIAMI, FLA. (TRANSPORT AIRCRAFT)

LOS ANGELES, CAL. TO JACKSONVILLE, FLA. (TRANSPORT AIRCRAFT)

LOS ANGELES, CAL. TO TAMPA, FLA. (TRANSPORT AIRCRAFT)

LOS ANGELES, CAL. TO ATLANTA, GA.

LOS ANGELES, CAL. TO CHARLESTON, S. C. (TRANSPORT AIRCRAFT)

452
This story is wrapped up in seven packing cases. They contain the seven sections of the USAF B-61 Martin Matador pilotless bomber.

It is the story of one of the most tradition-shattering pieces of hardware in this world . . . a zero-launch pilotless bomber that can be deployed to any spot on earth—without having ever been previously assembled—and with total interchangeability of parts.

To realize fully the importance of this package job, you should know these things:

...The Matador meets performance requirements more exacting than those of a fighter plane.

...Its instrumentation section alone is one of the most functional single packages ever developed.

...It is built by new Martin-developed processes that are causing basic changes in industry concepts and production methods.

...And it is being delivered at the lowest known cost-per-pound of any military aircraft in production today.

You will hear more about Martin!
The AIRCRAFT YEAR BOOK

ATLANTA, GA., TO NEW YORK, N. Y. (TRANSPORT AIRCRAFT)

NEW YORK, N. Y., TO HAVANA, CUBA
Col. A. P. de Seversky, Modified Seversky P-35 monoplane, powered with a Pratt and Whitney 1830-9-850 hp engine, from Floyd Bennett Field to Camp Columbia, Havana, Dec. 3, 1937. Elapsed Time: 5 hr. 3 min. 5.4 sec. Distance: 1,907 mi. Average Speed: 255.735 mph.

NEW YORK, N. Y., TO HOUSTON, TEX.
Henry T. Merrill, pilot, J. D. Scott, co-pilot; Eastern Airlines' Lockheed Constellation, NC-102A, 4 Wright 2,100 hp engines, from Houston Municipal to La Guardia Airport, June 6, 1947. Elapsed Time: 4 hr. 39 min. 3 sec. Distance: 1,465.5 mi. Average Speed: 306.504 mph.

HOUSTON, TEX., TO NEW YORK, N. Y. (TRANSPORT AIRCRAFT)
Henry T. Merrill, pilot, J. D. Scott, co-pilot; Eastern Airlines' Lockheed Constellation, NC-102A, 4 Wright 2,100 hp engines, from La Guardia Airport, Jackson Heights, L. I. to Houston Municipal, June 6, 1947. Elapsed Time: 2 hr. 36 min. Distance: 306.504 mph.

NEW YORK, N. Y., TO MIAMI, FLA. (TRANSPORT AIRCRAFT)
E. R. Brown, pilot; E. H. Parker, co-pilot; Eastern Airlines' Lockheed Constellation, NC-102A, 4 Wright 2,100 hp engines, from La Guardia Airport to 36th Street Airport, May 28, 1947. Elapsed Time: 3 hr. 52 min. 29.8 sec. Distance: 1,734.5 mi. Average Speed: 338.714 mph.

NEW YORK, N. Y., TO NEW ORLEANS, LA. (TRANSPORT AIRCRAFT)

NEW ORLEANS, LA., TO NEW YORK, N. Y. (TRANSPORT AIRCRAFT)
H. T. Merrill and E. R. Brown, pilots; Eastern Airlines' Lockheed Constellation, NC-108A, 4 Wright 3350 engines, 2,500 hp each, from Moisant International Airport to La Guardia Airport, L. I., July 23, 1947. Elapsed Time: 3 hr. 35 min. 10.8 sec. Distance: 1,832.466 mi. Average Speed: 339.714 mph.

NEW YORK, N. Y., TO WASHINGTON, N. C.

MEXICO CITY, D. F., TO NEW YORK, N. Y.
Francisco Sarabia, Gee Bee monoplane, X-BAKE, Pratt and Whitney Hornet 980 hp engine, from the Military Airport, Mexico City to Floyd Bennett Field, May 24, 1939. Elapsed Time: 10 hr. 47 min. 46.8 sec. Distance: 2,087.5 mi. Average Speed: 193.353 mph.

HONOLULU, HAWAII TO NEW YORK, N. Y.

CHICAGO, ILL., TO ATLANTA, GA. (TRANSPORT AIRCRAFT)
H. T. Merrill and S. A. Bell, pilots; Eastern Airlines' Lockheed Constellation, NC-108A, 4 Wright 3350 engines, 2,500 hp each, from Chicago Municipal Airport, to Atlanta Municipal Airport, Aug. 5, 1947. Elapsed Time: 1 hr. 48 min. 20 sec. Distance: 590.281 mi. Average Speed: 326.925 mph.

ATLANTA, GA., TO CHICAGO, ILL. (TRANSPORT AIRCRAFT)

CHICAGO, ILL., TO LOS ANGELES, CAL.
Howard R. Hughes, Northrop Gamma monoplane, NR-1376I, Wright Cyclone engine, from Chicago Municipal Airport to Grand Central Air Terminal, Glendale, Cal., May 14, 1936. Elapsed Time: 8 hr. 10 min. 29.4 sec. Distance: 1,734.5 mi. Average Speed: 212.172 mph.
NOW IT'S AIRBORNE RADAR

Today it's available . . . airborne radar by Bendix® Radio! It's designed especially for airline and executive aircraft.

Storm detection at a time early enough to avoid turbulence is now possible. Contour circuitry presents rainfall gradients, thus allowing the pilot to determine the extent of turbulence. With this knowledge the pilot can negotiate the smoothest course through and around storms.

Special features incorporated in Bendix Airborne Radar permit terrain mapping and beacon navigation . . . on dual indicators if desired.

For price and further information, write to the address below.

BENDIX RADIO
DIVISION OF BENDIX AVIATION CORPORATION - BALTIMORE 4, MARYLAND

Export Sales: Bendix International Division 205 E. 42nd Street New York 17, N. Y., U. S. A.
West Coast Sales: 10500 Magnolia Boulevard, North Hollywood, California
Southwest Sales: 3300 Love Field Drive, Dallas, Texas
Canadian Distributor: Aviation Electric, Ltd., 200 Laurentian Boulevard, Montreal, Quebec
The AIRCRAFT YEAR BOOK

CHICAGO, ILL., TO MIAMI, FLA. (COMMERCIAL TRANSPORT)
Capt. Jack Roth, pilot; First Officer, A. C. Bonner, co-pilot, 2 stewardesses and 37 passengers, Delta Air Lines, Douglas DC-6, N-1905M, 4 Pratt and Whitney R-2800 engines, from Midway Airport to Miami International Airport, Mar. 2, 1950. Elapsed time: 3 hr. 8 min. 48 sec. Distance: 1,182.422 mi. Average Speed: 376.687 mph.

CHICAGO, ILL., TO WASHINGTON, D. C. (TRANSPORT AIRCRAFT)

SAN FRANCISCO, CAL., TO LOS ANGELES, CAL.
San Francisco, Cal., to Los Angeles, Cal., via Mexico City, Tampa, Detroit, Detroit, Mich., Miami, Vancouver, Detroit, Mich., and Whitney Twin Row Wasp 1,100 hp engine, from San Francisco International Airport to Los Angeles International Airport, May 28, 1938. Elapsed Time: 4 hr. 54 min. Average Speed: 244 mph.

