

May 16, 2025

The Honorable Howard Lutnick U.S. Secretary of Commerce U.S. Department of Commerce 1401 Constitution Ave NW Washington, DC 20230

<u>Subject:</u> Aerospace Industries Association Comments on Section 232 National Security Investigation of Imports of Processed Critical Minerals and Derivative Products

Reference: BIS-2025-0025, XRIN 0694-XC124

Dear Secretary Lutnick,

The Aerospace Industries Association (AIA) and its nearly 300 member companies welcome the opportunity to provide comments on the initiation of the Section 232 investigation to determine the effects on national security of imports of processed critical minerals and derivative products. Given the role of critical minerals in the aerospace and defense (A&D) supply chain, our industry is eager to work with the U.S. government to develop solutions that ensure reliable access to these resources and reduce dependencies on adversaries.

AIA represents companies in the A&D industry, ranging from small suppliers to large original equipment manufacturers (OEMs), that span the entire supply chain and have a vital role in global trade. Our industry directly supports U.S. national security and economic growth through our export leadership and technological superiority in fuselage design, semiconductor manufacturing, satellites, and other critical applications. American-made A&D products are consistently preferred over foreign competitors' due to our industry's cutting-edge commercial and defense technologies. To maintain this technological advantage, our supply chain relies on processed critical minerals to produce parts and components essential to the production and sustainment of commercial and defense systems.

Our industry relies on critical minerals to support the U.S. national defense objectives and meet global demand for American-made products. Regulatory restrictions on sourcing critical minerals must reflect the realities of today's global market and mitigate supply chain vulnerabilities that could impact the export competitiveness of U.S. A&D products.

AIA and our members are dedicated to supporting the U.S. government and providing technical expertise from all tiers of the supply chain—from producers to end-users—in the crafting of policies. Any actions taken should be deliberate, strategic, and aim to increase critical mineral supply and support national defense objectives.

Understanding the aerospace and defense supply chain is imperative to national security

As the U.S. responds to adversarial threats, commercial travel increases, artificial intelligence and data center development accelerates, demand for American-made A&D products will increase while supply of processed critical minerals needed for these products remains limited. It is vital to U.S. national and economic security to understand the complexity of the A&D supply chain.

The A&D industry is unique compared to other manufacturing sectors (e.g., automotive applications or consumer electronics, etc.) due to our need for high-purity, aerospace-grade materials from qualified processing and refining operations. These complex applications meet stringent strength and durability requirements for performance and safety but are purchased at smaller quantities from fewer suppliers, leaving our industry with less buying power.

To ensure long-term access to critical minerals, our members rely on qualified domestic and international suppliers and employ several risk mitigation strategies. These strategies include entering into longer-term supplier agreements, securing material in advance of need, building material buffers and stockpiles, and incorporating high-quality, non-contaminated scrap into products and materials.

Countering supply chain disruptions amid geopolitical uncertainty and access limitations

Recent economic and geopolitical disruptions have highlighted vulnerabilities in critical mineral supply chains. In recent months, the U.S. has become increasingly vulnerable to volatile markets, particularly through export restrictions imposed by the People's Republic of China on critical minerals, of which the U.S. is net-import reliant and through China's efforts to control the global supply chain of critical mineral mining, processing, and refining. Our members have developed a preliminary list of critical minerals significant to the A&D industry, their relative import reliance, and threats to the global supply chain (Annex 1).

Mature, reliable global supply chains are vital for safe and secure procurement of processed critical minerals. The U.S. relies on imports where domestic sources are unavailable or the U.S. lacks sufficient capacity. Expanding refining and processing capacity of materials required by the A&D supply chain is complex, costly, and time intensive. Our members report it may take up to 10 years to identify, build, transition, and certify a new mining or refining source. Existing processing sources may take up to 12 months to qualify aerospace-grade inputs due to testing and certification required to ensure material meets safety, airworthiness, and durability standards. This timeline may increase further as customer testing is required to approve alternative suppliers.

In the case where domestic supply is not available, due to geographic dispersion of critical minerals or delayed integration of domestic suppliers, the U.S. aerospace industry sources from reliable and trusted international suppliers. This global sourcing is critical to the health and resiliency of the U.S. A&D supply chain.