MIAMI, FLA. TO CHICAGO, ILL. (TRANSPORT AIRCRAFT)
Henry T. Merrill and P. L. Foster, pilots; Eastern Airlines' Lockheed Constellation, NC-105A, 4 Wright 3350 engines, 2,500 hp each, from 36th Street Airport to Chicago Municipal Airport, July 16, 1947. Elapsed Time: 3 hr. 56 min. 28 sec. Distance: 1,183.369 mi. Average Speed: 300.390 mph.

VANCOUVER, B. C., CANADA TO AGUA CALIENTE, MEXICO
Frank W. Fuller, Jr., Seversky monoplane, NX-70Y, Pratt and Whitney Twin Row Wasp 1,100 hp engine, from Vancouver Airport to Agua Caliente Airport, Nov. 4, 1937. Elapsed Time: 4 hr. 39 min. 43 sec. Distance: 1,554.941 mi. Average Speed: 997.941 mph.

MARCH FIELD, CAL. TO MITCHELL FIELD, N. Y.

WICHITA, KAN. TO LOS ANGELES, CAL.
Paul Mantz, Lockheed Orion NR-1222, from Wichita Airport to Union Air Terminal, July 4, 1938. Elapsed Time: 7 hr. 11 min. 5 sec. Distance: 1,201 mi. Average Speed: 167.160 mph.

DETROIT, MICH. TO AKRON, O.
Louise Thaden, Beechcraft biplane, NC-15335, from Detroit City Airport to Akron Municipal Airport, Jan. 21, 1937. Elapsed Time: 40 min. 43 sec. Distance: 123.5 mi. Average Speed: 181.969 mph.

DETROIT, MICH. TO MIAMI, FLA. (TRANSPORT AIRCRAFT)
H. T. Merrill and F. Bennett, pilots; Eastern Airlines' Lockheed Constellation, NC-113A, 4 Wright 3350 engines, 2,500 hp each, from Willow Run Airport to 36th Street Airport, Aug. 7, 1947. Elapsed Time: 3 hr. 36 min. 29 sec. Distance: 1,193.423 mi. Average Speed: 318.857 mph.

TAMPA, FLA. TO MIAMI, FLA. (TRANSPORT AIRCRAFT)

LOS ANGELES, CALIFORNIA, TO MEXICO CITY, D. F. (TRANSPORT AIRCRAFT)

MEXICO CITY, D. F., TO LOS ANGELES, CAL.

LOS ANGELES, CALIFORNIA, TO DENVER, COL.

SAN FRANCISCO, CAL., TO LOS ANGELES, CAL.

SAN FRANCISCO, CAL., TO SALT LAKE CITY, UTAH
Close to full-scale production at Fairchild—the new C-123 Assault Transport will fill specialized military requirements for an air transport sufficiently versatile to deliver men or equipment at advanced bases. This sturdy craft readily converts from a carrier of 60 fully equipped combat troops to a cargo plane delivering more than 15 tons of equipment.

Continuing quantity production of the combat proven C-119 Flying Boxcar assures the nation that our military transport program is completely flexible. This dual production brings closer the day when C-123’s and C-119’s will be in regular use as a part of the U. S. Air Force and U. S. Army military operations.

American Helicopter Division, Manhattan Beach, Calif. • Engine Division, Farmingdale, N. Y. • Kinetics Division, New York, N. Y. • Guided Missiles Division, Wyandanch, N. Y. • Speed Control Division, St. Augustine, Fla. • Stratos Division, Bay Shore, N. Y.
The AIRCRAFT YEAR BOOK

SAN FRANCISCO, CAL., TO SEATTLE, WASH.
Frank W. Fuller, Jr., Seversky NR-70-Y, Pratt and Whitney Twin Row Wasp 1,100 hp engine, from San Francisco Airport to Boeing Field, May 25, 1938. Elapsed time: 2 hr., 31 min. 41 sec. Distance: 684.5 mi. Average speed: 270.261 mph.

SAN FRANCISCO, CAL., TO SAN DIEGO, CAL.

SAN FRANCISCO, CAL., TO NEW YORK, NEW YORK.

SAN FRANCISCO, CAL., TO PORTLAND, ORE.

SAN FRANCISCO, CAL., TO PHOENIX, ARIZ.
Frank W. Fuller, Jr., Seversky monoplane, NR-70-Y, Pratt and Whitney Twin Row Wasp 1,200 hp engine, from San Francisco Airport to Boise Municipal Airport, May 4, 1939. Elapsed time: 1 hr., 47 min., 20 sec. Distance: 525.5 mi. Average speed: 293.484 mph.

SAN FRANCISCO, CAL., TO DENVER, COLO.
Frank W. Fuller, Jr., Seversky monoplane, NX-70-Y, Pratt and Whitney Twin Row Wasp 1,300 hp engine, from San Francisco Airport to Denver Municipal Airport, June 7, 1939. Elapsed time: 3 hr., 22 min., 26.5 sec. Distance: 954 mi. Average speed: 282.741 mph.

SAN FRANCISCO, CAL., TO WASHINGTON, D. C. (TRANSPORT AIRCRAFT)

NEW YORK, N. Y., TO ATLANTA, GA. (TRANSPORT AIRCRAFT)
H. T. Merrill and Clifford Zieger, pilots; Eastern Airlines' Lockheed Constellation, 4 Wright 3350 engines, 2,500 hp each from La Guardia Airport to Atlanta Municipal Airport, Aug. 5, 1947. Elapsed time: 2 hr., 18 min., 06 sec. Distance: 759.071 mi. Average speed: 330.068 mph.

EDWARDS, CAL., TO VANDALIA, OHIO—NONSTOP—(Multi-Jet Engine Aircraft)

OFFICIAL FEMININE NATIONAL TRANSCONTINENTAL AND INTER-CITY RECORDS

WEST TO EAST TRANSCONTINENTAL RECORD

EAST TO WEST TRANSCONTINENTAL RECORD
Louise Thaden and Blanche Noyes, Beechcraft, Wright 420 hp engine, from Floyd Bennett Field, Brooklyn, N. Y., to Los Angeles Municipal Airport, Cal., Apr. 19-20, 1935. Elapsed Time: 13 hr. 35 min.

MEXICO CITY TO WASHINGTON, D. C.

MEXICO CITY TO NEW YORK, N. Y.

458
These are the American Aviation Publications and Services

AMERICAN AVIATION MAGAZINE
Leading business-technical aviation news magazine since 1937. Complete reports of design, manufacture, performance of military, commercial airplanes, engines, related equipment; civil, military air transportation; business aircraft, $5 per year. $8 for 2 years. (U.S.A. and Canada). All other countries, $2 per year additional.

AMERICAN AVIATION DAILY
Last word in aviation news reporting. Complete, yet concise information about all important industry events, as they happen. Airmailed out of Washington every business day. $2.00 per year, airmailed in U.S.A. Send for sample copies.

AMERICAN AVIATION WORLD-WIDE DIRECTORY
Only reference work of its kind published. Lists over 6,000 companies in aviation with personnel, products. Over 15,000 individual names. Spring-Summer, Fall-Winter Revised Editions. Indexed. $7.50 per copy.

OFFICIAL AIRLINE GUIDE
Complete tabulated schedules, rates, regulations of all national, international passenger and cargo air transport. Revised monthly. $13.50 per year for U.S. $14. Canada. $15. all other countries.

AIR TRAFFIC NEWS
Complete daily report airmailed from Washington, on all tariff actions taken at Civil Aeronautics Board. Edited by airline traffic, tariff specialists. Also news of new, additional airline services, other data. Samples, rates upon request.

AIRPORTS
New, exclusive weekly newsletter airmailed from Washington. Latest reports and analyses of all segments of airport industry including Government, Finance, Litigation, Equipment, Construction, Case Histories. New Services, Organizations. $25 per year (U.S.A.). Samples on request.

WHO'S WHO IN WORLD AVIATION
First edition of only complete international reference work of its kind. Full, authentic biographical data of men, women who made outstanding contributions in their particular fields, in aviation. $10 per copy, postpaid.

AIR INFORMATION DIVISION
New service which digests, for scheduled airlines, their timetables, fares and charges. Services also available for shippers, air freight forwarders.

For Subscriptions, Further Data, Write

AMERICAN AVIATION PUBLICATIONS
Wayne W. Parrish, Editor and Publisher
1025 VERMONT AVENUE, NORTHWEST WASHINGTON 5, D. C.
INDEX

A
Abadie, Mrs. Francine, 440
A.C. Spark Plug Co., 318-319, 321
Accessories and parts manufacturing industry, 26, 28, 157-184; employee earnings and hours, 26; employment, 28
Accidents, airline, 205; business flying, 244; comparative transport safety record, 42; military, 193; non-scheduled airlines, 206; private airplane, 226
Accumulators, 164
Acosta, Bertrand B., 334
Actuators, 155, 175
"Adaptable Annie," 221
Adey, Mrs. Wanda, 440
Aero-Cory Research Award, 157
Aero Design and Engineering Co., 80, 252
Aero Engineering Co., 170
Aero Supply Mfg. Co., Inc., 157
Aerobee (rocket), 134
Aerobee-General Corp., 133-134, 318
Aeroproducts Operation, Allison Div., General Motors Corp., 154-155
Aeroprojects, Inc., 158
d'Aeth, Air Commodore N. H., 446
AFL-Air Line Pilots Association, 335
Afterburners, 91, 147, 304
Agello, Francesco, 414
Agricultural flying, 7, 122, 169, 243, 249
Agricultural Research Service, 216-217
Air Associates, Inc., 158
Air cargo, see Cargo
Air Carrier Engine Service, Inc., 238
Air Coordinating Committee, 214-216, 333
Air Cruisers Co., 169, 170
Air Force, 6, 80, 81, 83, 186-190, 331, 332, 333, 334, 355; Air Defense Command, 118; Air Materiel Command, 201, 334; Air Research and Development Command, 71, 119, 128, 162, 188, 189, 201; Alaskan Air Command, 118; Continental Air Defense Command, 118, 334; Far East Air Force, 331; Military Air Transport, 87; Strategic Air Command, 82, 193; Tactical Air Command, 116, 186, 189, 190, 193
Air Force Academy, 190, 332, 334
Air Force Association, 77
Air freight, see Cargo
Air mail, first class, 223, 225, 239, 331; revenues, 30; ton miles, 30, 224
Air National Guard, 123, 190, 331
Air Navigation Development Board, 248
Air parcel post, 221
Air power, see Military aviation
Air Traffic Conference, 224
Air Traffic Control & Navigation Panel, 215
Air Transport Association, 331; Rotocraft Committee, 248; statistics, 30, 42, 48, 50
Alcooled Motors, Inc., 134, 318-319
Aircraft carriers, 107, 112, 193

Aircraft Industries Association, 3, 7, 331, 332, 333, 334, 335; Helicopter Council, 250; statistics, 26, 36, 40
Aircraft Manufacturing industry, 79-184; civil airplane output, 54; employee earnings and hours, 26; employment, 6, 28, 333; exports, 40; industrial safety, 334; production, 6, 36, 46, 332, 334
Aircraft Owners and Pilots Association, 246
Aircraft Production Resources Agency, 335
Aircraft Radio Corporation, 158-159
Airlines, 6-7, 79, 223-242; assets and liabilities, 42; average airfreighter speed, 32; coach service, 230, 231; interchange service, 226-227, 228, 234; operating expenses, 50; operating revenues, 30; passenger miles, 30; planes in use, 48; records, 6-7, 225, 232; revenue passenger miles, 50; statistics, 224; subsidy, 209; tourist travel, 229, 236, 240
Airplanes, by states, 46; in use, 48; production, 36, 46
Airport Use Panel, 216
Airports, 32, 208, 246, 332; books, 8
Airships, 104-105, 333, 334; records, 426
Alaska, 218
Aldridge, Squadron Leader J. S., 446
Aliochine, A. 430
Allegheny Airlines, 225
Allison Div., General Motors Corp., 134-137, 320-321; J33 turbojet, 136, 137; J71 turbojet, 136, 320; T38 turboprop, 136; T40 turboprop, 134-135, 321; T56, 136; YT40-14, 95
Aluminum, 158, 159-160, 212
Aluminum alloys, 171
Aluminum Company of America, 159-160
Aluminum forgings, 172
Ambulance aircraft, 129, 268, 295
American Airlines, 225-226, 332
American Aviation Daily, 331
American Aviation Publications, Inc., 331
American Helicopter Company, Inc., 104
American Helicopter Society, 249
American Wheelabator and Equipment Corp., 82
Ames Aeronautical Laboratory, 212
Amphibian records, 422, 424
Anderson, Capt. Orvil, 396, 434
Anderson, Robert B., 331
Anderson, Greenwood & Co., 160
Angle of attack calibrator, 116
Anti-submarine aircraft, 104, 107, 113, 127, 270, 290, 331
Applied Physics Laboratory, John Hopkins University, 93, 96
Arcon stabilizer, 175, 246
Ard, Lt. John M., 454
Armstrong, Maj. John L., 406
Armstrong Siddeley Motors, Ltd., 191
Army aviation, 6, 81, 193-194
Army Ordnance Corps, 86, 118, 123, 196
Arnold, Leslie R., 428
Arnold Engineering Development Center, 150
Associated Aviation Underwriters, 331
Atger, Charles, 426
Atom bombers, 98, 191, 286
Atomic Energy Commission, 193, 117, 185
Attinello, John S., 192
Autogiro, 70
Automatic pilots, 85, 162, 183
Aveo Manufacturing Corp., 80, 189
Aверill, Lt. J. K., 412
Aviation events 1954, 63-78
Avien, Inc., 160-161
Avien Service Corp., 161

Awards, 77-78, 208, 237

B
B G Corporation, 161
Baghdad, 102
Bailey, J., 452, 456
Baillie, Capt. W., 446
Baker, G. T., 452, 456
Ball, Capt. T. P., 452
Ball, Capt. Thomas R., 452
Balloon records, 426-434, 440, 442
Bane, Thurman H., Award, 129
Bankers Trust Company, 125
Barber, Col. Alvin B., 214
Barlow, V., 438
Bartlett, Capt. J. B., 402, 404

There's a PIONEER Parachute for every plane for every purpose

P-7-B—Guide Surface Personnel Parachute. Equipped with manual ripcord release and Pioneer "Quick-Fit"* Harness. Model P-7-B identical to P-7-B plus the adenosine automatic ripcord release.

P-7-10—Latest type parachute for Paratroops — has a 35-foot diameter canopy and is equipped with the Pioneer "Quick-Fit"* Harness.

AN-55 Military Model Seat Type Parachute — standard seat-type equipment for the Air Forces of the U. S. Army and Navy, and numerous other governments. All Pioneer Parachutes are equipped with the exclusive "Quick-Fit"* Harness. Provides perfect fit in less than 2 seconds; allows free movement.

P-7-B—Guide Surface Personnel Parachute. Standard equipment, U. S. Air Forces and other governments. Capable of successful recoveries at high speeds and low altitudes; lowest opening shock of all parachutes. Elliptical "guide extensions" produce a deflection that gives great stability and reduces oscillation to a minimum. Jumper descends straight down, lands with feet on ground.