Our members are encouraged by President Trump's Executive Order "Immediate Measures to Increase American Mineral Production" and support innovative efforts to invest in domestic sources and reduce barriers to entry. Stable supply requires an approach that is rooted in understanding the complexity of critical minerals market, strategic and targeted investment into U.S. supply chains, and increasing reciprocal agreements with partners where U.S. capacity is unavailable. Closing markets without readily available alternative sources will have a detrimental impact on U.S. national and economic security.

As companies transition their critical mineral supply chains to domestic sources, access to international markets must also be preserved to ensure stability and avoid disruptions in the production of A&D applications. Tariff and non-tariff actions on critical mineral imports where there is not a readily available domestic supply could significantly impact the U.S. A&D industry and its manufacturing capabilities.

Recommendations:

1. Leverage existing funding tools to drive domestic production

The U.S. government should pursue short and medium-term solutions that support American companies and build domestic capacity. Our members are supportive of President Trump's call to provide financing, loans, and investment support for new mineral production projects. Loans, loan guarantees, purchase commitments, grants, and equity investments are vital to supporting the upfront capital needed to develop critical mineral mining, refining, and processing capabilities.

Our members support the U.S. government using all existing funding tools (e.g., Department of Defense Office of Strategic Capital and Defense Production Act Title III, and Industrial Base Analysis and Sustainment programs, Department of Energy Loans Program Office, etc.) to support domestic critical minerals projects. Given our industry's direct contributions to national security, the U.S. government should prioritize high-purity, aerospace-grade applications.

The Administration and Congress should work collaboratively to maintain investment in and incentives for American companies investing in critical mineral projects in the U.S. For example, the Department of Treasury's guidance for Section 45x(c)(6) (i.e., Advanced Manufacturing Production Credit) provided relief for domestic critical mineral producers. Our members were pleased to see several efforts prioritized in recently unveiled legislation from the Senate and House Armed Services Committees for defense priorities.² AIA and our members would like to see the Administration and Congress continue these efforts for domestic critical mineral production through the annual defense appropriations process.

2. Strengthen recycling and infrastructure capacity

High-quality, aerospace-grade scrap material from processing operations (e.g., forging, casting, machining) as well as end-of-life airframes and engines are critical to the A&D supply chain. For example, domestically melted and produced titanium alloy and nickel superalloy are often made with over 50 percent recycled materials, minimizing the need to purchase virgin-mined and refined materials. In some cases, aerospace alloys may contain up to 100 percent recycled materials.

U.S. capacity for sorting, processing, and recycling critical minerals is limited due to outdated technology and the complexity of managing scrap and ensuring unserviceable material does not re-enter the supply chain. Industry has developed closed-loop recycling programs—from OEMs to refining plants—to improve management of scrapped materials (e.g., the Aircraft Fleet Recycling Association) and counter this challenge.

The U.S. government should support these efforts further by investing in recycling capacity (e.g., grants for recycling research and development and consideration of tax benefits for companies to help strengthen recycling infrastructure) and the issuance of guidance to ensure the safe and secure handling of material and alleviation of challenges faced by recyclers. There are several opportunities to increase recovery of aerospace components—largely nickel superalloys containing rhenium, tantalum, tungsten, niobium, etc.—from government propulsion maintenance and decommission operations that could be leveraged with industry support.

¹ Immediate Measures to Increase American Mineral Production, Presidential Executive Orders, 20 March 2025.

² SASC and HASC Chairmen Release Statement on Reconciliation Legislation to Modernize our Military and Strengthen National Defense, House Armed Services Committee, 27 April 2025.

Additionally, the U.S. government should support existing initiatives such as the Department of Defense's Defense Logistics Agency (DLA) Strategic Material Recovery and Reuse Program (SMRRP) (50 U.S.C. 98) to allow for the recovery and access of any strategic and critical materials from obsolete military systems that are targeted for disposal. SMRRP has proven to be successful in mitigating disruptions to the germanium supply chain, contributing to the National Defense Stockpile (NDS), and increasing domestic supplies of critical minerals to support defense and commercial industries.

3. Pursue permitting reform

The average U.S. mine development time is 29 years – the second longest average time in the world.³ Permitting is the largest barrier to establishing new mines in the U.S. due to ineffective government coordination and uncertainty in entering production. Compared to U.S. business investment in foreign mines, U.S. mines are at higher risk of litigation even after permits are received. Companies also face challenges accessing the amount of energy infrastructure needed to open a new mine.

Our industry is supportive of President Trump's call for increased permitting for mining. At the same time, the U.S. government must undertake significant reform to upscale mining and processing to counter these challenges. The Administration should work with Congress to reform legislation and streamline the approval timelines for domestic critical minerals projects. Policymakers should address specific concerns that slow permitting, including environmental risks, royalties, agreements with Native American tribes, foreign investment standards, end-use delegations, and patent restrictions.

As mining capacity remains limited, the U.S. government should consider elevating and increasing the capacity of existing domestic projects. For example, MP Materials, Nyrstar, USA Rare Earths, and Energy Fuels Inc. all have existing critical mineral mines in the U.S. that with increased resourcing can further support domestic demand. The U.S. should also continue to support tailing projects, such as the Uranium Mill Tailings Remedial Action (UMTRA) Project, to relocate mill tailings. These projects may be crucial in reclaiming land, accessing additional revenue streams for mines, and accelerating recovery from non-traditional sources.

4. Revitalize the National Defense Stockpile

Stockpiling processed materials has long been considered a reliable solution to mitigating risks in the national defense supply chain and encouraging the development of domestic sources of critical materials. As the U.S. maintains net-import reliance on adversaries—the U.S. Geological Survey reports the U.S. is 100 percent net import reliant for 12 of 28 identified critical minerals⁴—and faces export restrictions from China, stockpiling has become crucial.

President Trump's Executive Order "Unleashing American Energy" directed the Secretary of Defense to ensure the NDS provides a robust supply of critical minerals in the event of a future shortfall. Under the *Strategic and Critical Materials Stockpiling Act of 1939* (50 U.S.C. § 98), Defense Logistics Agency (DLA) Strategic Materials is the agency responsible for managing the

³ Mine development times: The US in perspective, S&P Global, June 2024

⁴ Mineral Commodity Summaries 2025, U.S. Geological Survey, U.S. Department of Interior, March 2025.

⁵ Unleashing American Energy, Presidential Executive Orders, 20 January 2025.

NDS. However, the DLA Strategic Minerals office requires more funding and personnel in identifying material requirements and managing the stockpile.

The Administration should work with Congress to revitalize the National Defense Stockpile Transaction Fund to ensure it is adequately resourced to acquire material, finance off-take agreements, support critical mineral research and development, fund qualification of domestic sources, and invest in recycling initiatives. AIA and our members support the \$2.5 billion in proposed funding for the NDS that was recently unveiled by the Senate and House Armed Services Committees included in reconciliation. Congress should also support NDS' utilization of tools and enhanced statutory authorities to increase its operations, support development and qualification of domestic sources, and invest in critical mineral research and development.

5. Enable global partnerships for critical minerals production

The use of bilateral and sector-specific plurilateral agreements provide incentives for fair and reliable global market access and are critical to building U.S. supply chain resiliency and promoting U.S. competitiveness through balanced and reciprocal trade. As the U.S. continues to face domestic sourcing and processing limitations, cooperation with trusted foreign markets is essential to maintaining and strengthening critical mineral access.

The U.S. has several trade agreements with partners that are primary suppliers of processed critical minerals for which the U.S. is greater than 50 percent net import reliant. For example, the U.S.-Mexico-Canada Agreement (USMCA) has provided access to the Canadian critical mineral sources. Agreements are critical for U.S. companies as Canada supplies 21 of these net import reliant mineral commodities and other partners, such as Japan, have increased capacity to process and refine critical minerals and downstream products.⁷

These agreements are crucial as they ensure U.S. manufacturers have access to a secure supply of materials to produce aerospace applications. Ending these agreements or imposing tariffs on trusted international partners risks harming U.S. producers' ability to supply the aerospace industry and compete globally. Our members are pleased with President Trump's recently announced U.S.-U.K. Economic Prosperity Deal which provides access to key imports with "modified reciprocal tariff treatment" based on balanced trade relationships and shared national security priorities.⁸

The U.S. government should continue to pursue and expand bilateral and sectoral trade agreements—and maintain existing agreements like USMCA—with key trading partners and allies with strong rules of origin, quality standards, and reciprocal trading practices. Additionally, the Administration should support Congress in adopting legislation that enhances U.S. manufacturers' competitiveness by temporarily removing standard import duties on critical mineral supply when domestic production is unavailable, such as the *Securing America's Titanium Manufacturing Act of 2024*.