*Patents applied for in U. S. and all principal countries throughout the world.
INDEX

Bauer, Capt. J. E., 400, 402
Beament, Roland P., 450
Beard, Charles E., 226
Beech Aircraft Corp., 81-82, 253-255, 269;
B-50 Twin Bonanza, 82, 254; E-35, 255;
L-23, 81, 253; Model 18, 81, 253; Super 18
(El8S), 82, 253; T-34 Mentor, 81, 191, 269
Beere, J. C., 293
Bell, Lawrence D., 335
Bell, S. A., 454
Bell Aircraft Corp., 82-86, 256, 270, 331, 335;
X-1, 83; X-IA, 73, 83, 84, 185, 186;
X-1B, 83, 84; Model 47 helicopter, 84,
332; 47C, 84, 85; 47D-1, 84, 47H, 84, 85,
256; 47J, 84, 85; HSL-1, 84, 85, 270;
XV-3 CONVERTIBLE, 85, 86, 331, 334;
XB-63 Rascal (Missile), 85, 196, 331; research, 86
Bell Aircraft Supply Corp., 83
Bell Telephone Laboratories, 196, 198
Bellanca Aircraft Corp., 86
Bellingham, Richard, 406
Bendix Aviation Corp., 72, 161-167;
Bendix-Pacific Div., 164-165; Eclipse-Pioneer Div.,
161-163; Friez Div., 163-164; Hamilton
Div., 163; Radio Div., 165-166; Red Bank
Div., 166-167; Scintilla Div., 167
Bendix Home Appliances Div., Avco Manufacturing
Corp., 89
Bendix Trophy, 123-124
Bennett, Capt. D. C. T., 412
Bennington, USS., 192
Berlin, 434
Bibliography, 8-22
Billet, Capt. Charles, 450
Biographical briefs, 336-379
Birdsboro press, 110
BISO, Attilco, 446
Boatner, Capt. B. L., 422
Boeing Airplane Co., 36-89, 129, 271-274;
B-47 Stratojet, 86, 185, 186, 272; B-47E, 272;
B-52 Stratofortress, 84, 85, 86, 87, 186,
271; B-52A, 87; C-97 Stratofreighter, 87;
KC-97, 87; KC-97G, 87, 274; KC-135
Stratotanker, 86-87, 187, 251, 273; Model 707;
jet transport, 86, 187, 251; RB-47E, 272;
XI-47, 272; YH-52, 271; 247D
"Adaptable Annie," 221; Bomarc (missile), 88;
gas turbine, 88; research, 88-89
Boggs, Henry, 335
Bomarc (Missile), 88
Bondolette, 105
Bonner, First Officer A. C., 456
Bonzi, Leonardo, 410
Books, 8-22
Borg-Warner Corp., 167
Born, Capt. Robert T., 238
Boston Insulated Wire & Cable Company, 168
Boulet, Jean, 424, 426
Boundary layer control, 90, 128-129
Bourlouzki, F., 430
Braeger, Mrs. Ana L., 408
Braniff, Paul R., 333
Braniff, T. E., 226, 331
Braniff Airways, 226-227, 331
Brazil, 80
Breeder, Frank G., Trophy, 78, 241
Brickley, William G., 428
British Overseas Airways Corporation, 242, 331
Broad Brook Company, 157
Brown, E. R., 454
Brown Naval Auxiliary Air Station, 191
Bugge, P. O., 444
Bureau of Aeronautics 108, 123, 126, 192
Bureau of Census statistics, 46, 52, 54
Bureau of Ordnance (Navy Dept.), 93, 95
Bureau of the Budget, 216
Burei, Giuseppe, 422
Burniat, Paul, 410
Burton, Flt. Lt. R. L. E., 450
Burzynski, Z. J., 432
Bushnell, Wilfred, 432
Business flying, 243, 244-245
Byrd, Rear Adm, Richard E., 334

C

Cable-Price Corporation, 169
Cables, 177
Calculators, see Computers
Canada, 80, 120, 128, 218
Cannon, Gen. John K., 190
Capital Airlines, 227-228
Cargo, 39, 224, 225, 234, 238-239, 241
Cargo air lines, 238-239
Cargo aircraft, 87, 94, 224, 226, 264, 274,
287, 288, 289, 334
Carmichael, J. H., 227
Carner, Group Capt. A. C. P., 448
Cassini, Giugliemo, 414
Cathode ray tubes, 97
Ceramic coatings, 141, 182
Cessna, Clyde V., 335
Cessna Aircraft Co., 89-90, 257-260, 275, 334,
335; L-19 Birddog, 89; L-19A, 275;
L-19C, 275; LC-126, 259; Model 170, 253;
Model 180, 257; Model 195, 259; Model
310, 90, 260; OE-2, 275; T-37, 89;
XL-19B, 275; XT-37, 189; CH-1 heli-
copter, 90, 91; research, 90
Chance Vought Aircraft, Inc., 90-92, 130, 276,
331; A2U-1, 276; F7U-1 Cutlass, 91;
F7U-3, 91, 276; XF8U-1, 91; Regulus
(missile), 91, 92, 195, 202
Chance, Octave, Trophy, 78
Chapaton, 418
Charactron, 97
Charpentier, Mrs. Jostane, 440
Chase National Bank, 125
Chem-Mill process, 203
Chidlaw, Gen. Benjamin W., 186
Chile, 81

462
INDEX

Chilton, Lt. P. C. S., 450
Choinet-Gohard, Mrs. Marcelle, 436, 440
Christie, Capt. Jan H., 450
Chronology, 331-335, 380-395
Chrysler Corporation, 196
Civil Aeronautics Administration, 128, 205-208; Aeronautical Training Center, 206, 208; Federal Aid to Airport Program, 207; foreign operations, 208; International Region, 207; Medical Division, 206; statistics, 32, 46, 52; Technical Development and Evaluation Center, 207, 208
Civil Aeronautics Board, 209, 331
Civil airplanes, see Airplanes
Civilian Pilot Training Act, 335
Clouston, F/O A. E., 446
Coast Guard, 293
Coaxial switches, 183
Cochran, J. F., 196
Coffey, Harry K., 333
Cohlastic HT, 168
Coleman, J. F., "Skeets," 95, 190-191
Coleman, William H., 157
Collier Trophy, 77, 335
Colquhoun. R. R., 422
Columbia, 80, 189
Comet, 418
Commercial aviation, see Airlines
Computers, 97, 116-117
Conference of Local Airlines, 335
Congress, 207, 216, 331, 335
Connecticut Hard Rubber Co., 768
Connell, Lt. B. J., 412
Conrad, Mrs. Marion Edy, 436
Conrad, Maximilian A., 408
Consolidated Vultee Aircraft Corp., see Convair, Div. of General Dynamics Corp.
Continental Airlines, 228-229
Continental Aviation & Engineering Corp., 128
Continental Casualty Co., 331
Continental Motors Corp., 82, 90, 321-323
Convair, Div. of General Dynamics Corp., 92-98, 277-280, 332, 334; B-36, 94, 279; B-36D, 279; B-36J, 94, 279, 331; B-52, 93, 186; C-131B, 94; C-131C, 93, 94; Convair-Liner 340, 93, 94, 332; F-102, 94, 277; R3Y-1 Tradewind, 93, 94, 278; R3Y-2, 94, 278; RB-36D, 279; RB-36F, 279; T-29 Flying Classroom, 93, 94, 280; T-29C, 280; T-29D, 280; XFY-1, 64, 93, 94, 190-191, 332, 335; XF2Y-1, 94; XF5Y-1, 278; YC-131C, 95; YF-102, 66; YF2Y-1, 94, 193; Terrier (missile), 69, 92, 93, 99; Ordnance Aerophysics Laboratory, 96; research, 95-98
Convertiplanes, 85, 86, 112, 215
Cooksey, J. Reginald, 406
Cooper, George E., 78

MECH-AID RIVET SET RETAINER SPRINGS

are standard or optional equipment on every aircraft pneumatic rivet hammer manufactured in the United States—and are used exclusively in 80% of the major aircraft plants. The only retainer endorsed by all Safety Engineers. Price only 30c each.

Note: New Location

MECH-AIDS
345 SUNRISE CIRCLE
Vista, California

MECH-AID RIVET SET RETAINER SPRINGS

are standard or optional equipment on every aircraft pneumatic rivet hammer manufactured in the United States—and are used exclusively in 80% of the major aircraft plants. The only retainer endorsed by all Safety Engineers. Price only 30c each.

Note: New Location

MECH-AIDS
345 SUNRISE CIRCLE
Vista, California

Solid rivets are furnished in all alloys of aluminum, steel, monel, stainless steel, copper, brass and other alloys. All head styles are available and complete facilities for furnishing any finish desired.

Ask for Aircraft Rivet Booklet 516

NATIONAL RIVET & MFG. COMPANY
207 Main Street, Waupee, Wis., U.S.A.
INDEX

Cormier, Georges, 428
Corporal (missile), 126, 196, 204
Cotton, Capt. J. E., 400, 402
Couton, Henri, 426
Coverdale, William H., Jr., 426
Creighton, Capt. R. D., 456
Crosley Home Appliances Div., Avco Manufacturing Corp., 80
Crossfield, Scott, 212
Cuba, 218
Cuddihy, Lt. G. T., 414
Cunningham, John, 444, 448, 450
Curiti-Wright Europa, N. V., 141
Cyrus, Miss Diana C., 456

D
Dalhey, Lt. V. L., 402
Dalo, Maj. J. R., Jr., 404
Damasco, 102
Daniel & Florence Guggenheim Aviation Safety Center at Cornell University, 10, 333
Dauvin, Bertrand, 428
Davies, Comdr. Thomas D., 396, 398
Davis, Charles L., 418, 420
Davis, Lt. D. M., 398, 400
DeBona, Joe, 452
Deer Park, Long Island, 102
Defense, Department of, 68, 185-194
Defense Air Transport Administration, 247
DeHavilland Comet, 331
DeHmel trainer, 140, 208, 242
Delean-Remy, 318-319, 321
Delta-C&S Airlines, 229-231, 335
Delta-wing aircraft, 66, 85, 193, 277, 281, 332
Denny, Harnar D., 331
De Seversky, Maj. Alexander P., 422, 454
Desmond, Capt. David G., 236
Detwiler, F. O., 90, 331
De Vigne, Squad. Ldr. C. E., 450
Di Mauro, Col. Nicola, 412, 414, 416
Dien Bien Phu, 192
Dodds, Maj. W. C., 424, 426
Dolson, Charles H., 452
Doman, Glidden S., 335
Doman Helicopters, Inc., 335
Domanic Republic, 218
Dommisse, Evert, 428
Doolittle, Lt. James H., 414
Douglas Aircraft Co., 98-101, 261-263, 281-287; A2D Skyshark, 98; A3D Skywarrior, 98, 133, 282; A4D Skyhawk, 98, 99, 191; A4D-1, 283; AD Skyraider, 98, 285, 286; AD-1, 285, 286; AD-2, 285, 286; AD-3, 285, 286; AD-4, 285, 286; AD-1B, 286; AD-5 "MultipLEX," 98, 285; AD-6, 286; B-26, 331; B-47 Stratojet, 98; B-66, 98, 133, 284; C-74, 287; C-118, 261; C-124 Globemaster, 100, 287, 332; C-124C, 287; DC-6, 261, 262; DC-6A Liftmaster, 98, 101, 261; DC-6B, 76, 101, 261; DC-7, 98, 101; 251, 262; DC-7B, 262; DC-7C Seven Seas, 100, 262, 263; F4D Skyray, 98, 251, 335; F4D-1 281; R6D-1, 261; RB-66, 98, 100, 188, 284; RB-66A, 188; XA3D-1, 282, 284; YC-124B, 100, 331; Honest John (missile), 98, 100, 198-199; Nike (missile), 68, 93, 99, 196-198
Dow Chemical Company, 169
Doyle, John P., 224
Drag parachute, 138
Dreyfus, Henry, 237
Duke, Sq. Ldr. Neville, 446
Dulles, John Foster, 67, 77
Dumont Aviation Associates, 169
Dwight, Harvey H., 334

E
Eardhart, Amelia, 434, 438
Earnings, 26
Eastern Airlines, 231-232
Echols, Maj. Gen. Oliver J., 333
Eckel, V. W., 157
Eckener, Dr. Hugo, 426
Ecuador, 80
Edgar, Laurence E., 428
Edlefsen, Dr. N. E., 203
Edmondsen, Woodrow W., 444
Edwards, Capt. G. W., 452
Edwards Air Force Base, 84, 94, 187, 202
Efimenko, Vintcheslav, 426
Einstein, Albert, 114
Eisenhower, Pres. Dwight D., 84, 186, 331, 332, 333, 335
Ejection seats, 124, 125
Electric equipment, 168, 173-174
Electronic Associates, 98
Electronics, 79-72, 79, 97-98, 113, 144, 158, 177
Electronics Corporation of America, 124
Elsasser, Capt. Armin, 237
Emmer, Josef, 432
Employment, 28; 79, 85, 92, 98, 111, 114, 121, 122, 130
Engine manufacturing industry, 133-154, 318-330; employee earnings and hours, 26; employment, 28; production, 52; shipments, 52
England, Capt. J. L., 444, 452
English, Burton E., 3
Epoxy resins, 110, 124
Erie Insurance Company, 83
Everest, Lt. Col. F. K., 396
Exceptional Service Award, 190
Exercise Check Point, 190
Exercise Flash Burn, 102, 193, 333
Exercise Sky Drop II, 193
Explosion suppression systems, 181
Export-Import Bank, 215
Exports, 40
Express, ton miles, 30
Extrusion presses, 159
INDEX

F
FAI, 396
Fairchild Engine and Airplane Corp., 101-104, 285-289; C-82, 189; C-82A, 288; C-119
Flying Boxcar, 101, 102, 189, 288, 333; C-119G, 288; C-123B Avitruc, 101, 103, 289; R4Q-2, 288; XH-26 helicopter, 104; Guided Missiles Div., 103; Speed Control Div., 104; Stratos Div., 103
Fairchild Engine Div., Fairchild Engine & Airplane Corp., 102, 323
Falcon (missile), 277
Faneuf, Leston F., 335
Faris, Robert C., 408
Farley, John J., 458
Federal Airport Act, 335
Federal Communications Commission, 218
Federation Aeronautique Internationale, 396
Ferrari, Guido, 410
Fiberglass, 129, 246
“FICON,” 123, 314
Fiction books, 10, 12
Finances, 86, 87, 92, 95, 101, 111, 113, 117, 120, 121, 125, 126, 130
Firebee (missile), 196
Firebee (target plane), 102, 126, 127
Firebird (missile), 204
Firestone Tire and Rubber Company, 126, 196, 204
First class mail by air, 223, 226, 233, 339
Firsts, 91, 92, 107, 112, 115, 134, 190-191, 192
Fish and Wildlife Service, 218-219
Fixed-base operators, 243, 247
Fletcher Aviation Corporation, 169
Flight Refueling, Inc., 169
Flight Safety Foundation, 78, 268
Flight simulators, 242
Floberg, John F., 335
Flotation equipment, 170
Flottorp propeller, 265
Flower, Capt. Scott, 438
“Flying hospitals,” 129
Flying saucers, 12
Flying Tiger Line, 335
Ford Instrument Company, 72
Ford Motor Co., 188
Forest Service, 219-220
Forgings, 159-160, 172
Forestence, Y. D., 412
Forestal, USS, 193
Foster, P. L., 456
Fosterite process, 153
Franklin engines, 134, 318-319
Franz, Anselm, 90
Freeman, R. W., 335
French Union, 332
Friendship International Airport, 169
FrijaDrive, 173
Frye, Jack, 456
Frye Airline Performance Trophy, 237
Fuel flow meters, 161
Fuel gauges, 176
Fuel injection, 181
Fuel meters, 165
Fuel pumps, 324, 334, 167, 172
Fuj Heavy Industries, 81
Fuller, Frank W., Jr., 456, 458
Furby, John B., 78, 241