⁶ SASC and HASC Chairmen Release Statement on Reconciliation Legislation to Modernize our Military and Strengthen National Defense, House Armed Services Committee, 27 April 2025.

⁷ Mineral Commodity Summaries 2025, U.S. Geological Survey, U.S. Department of Interior, March 2025.

⁸ General Terms for the United States of America and the United Kingdom of Great Britain and Northern Ireland Economic Prosperity Deal, White House, 8 May 2025

⁹ S. 4015-Securing America's Titanium Manufacturing Act of 2024, 118th Congress (2023-2024)

Our members support empowering the Export-Import Bank (EXIM) Supply Chain Resiliency Initiative and U.S. International Development Finance Corporation to finance international mining, refining, and processing projects around the world. To ensure the success of this initiative, the U.S. government should further incentivize companies to prioritize offtake agreements by providing clarity on tax credits and employing risk mitigation tools including risk insurance and price floors.

6. Continue industry and public consultation

The A&D industry has maintained the largest trade surplus across all American manufacturing industries for over 70 years. Partners continue to prefer U.S. A&D products over foreign competitors due to the technological innovation of our products and their long lifecycles of use. Our industry is committed to supporting the U.S. government by providing practical knowledge and expertise to assist in policy development that will support domestic industry and mitigate risks to export competitiveness.

Critical mineral supply chains are highly complex and globally integrated. As the Department of Commerce continues its investigation, our members encourage the Bureau of Industry and Security Office of Strategic Industries and Economic Security extend the comment period by 90 days and continue to work with industry to assess the short and long-term impact of tariff and non-tariff actions. Our members are supportive of the Administration's non-stacking tariff measures and would encourage similar actions to be considered if any tariffs are imposed on critical minerals.

Additionally, our industry recommends an existing agency be assigned to work with industry directly on products and derivatives that may be covered by Section 232 tariffs to ensure they accurately reflect national security concerns and do not put the supply chain at further risk. Collaboration with agencies such as the U.S. Geological Survey Minerals Information Center or DLA Strategic Materials is crucial given their deep understanding of processed critical minerals, domestic supply, and national security objectives.

Conclusion

AIA and our members are committed to working with the Department of Commerce to develop transparent polices, incentives, and implementation timelines that secure U.S. industry's access to critical minerals. We appreciate the opportunity to provide public comments and look forward to close collaboration on this matter. If you have any questions or require additional information, please contact my staff lead for this matter, Lizzie Patterson (lizzie.patterson@aia-aerospace.org).

Respectfully,

Derek "Dak" Hardwick

Vice President, International Affairs Aerospace Industries Association

1 (600)

Annex 1 – Strategically Significant A&D Critical Minerals

Critical Mineral	A&D Application	Import Reliance ¹⁰	Market Distortions	Domestic/Alternative Source(s)
Aluminum and ultra- pure aluminum (greater than 99.8% purity)	Aluminum is widely used in structural airframe material for aircraft, military, and combat vehicles. Ultra-pure aluminum is used in thin films and critical semiconductor	The U.S. is <50% netimport reliant, with 56% of imports from Canada. The U.S. is 100% netimport reliant on ultrapure aluminum Germany and China.	Section 232 tariffs on aluminum has constrained A&D access to ultra-pure aluminum.	In June 2023, Arconic received Defense Production Act Title III funding for high purity aluminum production. No domestic manufacturers have the ability to refine ultra-
Antimony	manufacturing. Used in commercial and military engines for dry film lubricants, cold airfoils, steel shafts. Present in high-temperature electrical and mechanical solders in existing products.	The U.S. is 85% import reliant, metal and oxide. The U.S. relies primarily on Italy (44%) and China (23%) for ore and concentrates. Unwrought metal and powder is imported primarily from India (25%) and China (24%).	In December 2024, China banned all exports of antimony to the U.S.	pure aluminum. In February 2025, Idaho mining company Perpetua received conditional funding from Defense Production Act Title III for mining. The mine is not expected to open until 2028 but is expected to supply 35% of U.S. demand.
Arsenic Metal	Used in semiconductors for solar cells, space research, and telecommunications platforms.	The U.S. is 100% net import reliant on all forms, with 96% of imports from China.		The U.S. has not had domestic arsenic production facilities since 1985.