G
Galgusov, Semion, 430, 432
Game protection, 218
Gannon, Capt. David P., 452
Garlock, Lyle S., 334
Garrett, J. C., 335
Garrett Corporation, 169-170, 335
The Garrett Manufacturing Company of Canada, Ltd., 170
Gas turbines, 80, 88, 145, 161
Gaudry, Mrs. Yvonne, 438
General Dynamics Corp., 92-98, 332, 334
General Laboratory Associates, Inc., 170-171
General Motors Corp., Aéroplane Operation, 154-155, Allison Div., 134-137

Widely used in
AIRCRAFT INDUSTRY

• for laying out templates:

DYKEM STEEL BLUE

• for color identification:

DYKEM STAINING COLORS
complete range of colors

THE DYKEM COMPANY
2803P NORTH 11TH ST.
ST. LOUIS 6, MO.
INDEX

General Precision Equipment Corp., 333
Genin, 446
Germany, 67, 331
Gerrity, Lt. Col. T. P., 406
Gibb, Walter F., 404
Class, Capt. Joseph B., 452
CLIding records, 426, 428, 438, 440
Goernas, Robert E. A., 408
Golovanov, Nicolay, 412
Goodyear Aircraft Corp., 104-105
Gorini, G., 414, 416
Grabowski, Lt. E. M., 400, 402
Grace, Thomas L., 335
Graham, Harold L., Jr., 334
Grant, Joseph L., 335
Gravimetric flowmeters, 169
Gray, Capt. Hawthorne C., 331
Grant, L., 400, 402
Harmon International

Haa se, Ernst-Gunter, 428
Haiti, 121, 218
Hamilton Standard Div., United Aircraft Corp.,
130, 132, 155-157
Hancock, Lt. John, 406
Hancock, USS, 107
Harmon, Lt. Gen. Hubert R., 190, 334
Harmon International Trophy, 78, 335
Harris, Harold R., 332
Hartzell propeller, 252, 257, 275
Harvey, First Officer L., 412
Harvey Aluminum, 171
Hawaiian Airlines, 232
Hawley, A. R., 434
Hayes, J. W., 452
Helinemann, Edward, 77, 335
Helicopter engines, 134, 143, 250, 323
Helicopters, 194, 247, 250; American Helicopter,
104; Bell, 85, 256, 270; Cessna, 90;
Doman, 335; Fairchild, 104, 219; Hiller,
107, 294; Kaman, 107-108, 295; McDonnell,
112; Piasecki, 120-121, 310-311;
Ryan, 126; Sikorsky, 126-128, 315-317;
commercial use, 128, 223; records, 75,
84, 127

Heliports, 248-249
Hemke, Alfred, 448
Henry, Lt., 74
Hermes (missile), 196, 199
Hill, E. J., 430
Hiller Helicopters, 107, 294; 12-B, 107, 294,
H-23B, 107, 294; H-32 Hornet, 107;
HTE-2, 294
Hillwood, P., 450
Hilaz, Mrs. Maryse, 434, 444
Hitschfeld, 179
Hodges, Wing Comdr. L. M., 450
Hoffman, S. K., 203
Holloman Air Development Center, 78, 119,
123, 126
Honest John (missile), 98, 100, 198-199
Hook, Lt. D. A., 450
Hopkins, Johns Jay, 332
Horne, H. M., 335
Howe, Clarence, 78
Hughes, Howard, Medical Institute, 331
Hughes, Howard R., 331, 454
Hughes Aircraft Company, 277, 331
Humphrey, W/C A. H., 444
Hurditch, Flight Lt. D. D., 446
Hydraulic equipment, 167, 173, 184
Hydraulic Research and Manufacturing Com-
pany, 82-83
Hydro-asi, 193
“Hydrotherm,” 110

I
Idledewl Airport, 222
Ignition analyzers, 230
Ignition systems, 167
Ilitchenko, Victor, 428
Independent Military Air Transport Association,
335
India, 128
Indo-China, 102, 186, 331, 332
Indonesian Air Force, 158
Institute of International Education, 235
Institute of the Aeronautical Sciences, 189
Insurance, 331
Interchange service, 226-227, 228
International Air Transport Association, 334
International Aviation Sporting Commission, 396
International Civil Aviation Organization, 215
Interplanetary flight, 12
Iowa, 162
IRAN contract, 89
Irvin, Capt. C. S., 400, 452
Ivanova, Miss L., 440, 442
Ivans, William S., Jr., 426

J
Jack & Heintz, Inc., 173-174
Jacobs Aircraft Engine Co., 324
Japan, 128
Japy, Andre, 444
Jato (jet assisted take-off), 133-134
Jato motors, 134, 316
INDEX

B-57 Night Intruder, 113; B-57B, 113, 303, 334; B-57C, 113; PSM-1 Marlin, 91; PSM-2, 113, 191, 302, 332; RB-57, 113; XP6M-1 Sea Master, 113, 114; B-61 Matador (missile), 67, 113, 189, 195, 197, 204, 331; Viking II (rocket), 74, 113, 150

Marcel-Schebler carburetors, 318-319, 325

Masters of the Air, 221

Matador (missile), 67, 113, 189, 195, 197, 204, 331

Mathes, Mrs. Jacqueline, 438

Matheson Chemical Corporation, 150

Mazzotti, G., 448

Medical books, 16

Megawatt klystron, 71, 183

Mercury flights, 102, 107, 121

Merrill, Henry T., 446, 454, 456, 458

Metallurgical research, 149

Metsger, Maj. Gen. Kern D., 335

Mexico, 89, 218

Miami International Airport, 233

Midway, USS, 199

MiG-15 airplane, 188

Mighty Mouse (rocket), 189

Military aircraft, 269-317

Military aviation, 185-204, 269-317

Millikan, Col. W. W., 331, 444, 452

Miniaturization, 167

Minneapolis Honeywell Regulator Company, 70, 177

Missiles, see Guided missiles

Mississippi, USS, 93

Mistele, Harold E., 420

Mitchell, Gen. William, 220

Model flying, 18

Mohawk Airlines, 247-248, 332

Monterey, USS, 121

Montgomery, Helen M., 438

Mooney Aircraft, Inc., 114, 265

Moore, Bruce, 221

Moore, Lee, 214

Moreau, Rudolf, Freiherr von, 448

Morgan, David W., 450

Mowry, Miss Crystal, 436

Muhl, Capt. Fred E., 238

Murray, Maj. Arthur “Kit,” 73, 83

Murray, Robert B., Jr., 214, 335

Murray, Lt. William, 402, 404

Musiek, Edwin, 416

Mutual Defense Assistance Program, 115

Mutual of Omaha, 331

N

NATDCS, 117

National Advisory Committee for Aeronautics, 209-214

National Aeronautic Association, 241, 396

National Air Museum, 220-221

National Airlines, 232-233, 248

National Business Aircraft Association, 244, 245, 335

National Forests, 219

National Guard, 194.332

National Safety Council awards, 225, 227, 234, 237, 239, 241, 333

NATO, 67, 123, 331

Navajo (missile), 196

Naval Air Missile Test Center, Pt. Mugu, 126

Naval aviation, 6, 84, 85, 106, 126, 190-193, 331, 332

Naval Industrial Reserve Aircraft Plant, 91, 92

Naval Ordnance Laboratory, 96

Naval Ordnance Test Station, 93

Navigation systems, 72

NAVAC, 116-117

Naylor, W. C., 430

Negro, Marquise Carina, 422

Nelson, Ted, 428

Nevada Proving Grounds, 201

Nevanov, Boris, 430, 482

New Mexico College of Agriculture and Mechanical Arts, 193

New York Air Brake Company, 178

New York Airways, 128, 334

Newark Airport, 222

Newport News Shipbuilding and Drydock Company, 193

Nielot, Furio, 400

Nicolas, Miss Marie, 410

Nike (missile), 68, 98, 99, 196-198

North Atlantic Treaty Organization, 123

Northeast Airlines, 233, 332

Northrop Aircraft, Inc., 118-120, 122, 309; 333; F-89, 118; F-99D Scorpion, 118, 119, 309; Snark XB-62 (missile), 118; Radioplane Company, subsidiary, 129; research, 119

Northwest Orient Airlines, 234-235

Noyes, Blancie, 458

Nuclear-powered aircraft, 88, 97, 131, 210

“Nuclear reactors for science and industry,” 117

“NULLO” flight, 201

Nyrop, Donald W., 234

O

Odom, William P., 410

Office of Naval Research, 108

Ohio State University, 206

Oklahoma, University of, 80
INDEX

Olin Mathieson Chemical Corp., 146
“Operation Longstride,” 123
Ordnance Aerophysics Laboratory, 96
Ortman, Earl, 438
Ossipenko, P., 434, 436

P
Pacific Airmotive Corporation, 178
Pacific Northern Airlines, 235
Pan American Grace Airways, 235-236
Pan American World Airways, 236-238, 332, 334
Panghorn, Clyde, 446
Parachute brakes, 212
Parachute jumping records, 74
Parachutes, 192-193
Paradisi, Magg. Amedeo, 446
Parker, E. H., 454
Parker Appliance Company, 178-179
Parish, Wayne W., 331
Parts industry, see Accessories and parts manufacturing industry
Patuxent River Naval Air Test Center, 191, 192
Pearson, Capt. A. A., 402
“Percolating tea kettle,” 117
Pereira and Luckman, 120
Perl, Harry N., 426
Pescio Products Division, Borg-Warner Corp., 167
Pettit, W/C G. C., 446
Pesti, Marie, 398
Piasecki Helicopter Company of Canada, Ltd., 120-121
Piasecki Helicopter Corp., 120-121, 310-312; H-21 Work Horse, 120; B-21A, 120, 121; H-21B, 311; H-21C, 311, 334; H-25 Army Mule, 312; H-25A, 121, 312; HUP Retriever, 120, 121; HUP-2, 310; YH-16 Transporter, 120; YH-16A, 120
Piedmont Airlines, 238
Pierson, Warren Lee, 241
Pini, Capt. Roberto, 456
“Pinwheel” project, 192
Piper Aircraft Corp., 121-122, 266-268; L-21C, 122; PA-18 Super Cub, 122, 267; PA-18A, 122; PA-18T, 122, 267; PA-22 Tri-Pacer, 122, 266; PA-23 Apache, 121, 268
Pittsburgh Pirates, 227
“Plano-O-Rama,” 82
Plastic materials, 103, 110, 124, 129
Polar flights, 76
Popiel, Jerzy, 428
Porsche engine, 169
Post, Wiley, 221
Post Office Department, 221, 223, 331
Potts, Ramsey D., Jr., 335
Power plants, see Engines
Pratt & Whitney Aircraft, Division of United

Aircraft Corp., 147-149, 326-328; J48 turbojet, 106, 148, 327-328; J57 turbojet, 147-148, 328; R-2000 Twin Wasp, 326; R-2800 Double Wasp, 127, 149, 327; R-4360 Wasp Major, 149, 327; T-34 turboprop, 145, 328; T-37 turboprop, 147; T-37 jet, 147
Predatory animal control, 218
Prietto, Guillermo S., 456
Private airplanes, see Utility airplanes
Propeller manufacturing industry, 154-157; employee earnings and hours, 26; employment, 26
Propeller-turbine aircraft, 206, 223, 239
Puerto Rico, 218
Putnam, Carleton, 335

Q
Quick, Raymond R., 416

R
Radar equipment, 72, 103, 165, 182, 186, 226
Radford, Admiral Arthur, 186
Radiant heat, 228
Radio equipment, 158-159, 165-166, 179
Radio Technical Commission for Aeronautics, 218, 249
Radioplane, Inc., 82
Radioplane Company, 118, 120, 122-123
Rand, Robert C., 396
Ramjet engines, 107, 146, 210
Ramsey, Adm. Dewitt C., 7
Ramspuck, Robert, 244
Ranger, USS, 193
Rankin, Consdr. Eugene P., 396, 398
RAPCOH, 207
Rascal (missile), 35, 196, 331
Rasmussen, S. A. U., 430
Raynor, H. R., 205
REAC, 98
Reaction Motors, Inc., 146, 150, 192
Reactors, 117
Reagan, James E., 82
Records, 73-76, 396-450; altitude, 73, 83; F.A.I. course records, 444-450; F.A.I. International and national “class” records, 398-444; F.A.I. world air records, 396; feminine national transcontinental and inter-city records, 433; feminine records, 434-454; national transcontinental and inter-city records, 452-458; 1954 records, 73-76, 83, 92, 101, 108, 106, 113, 119, 123, 127, 128, 166, 194, 332, 335, 334, 335
Redstone (rockets), 196
Reference books, 15, 35
Refueling In Flight, 168, 165
Regular (missile), 91, 92, 196, 202
Reid, Consdr. Walter S., 396, 398
Reitsch, Miss Hana, 444
Republic Aviation Corp., 120-125, 313-314; F-34 Thunderjet, 123; N-34P Thun-