_

¹⁰ Mineral Commodity Summaries 2025, U.S. Geological Survey, U.S. Department of Interior, March 2025.

Chromium	Used in superalloys in jet engines, turbine discs, and exhaust systems.	The U.S. is 77% net import reliant on all forms. The U.S. imports 100% of chromite ore, 96% from South Africa. Largest import sources of metal are South Africa (25%), Kazakhstan (14%), and Finland (7%). Canada and Mexico are responsible for nearly all scrap.	China controls large parts of ferrochrome production, which influences chromium pricing.	The U.S. has been primarily import dependent since the 1960s. Existing resources are often low-grade and remote.
Cobalt	Used in superalloys, mainly jet engine castings and forgings.	The U.S. is 76% net import reliant on metals, oxides, and salts. 70%+ of cobalt is mined in the Democratic Republic of Congo (DRC). Largest import sources of metal, oxide, and salts are Norway (27%), Finland (17%), Japan (14%), and Canada (13%).	In February 2025, DRC banned exports of cobalt for 4 months with a potential extension at the end of May.	The Department of Defense has supported feasibility studies regarding cobalt extraction. DOD has also awarded a cobalt refinery in Canada to produce cobalt sulfate.
Copper	Used in electrical systems, cooling systems, and engine components.	U.S. is <50% net import-reliant on refined copper. The U.S. relies heavily on imports from Canada, Chile, and Mexico. U.S. has trade agreements with all these countries.	China has increased investments in copper mining in African and Latin America through state-owned enterprises.	Several mines in the U.S. have closed recently and mining production has decreased due to lower ore grades.

Elmonomon	Handin atabina	The IIC is 1000/ see4		The IIC deep not be
Fluorspar	Used in etching	The U.S. is 100% net-		The U.S. does not have
	processes, cleaning	import reliant, mostly		domestic access.
	surfaces, and removing	from Mexico and China.		
	impurities in U.Sbased			
	semiconductor			
	manufacturing.			
Gallium	Used in platinum and	U.S. is 100% net-import	In December 2024,	The U.S. has not had
	blazing alloys. Present	reliant on metal. Largest	China banned all	domestic, unrefined
	in electronic devices,	import sources are	exports of gallium to the	gallium recovery since
	transistors, and	Japan (24%), China	U.S.	1987.
	integrated circuits.	(19%), Germany (19%),		
	3-11-1	and Canada (17%).		
Germanium	Used in brazing alloys,	The U.S. is 100% net-	In December 2024,	DOD has initiated
	most transistors,	import reliant, with	China banned all	programs to recycle
	integrated circuits, and	primary sourcing from	exports of germanium to	optical-grade
	certain diodes, and fiber	China (51%), Belgium	the U.S.	germanium from
	optics.	(27%), and Germany		decommissioned
	r	(15%).		military equipment.
Graphite	Used in thermal	U.S. is 100% net-import	China controls 78% of	DOD has awarded grant
•	protection systems,	reliant on graphite, with	the total world	money to Canada to
	including missile nose	primary sourcing from	production of graphite.	develop natural flake
	tips, aircraft fuselages,	China (43%), Canada	Francisco de Sentence.	graphite mines, as well
	wings, satellite	(13%), Mexico (13%),		as recycling facilities in
	structures, steelmaking,	and Mozambique		Kentucky and Louisiana
	and casting processes.	(13%).		and a production facility
	and custing processes.	(1370).		in Alabama.
Hafnium	Used in commercial and	Primary sourcing from	China (20% of global	Only 1 U.S. processor is
	military superalloys	producers in France,	production capacity) has	supplying the A&D
	applications and	China, U.S., and Russia.	imposed dual end-use	industry.
	coatings for high-	Cilliu, C.S., and Russia.	export control	maasa y .
	temperature application		restrictions on hafnium	
	temperature application			
			and export approvals	
			have been delayed.	

Lithium	Used in aluminum- lithium alloys for fuselages, spacecraft panels, and rocket components.	U.S. is >50% net-import reliance. U.S. primary imports are from Chile (50%) and Argentina (47%).		In 2024, Department of Energy announced \$3 billion in funding for lithium production, primarily focused on battery manufacturing.
Manganese	Used in aluminum alloys for aircraft frames and wings and tail sections.	U.S. is 100% net-import reliant. Total imports from Gabon (24%), South Africa (21%), Australia (10%), and Malaysia (9%).	At least two manganese mining and processing plants in Ukraine have remained idle since November 2023 and another two have resumed minimum production since the second quarter of 2024.	U.S. has not produced manganese ore since 1970. Department of Energy has funded development of mines in Australia. In May 2024, South 32 was awarded Defense Production Title III funding to produce battery-grade manganese in Arizona.

Magnesium Metal	Used in aluminum	IIC is 1000/ not import		In 2022, the embry
Magnesium Metal		U.S. is 100% net-import		In 2022, the only
	alloys for aircraft	reliant on magnesium		primary domestic
	frames and wings and	metal, primarily from		magnesium metal
	tail sections as well as	Israel (40%) and Turkey		producer (Utah) shut
	the metallization of	(34%). Combined total		down production due to
	numerous refractory	imports from Israel		water sourcing and
	oxides (e.g., niobium,	(17%), Canada (15%),		permitting issues.
	hafnium).	Turkey (12%), Czechia		
		(9%).		In February 2025,
				Magrathea Metals was
				awarded Defense
				Production Title III
				funding to establish
				domestic primary
				production of
				magnesium at a
				demonstration plant.
Molybdenum	Used in rocket nozzles,	An estimated 90% of	In February 2025, China	Non-Chinese sources of
	turbine blades, and jet	aerospace-grade	imposed export controls	molybdenum are mainly
	engine components.	material is produced in	on molybdenum.	generated from scrap
		China.		which may be as high as
				30% of apparent supply.
Nickel	Critical element for	U.S. is 47% net-import	Chinese firms have	Mining production has
	high-temperature	reliant. Primary nickel	significant financial	decreased since 2021
	castings and forging	imports from Canada	investment in	while demand has
	alloys	(46%), Norway (11%),	Indonesian mining and	increased. Concentrate
		Australia (8%), and	refining.	production in Michigan
		Brazil (6%). Producers		is exported to smelters
		in Canada and Norway		in Canada. Significant
		make material for		nickel recovery is from
		aerospace grade		scrap (>50% of
		applications.		consumption).

Niobium	Used in steel, titanium	U.S. is 100% net-import		In September 2024,
	alloys, and superalloys	reliant. Total imports		Global Advanced
	(and master alloys used	from Brazil (66%) and		Metals USA was
	in production) for jet	Canada (27%). Brazil is		awarded Defense
	engines, spacecraft, and	world's leading niobium		Production Act Title II
	missile systems.	producer, accounting for		funding to support
		92% of global		establishing high-purity
		production.		niobium oxide
				production capabilities.
Rare Earth	Used in magnets,	U.S. is 80% net-import	On April 4, China	In the past five years,
Elements/Permanent	batteries, phosphors,	reliant on compounds	imposed export	the Department of
Magnets (Samarium,	metallurgical additives,	and metals. China	restrictions on rare earth	Defense has awarded
Dysprosium, Terbium,	ceramics, catalysts,	controls an estimated	metals, including	more than \$439 million
Samarium, Neodymium,	coatings, and other	70% of rare earths that	samarium, used in	to establish rare earth
Praseodymium,	various applications.	are found in permanent	permanent magnets.	element supply chains,
Lanthanum,		magnets.		including separating and
Gadolinium, Erbium)				refining capabilities as
				well as downstream
				processes to convert
				into metals and
				magnets.
Scandium	Used in aluminum-	U.S. is 100% net-import		Neither mined nor
	scandium alloys and	reliant. Imported		recovered from process
	electronics, lasers, and	material mostly from		streams or mine tailings.
	radioactive isotopes.	Japan, China, and		Limited capacity to
		Philippines.		product ingot and
				distilled scandium in
				facilities in the U.S.