469
INDEX

derstreak, 76, 123, 187, 313; F-103, 124; RF-84F Thunderflash, 123, 314; XF-84H, 124; YF-84J Super Thunderstreak, 124; research, 124
Research Motors, Inc., 194
Reverse thrust devices, 88-89, 188, 332
Revillon, Albert, 408
Reynolds, Col. E. D., 400
Reynolds Metals Company, 179-180
Rickenbacker, Capt. Eddie, 231
Rickert, Capt. Wm., 406
Ricketts, Victor, 446
Riddle, John Paul, 238
Riddle Airlines, 238-239
Robert, 446
Rohey, Capt. P. H., 400
Robson, Capt. B. P., 400
Rocket motors, 134, 192, 194, 210, 318
Rocket sled, 78, 119
Rocketts, 74, 113, 150; records, 74, 113
Rodd, Lt. H. C., 412
Roderick, George II., 214
Rodrigues, A. L., 456
Roe, A. V., 156
Roehr Aircraft Corporation, 180
Rolls-Royce engines, 227
ROR, 194
Rose, H. Chapman, 214
Ross, Maj. F. F., 399, 400
Rossalidi, Enrico, 422
Rosting, Alexis, 430
Roth, Capt. Jack, 456
Rotor aircraft hooks, 22
Rotor aircraft records, 424, 426, 444
Rotor-Craft Corp., 192
Rotor tip lights, 108
Royal, Capt. L. Jr., 452
Royal Canadian Air Force, 120, 190, 288
Royal Canadian Navy, 120
Rubber products, 144, 168
Ruegg, Lt. Col. R. G., 402, 404
Russia, 333
Ryan Aeronautical Co., 102, 125-126, 127, 196
S
Sabena Belgian Airlines, 128
Sacconi, Giovanni Vitalini, 446
Safety awards, 225, 227, 234, 237, 239, 241
Saipan, USS, 121
Samoeudova, Anna, 440
Sarabia, Francisco, 454
Saratoga, USS, 193
Sawyer, Clarence N., 335
Scale formation, 89
Scandinavian Airlines System, 101
Schlosser, A. G., 430
Schoenberger, W. J., Co., 83
Scott, J. D., 454
Seaplanes, 92, 114, 331-332; records, 412-420, 436
Seaton, Fred A., 334
Seats, 213-214
Seoul, 242
Sensenich propeller, 267
Sergievsky, Boris, 414, 416, 418, 422, 424
Sethle, Lt. Comdr. T. G. W., 432, 434
"Seven Seas," 100
Sharpie, Miss R. M., 412
Sheridan stretch press, 113
Siedle, E. George, 214
Signal Corps, 179
Sikorsky Aircraft Div., United Aircraft Corp., 126-128, 194, 315-317; H-37, 187; H-37A, 127; HO4S, 316; HRS, 316; HR2S-1, 127, 316; HSS-1, 316; S-55, 128, 317, 332; S-56, 126, 127; S-58, 126, 127; S-59, 126; XII-39, 75, 127, 185, 315; XHR2S, 194; YH-18, 128
Silicones, 144
Simmonds Aerocessories, Inc., 181
Sinclair Refining Co., 335
Sinovee, Serge, 428
Slick Airways, Inc., 355
Sloan, Capt. W. P., 422
Smith, David S., 335
Smith, Elton J., 424
Smith, Capt. Harry, 228
Smith, Capt. Harry, Jr., 228
Smith, James H., Jr., 214
Smith, Capt. Martin L., 454
"Smokejumpers," 219
Snark (missile), 118
Sodium reactor experiment, 117
Solar Aircraft Co., 181-182
Soldering, 158
Solly, 182
Sonohond, 158
Soucek, Lt. Appollo, 412
Soukhomline, Ivan, 422, 424
Southern Airways, Inc., 239
Southern California Cooperative Wind Tunnel, 96, 112
Spark plugs, 161
Sparrow I (missile), 69, 89, 182, 192, 200
Sperry, Capt. Edward G., 74
Sperry Farragut Corp., 200
Sperry Gyroscope Co., 69, 71, 98, 100, 182-183, 192, 200
Stainless steel, 110
Stanley, Lt. Col. G. R., 452
Stapp, Capt. Albert, 396, 434
Stillman, Col. Robert M., 190
Stoppani, Mario, 412, 414, 416, 418
Strikes, 227, 334
Strouff Aircraft Corp., 128-129
INDEX

Subcontracting, 81, 85, 86, 90, 91, 122, 126, 129
Summers Gyroscope 246
Supreme Court 331
Sweden, 128
Swept-wing aircraft, 91, 96, 284, 291, 305, 306, 333
Synar, J. J., 3
Szemplinska, Wanda, 436

T
Tabeling, Lt. Comdr. Ray A., 396, 398
Talbott, Harold E., 186, 335
Talesos missile system, 112
Target planes, 86, 122-123
Taylorcraft, Inc., 129, 246
Telecommunication, 218
Telemetering systems, 164
Temco Aircraft Corp., 129-130
Terrier (missile), 69, 92, 93, 97
Thacker, Lt. Col. Robert E., 454
Thaden, Louise, 456, 458
Thailand, 128
“Thermal barrier,” 119
Thermistors, 164
Thomas, Charles S., 332
Thompson, Harvard E., 426
Thompson, William D., Jr., 410
Thule Air Base, 118
Tiller, R. W., 452
“Time-payment travel plan,” 227
Titanium, 89, 97, 110, 113, 140, 142, 212
TMGLN system 167
Robinson, Lt. J. P., 402
Tonini, Carlo, 412, 414
Tonkova, Miss S., 420, 442
Tow targets, 86, 105
Traffic control systems, 117, 189
Trans-Canada Air Lines, 239-240
Trans World Airlines, 240-241
Transco Products, Inc., 183-184
Transistors, 152, 177
Transport Air Group, 335
Tripe, Juan T., 334
Tsukahashi, Kenji, 446
Tunny (submarine), 202
Turbinines, 173
Turbojet engines, axial flow, 320, 321, 324, 328, 330; centrifugal, 320, 321, 323, 327
Turboeneu Arione II, 127
Turner, Roscoe, 446
Twining, Gen. Nathan F., 332

U
Ultrasound research, 158
Unified field theory, 114
United Air Lines, 241-242
United Aircraft Corp., 90, 130-133, 335
University of Illinois, 246
Utility airplanes, 7, 243-247

V
Valente, E., 448
Valentine, Capt. W. J., 396, 398, 400
Valves, 157, 164, 184
Van Buren, Capt. John, 452
Vandenberg, Gen. Hoyt S., 190
Vane jump angle computers, 116
Verdin, Lt. Comdr. James B., 404
Vertical rising aircraft, 64, 92, 93, 97, 108, 190-191, 332, 333
Vickers, Inc., 184
Vickers-Armstrong, 227, 333
Viking II (rocket), 74, 113, 150
Viscasil fluids, 144
Volsean, 189
Voltage regulators, 70
Vought, Chance Milton, 90
Vulean, 145

W
Wac Corporal (rocket), 195
Wages, 26
Wake, L. L., 205
Walker, Lt. Col. Carl P., 402, 404
Warden, Lt. Col. H. F., 452
Waren, Col. B. H., 404
Warrin, E. W., 430
Washington National Airport, 298
Waters, Donald S., Jr., 335
Waugh, Samuel C., 214
Weather Bureau, 221-222
Weber, Mrs. Paulette, 442
Weldon fuel pump, 339
Wendel, Fritz, 398
Westheimer, Philipp, 450
Westinghouse, W.D. Billy, 194, 426
Western Airlines, 242
Western Electric Company, 99, 196
Westinghouse Electric Corp., 150-154, 328; J-34 turbojet, 328; J-40 turbojet, 328; J-46 turbojet, 150, 328; Aviation Gas Turbine Division, 150, 328; Air Arm Division, 133; Small Motor Division, 151, 153
White Sands Proving Ground, 198, 199
Whitney, Maj. John, 422
Williams, Wallace R., 426
Wilcock, Andrew V. B., Turbine Laboratory, 130, 131, 149
Wilkinson, T. P., 412
Willicombe, Allan, 335
Wilson, Charles E., 334
Wind tunnel testing, 86, 89
Wind tunnels, 96, 114, 115, 131, 212-214
Wingfoot Lake Airship Base, 105
Winslow, Moe, 221
Wojnar, Jerry, 428
Wolfe, Franklin C., Company, 184
Woodward, Miss Betty, 438, 440
Woodman, C. E., 230
Wright, Orville, 220
Wright, Wilbur, 220