Tantalum	Used in superalloys for jet engines, rocket nozzles, and thermal protections systems.	U.S. is 100% net-import reliant. Metal and powder imports primarily from China (43%), Germany (27%), Kazakhstan (15%), and Thailand (5%).	An estimated 50% of tantalum smelters are in China.	No significant U.S. mine production since 1959. Several domestic producers of tantalum metal and alloy from imported ores, concentrates, and tantalum containing materials.
Tin	Used in solder alloys for connected electronic components in flight control systems, communication devices, and satellite electronics.	U.S. is 73% net-import reliant on refined tin, primarily from Peru (30%), Bolivia (23%), Indonesia (20%), and Brazil (11%).		Tin has not been mined or smelted in the U.S. since 1993 or 1989, respectively.
Titanium Sponge	Used in titanium aerospace alloys utilized in airframes, jet engine components, and landing gear.	U.S. is 100% net-import reliant, primarily importing from Japan (82%), Kazakhstan (9%), and Saudi Arabia (7%).	U.S. applies Column I MFN a 15% tariff on titanium sponge despite no U.S. supply. Prior Section 232 investigation acknowledged harm to domestic titanium industries from imposing import tariffs or quotas. ¹¹	U.S. has had no domestic A&D-grade sponge production since 2020 and has relied on close partnership with Japan for access.

¹¹ The Effect of Imports of Titanium Sponge on the National Security, Commerce Department, November 2019.

				1
Tungsten	Used in superalloys for	U.S. is >50% net-import	In February 2025, China	Tungsten has not been
	commercial and military	reliant, primarily from	imposed export controls	mined in the U.S. since
	engines. Present in	China. Concentrate	on tungsten. World	2015. Several
	spark gaps, ignitor	production outside of	tungsten supply is	companies can convert
	plugs, electronic	China is estimated to be	largely dominated by	concentrates, oxide, etc.
	switches, circuit	<20% of world	China production and	to tungsten metal
	breakers, etc.	production.	exports.	powder.
Vanadium	Used in master alloys	U.S. is 40% net-import	Prior Section 232	Vanadium mining in
	that enhance properties	reliant, with	investigation	Utah closed in 2020 and
	of titanium alloys for	ferrovanadium primary	acknowledged harm to	has not reopened. One
	airframes, jet engine	sourcing from Canada	domestic steel and	U.S. producer of high-
	components, and	(48%) and Austria	titanium industries from	purity vanadium
	landing gear.	(37%). Imports of high-	imposing import tariffs	pentoxide.
		purity vanadium	or quotas. ¹²	
		pentoxide is provided		
		by mature sources from		
		Brazil (49%) and South		
		African (35%).		
Yttrium	Used in commercial and	U.S. is 100% net-import	In April 2025, China	High risk critical
	military jet engines,	reliant, with 94% of	imposed export	mineral as there is no
	including turbine	metals and compounds	restrictions on yttrium	yttrium-free alternative
	blades, thermal barrier	sourced from China.	product forms (yttria).	and no mine or
	coatings, and bondcoat			refinement sources.
	materials.			
Zinc	Used as a protective	U.S. is 73% net-import		
	coating for fasteners,	reliant on refined zinc.		
	brackets, connectors,	Refined metal imports		
	and landing gear parts.	primarily from Canada		
		(59%), Mexico (16%),		
		South Korea (7%), and		
		Peru (7%).		

¹² The Effect of Imports of Vanadium on the National Security, Commerce Department, February 2021.

Zirconium	Used in superalloys for engine fans and high-	ore imports have	A&D industry competes with nuclear industry.	
	pressure compressor	increased in recent	Prices will increase as	
	structures. Key element	years, with primary	demand increases	
	in thermal barrier	imports from South		
	coatings.	Africa (46%) and		
		Australia (35%)		